1
|
Paquay S, Duraffourd J, Bury M, Heremans IP, Caligiore F, Gerin I, Stroobant V, Jacobs J, Pinon A, Graff J, Vertommen D, Van Schaftingen E, Dewulf JP, Bommer GT. ACAD10 and ACAD11 allow entry of 4-hydroxy fatty acids into β-oxidation. Cell Mol Life Sci 2024; 81:367. [PMID: 39174697 PMCID: PMC11342911 DOI: 10.1007/s00018-024-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal β-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid β-oxidation via two enzymes with an overlapping substrate repertoire.
Collapse
Affiliation(s)
- Stéphanie Paquay
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Pediatric Neurology and Metabolic Diseases, Cliniques Universitaires St. Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Julia Duraffourd
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marina Bury
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Isaac P Heremans
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Francesco Caligiore
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Isabelle Gerin
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | | | - Jean Jacobs
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Aymeric Pinon
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Julie Graff
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute & MASSPROT Platform, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emile Van Schaftingen
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Joseph P Dewulf
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Laboratory Medicine, Cliniques Universitaires St. Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
2
|
Gong R, Hu Y, Yu Q, Fang L, Ren H. Metabolic signatures in pancreatic ductal adenocarcinoma: diagnostic and therapeutic implications. JOURNAL OF PANCREATOLOGY 2023; 6:185-195. [DOI: 10.1097/jp9.0000000000000146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the prototypical aggressive cancer that develops in nutrient-deficient and hypoxic microenvironment. PDAC overcomes these restrictions by employing unconventional tactics for the procurement and usage of fuel sources. The substantial reprogramming of PDAC cell metabolism is driven by oncogene-mediated cell-autonomous pathways. PDAC cells use glucose, glutamine, and lipids for energy and depend on autophagy and macropinocytosis for survival and growth. They also interact metabolically with non-cancerous cells, aiding tumor progression. Many clinical trials focusing on altered metabolism are ongoing. Understanding the metabolic regulation of PDAC cells will not only help to increase understanding of the mechanisms of disease progression but also provide insights for the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Ruining Gong
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yonglu Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Yu
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
3
|
Halbout M, Bury M, Hanet A, Gerin I, Graff J, Killian T, Gatto L, Vertommen D, Bommer GT. SUZ domain-containing proteins have multiple effects on nonsense-mediated decay target transcripts. J Biol Chem 2023; 299:105095. [PMID: 37507022 PMCID: PMC10470013 DOI: 10.1016/j.jbc.2023.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.
Collapse
Affiliation(s)
- Mathias Halbout
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Marina Bury
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Aoife Hanet
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Isabelle Gerin
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Julie Graff
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Theodore Killian
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Laurent Gatto
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
4
|
TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab 2023; 5:1275-1289. [PMID: 37612403 PMCID: PMC11251397 DOI: 10.1038/s42255-023-00863-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The pentose phosphate pathway (PPP) is a glucose-oxidizing pathway that runs in parallel to upper glycolysis to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). Ribose 5-phosphate is used for nucleotide synthesis, while NADPH is involved in redox homoeostasis as well as in promoting biosynthetic processes, such as the synthesis of tetrahydrofolate, deoxyribonucleotides, proline, fatty acids and cholesterol. Through NADPH, the PPP plays a critical role in suppressing oxidative stress, including in certain cancers, in which PPP inhibition may be therapeutically useful. Conversely, PPP-derived NADPH also supports purposeful cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for signalling and pathogen killing. Genetic deficiencies in the PPP occur relatively commonly in the committed pathway enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency typically manifests as haemolytic anaemia due to red cell oxidative damage but, in severe cases, also results in infections due to lack of leucocyte oxidative burst, highlighting the dual redox roles of the pathway in free radical production and detoxification. This Review discusses the PPP in mammals, covering its roles in biochemistry, physiology and disease.
Collapse
Affiliation(s)
- Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jing Fan
- Morgride Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
5
|
Campana S, Riesgo A, Jongepier E, Fuss J, Muyzer G, de Goeij JM. Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. BMC Genomics 2022; 23:674. [PMID: 36175840 PMCID: PMC9520939 DOI: 10.1186/s12864-022-08893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sponge holobionts (i.e., the host and its associated microbiota) play a key role in the cycling of dissolved organic matter (DOM) in marine ecosystems. On coral reefs, an ecological shift from coral-dominated to algal-dominated ecosystems is currently occurring. Given that benthic corals and macroalgae release different types of DOM, in different abundances and with different bioavailability to sponge holobionts, it is important to understand how the metabolic activity of the host and associated microbiota change in response to the exposure to both DOM sources. Here, we look at the differential gene expression of two sponge holobionts 6 hours after feeding on naturally sourced coral- and macroalgal-DOM using RNA sequencing and meta-transcriptomic analysis. Results We found a slight, but significant differential gene expression in the comparison between the coral- and macroalgal-DOM treatments in both the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Haliclona vansoesti. In the hosts, processes that regulate immune response, signal transduction, and metabolic pathways related to cell proliferation were elicited. In the associated microbiota carbohydrate metabolism was upregulated in both treatments, but coral-DOM induced further lipid and amino acids biosynthesis, while macroalgal-DOM caused a stress response. These differences could be driven by the presence of distinct organic macronutrients in the two DOM sources and of small pathogens or bacterial virulence factors in the macroalgal-DOM. Conclusions This work provides two new sponge meta-transcriptomes and a database of putative genes and genetic pathways that are involved in the differential processing of coral- versus macroalgal-DOM as food source to sponges with high and low abundances of associated microbes. These pathways include carbohydrate metabolism, signaling pathways, and immune responses. However, the differences in the meta-transcriptomic responses of the sponge holobionts after 6 hours of feeding on the two DOM sources were small. Longer-term responses to both DOM sources should be assessed to evaluate how the metabolism and the ecological function of sponges will be affected when reefs shift from coral towards algal dominance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08893-y.
Collapse
Affiliation(s)
- Sara Campana
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Evelien Jongepier
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
6
|
The Expression of TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Can Be Controlled by the Antioxidant Orchestrator NRF2 in Human Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23031905. [PMID: 35163828 PMCID: PMC8836827 DOI: 10.3390/ijms23031905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperactivation of the KEAP1-NRF2 axis is a common molecular trait in carcinomas from different origin. The transcriptional program induced by NRF2 involves antioxidant and metabolic genes that render cancer cells more capable of dealing with oxidative stress. The TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) is an important regulator of glycolysis and the pentose phosphate pathway that was described as a p53 response gene, yet TIGAR expression is detected in p53-null tumors. In this study we investigated the role of NRF2 in the regulation of TIGAR in human carcinoma cell lines. Exposure of carcinoma cells to electrophilic molecules or overexpression of NRF2 significantly increased expression of TIGAR, in parallel to the known NRF2 target genes NQO1 and G6PD. The same was observed in TP53KO cells, indicating that NRF2-mediated regulation of TIGAR is p53-independent. Accordingly, downregulation of NRF2 decreased the expression of TIGAR in carcinoma cell lines from different origin. As NRF2 is essential in the bone, we used mouse primary osteoblasts to corroborate our findings. The antioxidant response elements for NRF2 binding to the promoter of human and mouse TIGAR were described. This study provides the first evidence that NRF2 controls the expression of TIGAR at the transcriptional level.
Collapse
|
7
|
Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin 2021; 42:1547-1555. [PMID: 33510458 PMCID: PMC8463536 DOI: 10.1038/s41401-020-00588-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/02/2023]
Abstract
TIGAR (TP53-induced glycolysis and apoptosis regulator) is the downstream target gene of p53, contains a functional sequence similar to 6-phosphofructose kinase/fructose-2, 6-bisphosphatase (PFKFB) bisphosphatase domain. TIGAR is mainly located in the cytoplasm; in response to stress, TIGAR is translocated to nucleus and organelles, including mitochondria and endoplasmic reticulum to regulate cell function. P53 family members (p53, p63, and p73), some transcription factors (SP1 and CREB), and noncoding miRNAs (miR-144, miR-885-5p, and miR-101) regulate the transcription of TIGAR. TIGAR mainly functions as fructose-2,6-bisphosphatase to hydrolyze fructose-1,6-diphosphate and fructose-2,6-diphosphate to inhibit glycolysis. TIGAR in turn facilitates pentose phosphate pathway flux to produce nicotinamide adenine dinucleotide phosphate (NADPH) and ribose, thereby promoting DNA repair, and reducing intracellular reactive oxygen species. TIGAR thus maintains energy metabolism balance, regulates autophagy and stem cell differentiation, and promotes cell survival. Meanwhile, TIGAR also has a nonenzymatic function and can interact with retinoblastoma protein, protein kinase B, nuclear factor-kappa B, hexokinase 2, and ATP5A1 to mediate cell cycle arrest, inflammatory response, and mitochondrial protection. TIGAR might be a potential target for the prevention and treatment of cardiovascular and neurological diseases, as well as cancers.
Collapse
|
8
|
Fernández-Calero T, Davyt M, Perelmuter K, Chalar C, Bampi G, Persson H, Tosar JP, Hafstað V, Naya H, Rovira C, Bollati-Fogolín M, Ehrlich R, Flouriot G, Ignatova Z, Marín M. Fine-tuning the metabolic rewiring and adaptation of translational machinery during an epithelial-mesenchymal transition in breast cancer cells. Cancer Metab 2020; 8:8. [PMID: 32699630 PMCID: PMC7368990 DOI: 10.1186/s40170-020-00216-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/26/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT BACKGROUND During breast cancer progression, the epithelial to mesenchymal transition has been associated with metastasis and endocrine therapy resistance; however, the underlying mechanisms remain elusive. To gain insight into this process, we studied the transition undergone by MCF7-derived cells, which is driven by the constitutive nuclear expression of a MKL1 variant devoid of the actin-binding domain (MKL1 ΔN200). We characterized the adaptive changes that occur during the MKL1-induced cellular model and focused on regulation of translation machinery and metabolic adaptation. METHODS We performed a genome-wide analysis at the transcriptional and translational level using ribosome profiling complemented with RNA-Seq and analyzed the expression of components of the translation machinery and enzymes involved in energy metabolism. NGS data were correlated with metabolomic measurements and quantification of specific mRNAs extracted from polysomes and western blots. RESULTS Our results reveal the expression profiles of a luminal to basal-like state in accordance with an epithelial to mesenchymal transition. During the transition, the synthesis of ribosomal proteins and that of many translational factors was upregulated. This overexpression of the translational machinery appears to be regulated at the translational level. Our results indicate an increase of ribosome biogenesis and translation activity. We detected an extensive metabolic rewiring occurring in an already "Warburg-like" context, in which enzyme isoform switches and metabolic shunts indicate a crucial role of HIF-1α along with other master regulatory factors. Furthermore, we detected a decrease in the expression of enzymes involved in ribonucleotide synthesis from the pentose phosphate pathway. During this transition, cells increase in size, downregulate genes associated with proliferation, and strongly upregulate expression of cytoskeletal and extracellular matrix genes. CONCLUSIONS Our study reveals multiple regulatory events associated with metabolic and translational machinery adaptation during an epithelial mesenchymal-like transition process. During this major cellular transition, cells achieve a new homeostatic state ensuring their survival. This work shows that ribosome profiling complemented with RNA-Seq is a powerful approach to unveil in-depth global adaptive cellular responses and the interconnection among regulatory circuits, which will be helpful for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Av. 8 de Octubre, 2738 Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Giovana Bampi
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Helena Persson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Völundur Hafstað
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | | | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gilles Flouriot
- Université de Rennes 1-IRSET, Campus Santé de Villejean, 35000 Rennes, France
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Mónica Marín
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| |
Collapse
|
9
|
Liu ZQ, Liu N, Huang SS, Lin MM, Qin S, Wu JC, Liang ZQ, Qin ZH, Wang Y. NADPH protects against kainic acid-induced excitotoxicity via autophagy-lysosome pathway in rat striatum and primary cortical neurons. Toxicology 2020; 435:152408. [PMID: 32057834 DOI: 10.1016/j.tox.2020.152408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the effects and mechanisms of NADPH on Kainic acid (KA)-induced excitotoxicity. METHODS KA, a non-N-methyl-d-aspartate glutamate receptor agonist, was exposed to adult SD rats via intrastriatal injection and rat primary cortical neurons to establish excitotoxic models in vivo and in vitro, respectively. To determine the effects of NADPH on KA-induced excitotoxicity, neuronal survival, neurologically behavioral score and oxidative stress were evaluated. To explore the mechanisms of neuroprotective effects of NADPH, the autophagy-lysosome pathway related proteins were detected. RESULTS In vivo, NADPH (1 mg/kg or 2 mg/kg) diminished KA (2.5 nmol)-induced enlargement of lesion size in striatum, improved KA-induced dyskinesia and reversed KA-induced activation of glial cells. Nevertheless, the neuroprotective effect of NADPH was not significant under the condition of autophagy activation. NADPH (2 mg/kg) inhibited KA (2.5 nmol)-induced down-regulation of TP-53 induced glycolysis and apoptosis regulator (TIGAR) and p62, and up-regulation of the protein levels of LC3-II/LC3-I, Beclin-1 and Atg5. In vitro, the excitotoxic neuronal injury was induced after KA (50 μM, 100 μM or 200 μM) treatment as demonstrated by decreased cell viability. Moreover, KA (100 μM) increased the intracellular levels of calcium and reactive oxygen species (ROS) and declined the levels of the reduced form of glutathione (GSH). Pretreatment of NADPH (10 μM) effectively reversed these changes. Meanwhile NADPH (10 μM) inhibited KA (100 μM)-induced down-regulation of TIGAR and p62, and up-regulation of the ratio of LC3-II/LC3-I, Beclin-1, Atg5, active-cathepsin B and active-cathepsin D. CONCLUSIONS Our data provide a possible mechanism that NADPH ameliorates KA-induced excitotoxicity by blocking the autophagy-lysosome pathway and up-regulating TIGAR along with its antioxidant properties.
Collapse
Affiliation(s)
- Zi-Qi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Si-Si Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shu Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Liu Z, Wu Y, Zhang Y, Yuan M, Li X, Gao J, Zhang S, Xing C, Qin H, Zhao H, Zhao Z. TIGAR Promotes Tumorigenesis and Protects Tumor Cells From Oxidative and Metabolic Stresses in Gastric Cancer. Front Oncol 2019; 9:1258. [PMID: 31799200 PMCID: PMC6878961 DOI: 10.3389/fonc.2019.01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells adopt glycolysis to facilitate the generation of biosynthetic substrates demanded by cell proliferation and growth, and to adapt to stress conditions such as excessive reactive oxygen species (ROS) accumulation. TIGAR (TP53-induced glycolysis and apoptosis regulator) is a fructose-2,6-bisphosphatase that is regulated by p53. TIGAR functions to inhibit glycolysis and promote antioxidative activities, which assists the generation of NADPH to maintain the levels of GSH and thus reduces intracellular ROS. However, the functions of TIGAR in gastric cancer (GC) remain unclear. TIGAR expression levels were detected by immunoblotting and immunohistochemistry in gastric cancer samples, along with four established cell lines of GC. The functions of TIGAR were determined by utilizing shRNA-mediated knockdown experiments. The NADPH/NADP+ ratio, ROS, mitochondrial ATP production, and phosphorus oxygen ratios were determined in TIGAR-depleted cells. Xenograft experiment was conducted with BALB/c nude mice. TIGAR was up-regulated compared with corresponding non-cancerous tissues in primary GCs. TIGAR knockdown significantly reduced cell proliferation and increased apoptosis. TIGAR protected cancer cells from oxidative stress-caused damages, but also glycolysis defects. TIGAR also increased the production of NADPH in gastric cancer cells. TIGAR knockdown led to increased ROS production, elevated mitochondrial ATP production, and phosphorus oxygen ratios. The prognosis of high TIGAR expression patients was significantly poorer than those with low TIGAR expression. Taken together, TIGAR exhibits oncogenic features in GC, which can be evaluated as a target for intervention in the treatment of GC.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Wu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Menglang Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuelu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiyue Gao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shanni Zhang
- Department of Anesthesia, Dalian Maternal and Child Health Care Hospital, Dalian, China
| | - Chengjuan Xing
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongbo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zuowei Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Camacho-Jiménez L, Felix-Portillo M, Nuñez-Hernandez DM, Yepiz-Plascencia G. Molecular cloning and modeling of the Tp53-induced glycolysis and apoptotic regulator (TIGAR) from the Pacific white shrimp Litopenaeus vannamei and its expression in response to hypoxia. FISH & SHELLFISH IMMUNOLOGY 2019; 93:484-491. [PMID: 31377432 DOI: 10.1016/j.fsi.2019.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is a common stressor for aquaculture species. The Pacific white shrimp Litopenaeus vannamei survives low dissolved oxygen (DO) conditions by adjusting its energy metabolism. In vertebrates, the transcription factor p53 regulates glucose metabolism under stress through diverse target genes like the Tp53-induced glycolysis and apoptotic regulator (TIGAR), a protein similar to fructose-2,6-bisphosphatase that has a pro-survival role in cells participating in the defense against oxidative damage. Until now, TIGAR has been not reported in any invertebrate species, including crustaceans. In this work, we report the molecular cloning of the white shrimp TIGAR. The cDNA sequence is 765 bp encoding a 254 amino acid protein. Bioinformatics analyses predicted that although the overall sequence identities of L. vannamei TIGAR and vertebrate proteins are not very high (33.61%-35.34%), they have a remarkable predicted structural similarity with full conservation of catalytic residues, secondary and three-dimensional structures. Gene expression analysis by RT-qPCR revealed that the mRNA abundance of TIGAR in white shrimp is tissue-specific under normal oxygen conditions, with higher expression in gills than hepatopancreas and muscle. Also, gene expression in gills and hepatopancreas is modified by environmental hypoxia, suggesting that TIGAR participates in the cellular tolerance of L. vannamei to this stressor.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Monserrath Felix-Portillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua, Chihuahua, 33820, Mexico
| | - Dahlia M Nuñez-Hernandez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico.
| |
Collapse
|
12
|
Maurer GD, Heller S, Wanka C, Rieger J, Steinbach JP. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide. Int J Mol Sci 2019; 20:ijms20051061. [PMID: 30823646 PMCID: PMC6429390 DOI: 10.3390/ijms20051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to decrease glycolysis, to activate the pentose phosphate pathway, and to provide protection against oxidative damage. Hypoxic regions are considered characteristic of glioblastoma and linked with resistance to current treatment strategies. Here, we established that LNT-229 glioma cell lines stably expressed shRNA constructs targeting TIGAR, and exposed them to hypoxia, irradiation and temozolomide. The disruption of TIGAR enhanced levels of reactive oxygen species and cell death under hypoxic conditions, as well as the effectiveness of irradiation and temozolomide. In addition, TIGAR was upregulated by HIF-1α. As a component of a complex network, TIGAR contributes to the metabolic adjustments that arise from either spontaneous or therapy-induced changes in tumor microenvironment.
Collapse
Affiliation(s)
- Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Sonja Heller
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Gerin I, Bury M, Baldin F, Graff J, Van Schaftingen E, Bommer GT. Phosphoglycolate has profound metabolic effects but most likely no role in a metabolic DNA response in cancer cell lines. Biochem J 2019; 476:629-643. [PMID: 30670572 PMCID: PMC6380167 DOI: 10.1042/bcj20180435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Repair of a certain type of oxidative DNA damage leads to the release of phosphoglycolate, which is an inhibitor of triose phosphate isomerase and is predicted to indirectly inhibit phosphoglycerate mutase activity. Thus, we hypothesized that phosphoglycolate might play a role in a metabolic DNA damage response. Here, we determined how phosphoglycolate is formed in cells, elucidated its effects on cellular metabolism and tested whether DNA damage repair might release sufficient phosphoglycolate to provoke metabolic effects. Phosphoglycolate concentrations were below 5 µM in wild-type U2OS and HCT116 cells and remained unchanged when we inactivated phosphoglycolate phosphatase (PGP), the enzyme that is believed to dephosphorylate phosphoglycolate. Treatment of PGP knockout cell lines with glycolate caused an up to 500-fold increase in phosphoglycolate concentrations, which resulted largely from a side activity of pyruvate kinase. This increase was much higher than in glycolate-treated wild-type cells and was accompanied by metabolite changes consistent with an inhibition of phosphoglycerate mutase, most likely due to the removal of the priming phosphorylation of this enzyme. Surprisingly, we found that phosphoglycolate also inhibits succinate dehydrogenase with a Ki value of <10 µM. Thus, phosphoglycolate can lead to profound metabolic disturbances. In contrast, phosphoglycolate concentrations were not significantly changed when we treated PGP knockout cells with Bleomycin or ionizing radiation, which are known to lead to the release of phosphoglycolate by causing DNA damage. Thus, phosphoglycolate concentrations due to DNA damage are too low to cause major metabolic changes in HCT116 and U2OS cells.
Collapse
Affiliation(s)
- Isabelle Gerin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Marina Bury
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Francesca Baldin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Julie Graff
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Emile Van Schaftingen
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Guido T Bommer
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| |
Collapse
|
14
|
Geng J, Wei M, Yuan X, Liu Z, Wang X, Zhang D, Luo L, Wu J, Guo W, Qin ZH. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle. FASEB J 2019; 33:6082-6098. [PMID: 30726106 DOI: 10.1096/fj.201802209r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR), a glycolytic inhibitor, plays vital roles in regulating cellular metabolism and oxidative stress. However, the role of highly expressed TIGAR in skeletal muscle remains unexplored. In the present study, TIGAR levels varied in different skeletal muscles and fibers. An exhaustive swimming test with a load corresponding to 5% of body weight was utilized in mice to assess the effects of TIGAR on exercise-induced fatigue and muscle damage. The running time and metabolic indicators were significantly greater in wild-type (WT) mice compared with TIGAR knockout (KO) mice. Poor exercise capacity was accompanied by decreased type IIA fibers in TIGAR KO mice. Decreased mitochondrial number and mitochondrial oxidative phosphorylation were observed more in TIGAR KO mice than in WT mice, which were involved in sirtuin 1 (SIRT1)-mediated deacetylation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and resveratrol treatment in TIGAR KO mice can increase mitochondrial content and exercise time. Much more TIGAR was also detected in mitochondria during exhaustive exercise. In addition, TIGAR, rather than mitochondria-targeted TIGAR achieved by in vitro plasmid transfection, promoted SIRT1-PGC1α pathway. Glutathione S-transferase-TIGAR pull-down assay followed by liquid chromatography mass spectrometry found that TIGAR interacted with ATP synthase F1 subunit α (ATP5A1), and its binding to ATP5A1 increased during exhaustive exercise. Overexpression of mitochondrial-TIGAR enhanced ATP generation, maintained mitochondrial membrane potential and reduced mitochondrial oxidative stress under hypoxia condition. Taken together, our results uncovered a novel role for TIGAR in mitochondrial regulation in fast-twitch oxidative skeletal muscle through SIRT1-PGC1α and translocation into mitochondria, which contribute to the increase in exercise endurance of mice.-Geng, J., Wei, M., Yuan, X., Liu, Z., Wang, X., Zhang, D., Luo, L., Wu, J., Guo, W., Qin, Z.-H. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.
Collapse
Affiliation(s)
- Ji Geng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mingzhen Wei
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiao Yuan
- Pathology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinxin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dingmei Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Geng J, Yuan X, Wei M, Wu J, Qin ZH. The diverse role of TIGAR in cellular homeostasis and cancer. Free Radic Res 2018; 52:1240-1249. [PMID: 30284488 DOI: 10.1080/10715762.2018.1489133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) is a p53 target protein that plays critical roles in glycolysis and redox balance. Accumulating evidence shows that TIGAR is highly expressed in cancer. TIGAR redirects glycolysis and promotes carcinoma growth by providing metabolic intermediates and reductive power derived from pentose phosphate pathway (PPP). The expression of TIGAR in cancer is positively associated with chemotherapy resistance, suggesting that TIGAR could be a novel therapeutic target. In this review, we briefly presented the function of TIGAR in metabolic homeostasis in normal and cancer cells. Finally, we discussed the future directions of TIGAR research in cancer.
Collapse
Affiliation(s)
- Ji Geng
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Xiao Yuan
- b Pathology Department , The First Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Mingzhen Wei
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Junchao Wu
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Zheng-Hong Qin
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| |
Collapse
|
16
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
17
|
Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, White E, Toettcher JE, Rabinowitz JD. Four Key Steps Control Glycolytic Flux in Mammalian Cells. Cell Syst 2018; 7:49-62.e8. [PMID: 29960885 PMCID: PMC6062487 DOI: 10.1016/j.cels.2018.06.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
Altered glycolysis is a hallmark of diseases including diabetes and cancer. Despite intensive study of the contributions of individual glycolytic enzymes, systems-level analyses of flux control through glycolysis remain limited. Here, we overexpress in two mammalian cell lines the individual enzymes catalyzing each of the 12 steps linking extracellular glucose to excreted lactate, and find substantial flux control at four steps: glucose import, hexokinase, phosphofructokinase, and lactate export (and not at any steps of lower glycolysis). The four flux-controlling steps are specifically upregulated by the Ras oncogene: optogenetic Ras activation rapidly induces the transcription of isozymes catalyzing these four steps and enhances glycolysis. At least one isozyme catalyzing each of these four steps is consistently elevated in human tumors. Thus, in the studied contexts, flux control in glycolysis is concentrated in four key enzymatic steps. Upregulation of these steps in tumors likely underlies the Warburg effect.
Collapse
Affiliation(s)
- Lukas Bahati Tanner
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexander G Goglia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Monica H Wei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Talen Sehgal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Junyoung O Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets 2018; 22:659-674. [PMID: 29985086 DOI: 10.1080/14728222.2018.1498082] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer's Achilles heel. Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed. Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.
Collapse
Affiliation(s)
- Ramon Bartrons
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Ana Rodríguez-García
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Helga Simon-Molas
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Esther Castaño
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Anna Manzano
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Àurea Navarro-Sabaté
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| |
Collapse
|
19
|
Tang Y, Kwon H, Neel BA, Kasher-Meron M, Pessin JB, Yamada E, Pessin JE. The fructose-2,6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. J Biol Chem 2018; 293:7578-7591. [PMID: 29650758 DOI: 10.1074/jbc.ra118.002727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
The systems integration of whole-body metabolism and immune signaling are central homeostatic mechanisms necessary for maintenance of normal physiology, and dysregulation of these processes leads to a variety of chronic disorders. However, the intracellular mechanisms responsible for cell-autonomous cross-talk between the inflammatory signaling pathways and metabolic flux have remained enigmatic. In this study, we discovered that the fructose-2,6-bisphosphatase TIGAR (Tp53-induced glycolysis and apoptosis regulator) critically regulates NF-κB activation. We found that TIGAR potently inhibits NF-κB-dependent gene expression by suppressing the upstream activation of IKKβ phosphorylation and kinase activation. This inhibition occurred through a direct binding competition between NEMO and TIGAR for association with the linear ubiquitination assembly complex (LUBAC). This competition prevented linear ubiquitination of NEMO, which is required for activation of IKKβ and other downstream targets. Furthermore, a TIGAR phosphatase activity-deficient mutant was equally effective as WT TIGAR in inhibiting NEMO linear ubiquitination, IKKβ phosphorylation/activation, and NF-κB signaling, indicating that TIGAR's effect on NF-κB signaling is due to its interaction with LUBAC. Physiologically, TIGAR knockout mice displayed enhanced adipose tissue NF-κB signaling, whereas adipocyte-specific overexpression of TIGAR suppressed adipose tissue NF-κB signaling. Together, these results demonstrate that TIGAR has a nonenzymatic molecular function that modulates the NF-κB signaling pathway by directly inhibiting the E3 ligase activity of LUBAC.
Collapse
Affiliation(s)
- Yan Tang
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hyokjoon Kwon
- the Rutgers Robert Wood Johnson School of Medicine, Rutgers University, Piscataway, New Jersey 08854
| | | | - Michal Kasher-Meron
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jacob B Pessin
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eijiro Yamada
- the Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan, and
| | - Jeffrey E Pessin
- From the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, .,the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
20
|
High expression of synthesis of cytochrome c oxidase 2 and TP53-induced glycolysis and apoptosis regulator can predict poor prognosis in human lung adenocarcinoma. Hum Pathol 2018; 77:54-62. [PMID: 29634976 DOI: 10.1016/j.humpath.2017.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023]
Abstract
Synthesis of cytochrome c oxidase 2 (SCO2) and TP53-induced glycolysis and apoptosis regulator (TIGAR) are 2 p53-mediated proteins that can play a regulatory role in cancer energy metabolism. However, no study has examined the association of SCO2 and TIGAR with the prognosis of patients with lung adenocarcinoma (AC). In our study, the expression of SCO2 and TIGAR proteins in lung AC was detected, and the potential relation to prognosis was evaluated, aiming to take a further view of lung AC progression. Quantum dots-based immunofluorescence histochemistry staining was performed to observe the expression of p53, SCO2, and TIGAR in 75 specimens of lung AC. Of these, 51 (68.0%) showed high expression of SCO2, and 59 (78.7%) showed high expression of TIGAR. High TIGAR expression was significantly associated with a history of smoking (P = .017) and being male (P = .006). The correlation between high SCO2 expression and age also was significant (P = .042). Moreover, high TIGAR expression was positively correlated with high SCO2 expression (P = .019; rs = 0.271). High expression of the SCO2 and TIGAR proteins predicted poorer survival and a higher mortality rate (P = .024 and .030, respectively). High expression of SCO2 and TIGAR proteins is significantly associated with lung AC progression, suggesting their potential use as prognostic markers and therapeutic targets.
Collapse
|
21
|
Role of multifaceted regulators in cancer glucose metabolism and their clinical significance. Oncotarget 2017; 7:31572-85. [PMID: 26934324 PMCID: PMC5058779 DOI: 10.18632/oncotarget.7765] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Aberrant glucose metabolism, "aerobic glycolysis" or "Warburg effect", is a hallmark of human cancers. There is a cluster of "multifaceted regulators", which plays a pivotal role in the regulation of glucose metabolism. They can not only modulate the activities of specific enzymes, but also act as transcriptional activators to regulate the expression of metabolism related genes. Additionally, they can crosstalk with other key factors involved in glucose metabolism and work together to initiate multiple oncogenic processes. These "multifaceted regulators", especially p53, HIF-1, TIGAR and microRNA, will be focused in this review. And we will comprehensively illustrate their regulatory effects on cancer glucose metabolism, and further elaborate on their clinical significance. In-depth elucidation the role of "multifaceted regulators" in cancer glucose metabolism will provide us novel insights in cancer research field and offer promising therapeutic targets for anti-cancer therapies.
Collapse
|
22
|
Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol 2017; 44:198-203. [PMID: 29248131 DOI: 10.1053/j.seminoncol.2017.10.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/17/2023]
Abstract
Glucose is a key metabolite used by cancer cells to generate ATP, maintain redox state and create biomass. Glucose can be catabolized to lactate in the cytoplasm, which is termed glycolysis, or alternatively can be catabolized to carbon dioxide and water in the mitochondria via oxidative phosphorylation. Metabolic heterogeneity exists in a subset of human tumors, with some cells maintaining a glycolytic phenotype while others predominantly utilize oxidative phosphorylation. Cells within tumors interact metabolically with transfer of catabolites from supporting stromal cells to adjacent cancer cells. The Reverse Warburg Effect describes when glycolysis in the cancer-associated stroma metabolically supports adjacent cancer cells. This catabolite transfer, which induces stromal-cancer metabolic coupling, allows cancer cells to generate ATP, increase proliferation, and reduce cell death. Catabolites implicated in metabolic coupling include the monocarboxylates lactate, pyruvate, and ketone bodies. Monocarboxylate transporters (MCT) are critically necessary for release and uptake of these catabolites. MCT4 is involved in the release of monocarboxylates from cells, is regulated by catabolic transcription factors such as hypoxia inducible factor 1 alpha (HIF1A) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and is highly expressed in cancer-associated fibroblasts. Conversely, MCT1 is predominantly involved in the uptake of these catabolites and is highly expressed in a subgroup of cancer cells. MYC and TIGAR, which are genes involved in cellular proliferation and anabolism, are inducers of MCT1. Profiling human tumors on the basis of an altered redox balance and intra-tumoral metabolic interactions may have important biomarker and therapeutic implications. Alterations in the redox state and mitochondrial function of cells can induce metabolic coupling. Hence, there is interest in redox and metabolic modulators as anticancer agents. Also, markers of metabolic coupling have been associated with poor outcomes in numerous human malignancies and may be useful prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | - Megan Roche
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | | | | | - Nancy Philp
- Department of Cell Biology, Anatomy and Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
23
|
Regulation of Metabolic Activity by p53. Metabolites 2017; 7:metabo7020021. [PMID: 28531108 PMCID: PMC5487992 DOI: 10.3390/metabo7020021] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.
Collapse
|
24
|
Ko YH, Domingo-Vidal M, Roche M, Lin Z, Whitaker-Menezes D, Seifert E, Capparelli C, Tuluc M, Birbe RC, Tassone P, Curry JM, Navarro-Sabaté À, Manzano A, Bartrons R, Caro J, Martinez-Outschoorn U. TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer. J Biol Chem 2016; 291:26291-26303. [PMID: 27803158 DOI: 10.1074/jbc.m116.740209] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/17/2016] [Indexed: 12/11/2022] Open
Abstract
A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer.
Collapse
Affiliation(s)
| | | | | | - Zhao Lin
- From the Department of Medical Oncology
| | | | - Erin Seifert
- the Department of Pathology, Anatomy, and Cell Biology
| | | | | | - Ruth C Birbe
- Department of Pathology, Cooper University Hospital, Camden, New Jersey 08103
| | - Patrick Tassone
- the Department of Otolaryngology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joseph M Curry
- the Department of Otolaryngology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Àurea Navarro-Sabaté
- the Department of Physiological Sciences, University of Barcelona, Barcelona 08907, Spain, and
| | - Anna Manzano
- the Department of Physiological Sciences, University of Barcelona, Barcelona 08907, Spain, and
| | - Ramon Bartrons
- the Department of Physiological Sciences, University of Barcelona, Barcelona 08907, Spain, and
| | - Jaime Caro
- the Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
25
|
Simon-Molas H, Calvo-Vidal MN, Castaño E, Rodríguez-García A, Navarro-Sabaté À, Bartrons R, Manzano A. Akt mediates TIGAR induction in HeLa cells following PFKFB3 inhibition. FEBS Lett 2016; 590:2915-26. [PMID: 27491040 DOI: 10.1002/1873-3468.12338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 11/08/2022]
Abstract
Neoplastic cells metabolize higher amounts of glucose relative to normal cells in order to cover increased energetic and anabolic needs. Inhibition of the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) diminishes cancer cell proliferation and tumour growth in animals. In this work, we investigate the crosstalk between PFKFB3 and TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator), a protein known to protect cells from oxidative stress. Our results show consistent TIGAR induction in HeLa cells in response to PFKFB3 knockdown. Upon PFKFB3 silencing, cells undergo oxidative stress and trigger Akt phosphorylation. This leads to induction of a TIGAR-mediated prosurvival pathway that reduces both oxidative stress and cell death. As TIGAR is known to have a role in DNA repair, it could serve as a potential target for the development of effective antineoplastic therapies.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, IDIBELL-Universitat de Barcelona, Spain
| | | | - Esther Castaño
- Centres Científics i Tecnològics, IDIBELL-Universitat de Barcelona, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, IDIBELL-Universitat de Barcelona, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, IDIBELL-Universitat de Barcelona, Spain
| | - Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, IDIBELL-Universitat de Barcelona, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, IDIBELL-Universitat de Barcelona, Spain
| |
Collapse
|
26
|
A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat Chem Biol 2016; 12:621-7. [PMID: 27322068 DOI: 10.1038/nchembio.2108] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed a novel phosphatase active site with fructose 6-phosphate and Mg(2+) bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.
Collapse
|
27
|
A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol 2016; 12:601-7. [PMID: 27294321 DOI: 10.1038/nchembio.2104] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/28/2016] [Indexed: 11/08/2022]
Abstract
Metabolic enzymes are very specific. However, most of them show weak side activities toward compounds that are structurally related to their physiological substrates, thereby producing side products that may be toxic. In some cases, 'metabolite repair enzymes' eliminating side products have been identified. We show that mammalian glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, two core glycolytic enzymes, produce 4-phosphoerythronate and 2-phospho-L-lactate, respectively. 4-Phosphoerythronate strongly inhibits an enzyme of the pentose phosphate pathway, whereas 2-phospho-L-lactate inhibits the enzyme producing the glycolytic activator fructose 2,6-bisphosphate. We discovered that a single, widely conserved enzyme, known as phosphoglycolate phosphatase (PGP) in mammals, dephosphorylates both 4-phosphoerythronate and 2-phospho-L-lactate, thereby preventing a block in the pentose phosphate pathway and glycolysis. Its yeast ortholog, Pho13, similarly dephosphorylates 4-phosphoerythronate and 2-phosphoglycolate, a side product of pyruvate kinase. Our work illustrates how metabolite repair enzymes can make up for the limited specificity of metabolic enzymes and permit high flux in central metabolic pathways.
Collapse
|
28
|
Gerin I, Ury B, Breloy I, Bouchet-Seraphin C, Bolsée J, Halbout M, Graff J, Vertommen D, Muccioli GG, Seta N, Cuisset JM, Dabaj I, Quijano-Roy S, Grahn A, Van Schaftingen E, Bommer GT. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun 2016; 7:11534. [PMID: 27194101 PMCID: PMC4873967 DOI: 10.1038/ncomms11534] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/06/2016] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes required for the glycosylation of α-dystroglycan lead to muscle and brain diseases known as dystroglycanopathies. However, the precise structure and biogenesis of the assembled glycan are not completely understood. Here we report that three enzymes mutated in dystroglycanopathies can collaborate to attach ribitol phosphate onto α-dystroglycan. Specifically, we demonstrate that isoprenoid synthase domain-containing protein (ISPD) synthesizes CDP-ribitol, present in muscle, and that both recombinant fukutin (FKTN) and fukutin-related protein (FKRP) can transfer a ribitol phosphate group from CDP-ribitol to α-dystroglycan. We also show that ISPD and FKTN are essential for the incorporation of ribitol into α-dystroglycan in HEK293 cells. Glycosylation of α-dystroglycan in fibroblasts from patients with hypomorphic ISPD mutations is reduced. We observe that in some cases glycosylation can be partially restored by addition of ribitol to the culture medium, suggesting that dietary supplementation with ribitol should be evaluated as a therapy for patients with ISPD mutations.
Collapse
Affiliation(s)
- Isabelle Gerin
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Benoît Ury
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Isabelle Breloy
- Institute for Biochemistry II, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Céline Bouchet-Seraphin
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Biochimie Métabolique et Cellulaire, F-75018 Paris, France
| | - Jennifer Bolsée
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Mathias Halbout
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Julie Graff
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Didier Vertommen
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Nathalie Seta
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Biochimie Métabolique et Cellulaire, F-75018 Paris, France
| | - Jean-Marie Cuisset
- Hôpital Roger-Salengro, Service de neuropédiatrie, Centre de Référence des Maladies Neuromusculaires, CHRU, F-59000 Lille, France
| | - Ivana Dabaj
- AP-HP, Hôpital R Poincaré, Service de pédiatrie, F-92380 Garches, France
| | - Susana Quijano-Roy
- AP-HP, Hôpital R Poincaré, Service de pédiatrie, F-92380 Garches, France.,Centre de Référence des Maladies Neuromusculaires, F-92380 Garches, France.,Université de Versailles-St Quentin, U1179 UVSQ - INSERM, F-78180 Montigny, France
| | - Ammi Grahn
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Emile Van Schaftingen
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Guido T Bommer
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| |
Collapse
|
29
|
Piedrafita G, Keller MA, Ralser M. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions. Biomolecules 2015; 5:2101-22. [PMID: 26378592 PMCID: PMC4598790 DOI: 10.3390/biom5032101] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.
Collapse
Affiliation(s)
- Gabriel Piedrafita
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW1 7AA, UK.
| |
Collapse
|
30
|
Lee P, Hock AK, Vousden KH, Cheung EC. p53- and p73-independent activation of TIGAR expression in vivo. Cell Death Dis 2015; 6:e1842. [PMID: 26247727 PMCID: PMC4558498 DOI: 10.1038/cddis.2015.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
TIGAR (TP53-induced glycolysis and apoptosis regulator) functions as a fructose-2,6-bisphosphatase and its expression results in a dampening of the glycolytic pathway, while increasing antioxidant capacity by increasing NADPH and GSH levels. In addition to being a p53 target, p53-independent expression of TIGAR is also seen in many human cancer cell lines that lack wild-type p53. Although human TIGAR expression can be induced by p53, TAp63 and TAp73, mouse TIGAR is less responsive to the p53 family members and basal levels of TIGAR expression does not depend on p53 or TAp73 expression in most mouse tissues in vivo. Although mouse TIGAR expression is clearly induced in the intestines of mice following DNA-damaging stress such as ionising radiation, this is also not dependent on p53 or TAp73.
Collapse
Affiliation(s)
- P Lee
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - A K Hock
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - K H Vousden
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - E C Cheung
- Cancer Research-UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
31
|
Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget 2015; 6:16832-47. [PMID: 26164081 PMCID: PMC4627277 DOI: 10.18632/oncotarget.4160] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided.
Collapse
Affiliation(s)
- Romain Cohen
- INSERM U728, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), Clichy La Garenne, France
| | - Cindy Neuzillet
- INSERM U728, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), Clichy La Garenne, France
- Department of Medical Oncology, Henri Mondor University Hospital, Créteil, France
| | | | - Sandrine Faivre
- Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Armand de Gramont
- New Drug Evaluation Laboratory, Centre of Experimental Therapeutics and Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Raymond
- Medical Oncology, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
32
|
Robey RB, Weisz J, Kuemmerle NB, Salzberg AC, Berg A, Brown DG, Kubik L, Palorini R, Al-Mulla F, Al-Temaimi R, Colacci A, Mondello C, Raju J, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Williams GP, Lowe L, Meyer J, Martin FL, Bisson WH, Chiaradonna F, Ryan EP. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis? Carcinogenesis 2015; 36 Suppl 1:S203-S231. [PMID: 26106140 PMCID: PMC4565609 DOI: 10.1093/carcin/bgv037] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.
Collapse
Affiliation(s)
- R Brooks Robey
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03756, USA,
| | - Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy B Kuemmerle
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of
| | - Anna C Salzberg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Arthur Berg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Laura Kubik
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Graeme P Williams
- Department of Molecular Medicine, University of Reading, Reading RG6 6UB, UK
| | - Leroy Lowe
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK, Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada, and
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Francis L Martin
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Evangelisti C, de Biase D, Kurelac I, Ceccarelli C, Prokisch H, Meitinger T, Caria P, Vanni R, Romeo G, Tallini G, Gasparre G, Bonora E. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer 2015; 15:157. [PMID: 25880213 PMCID: PMC4374372 DOI: 10.1186/s12885-015-1122-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. METHODS Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. RESULTS In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. CONCLUSIONS These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Cell Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Dario de Biase
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Claudio Ceccarelli
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomy, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Holger Prokisch
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Thomas Meitinger
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Giovanni Tallini
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| |
Collapse
|
34
|
Rzem R, Achouri Y, Marbaix E, Schakman O, Wiame E, Marie S, Gailly P, Vincent MF, Veiga-da-Cunha M, Van Schaftingen E. A mouse model of L-2-hydroxyglutaric aciduria, a disorder of metabolite repair. PLoS One 2015; 10:e0119540. [PMID: 25763823 PMCID: PMC4357467 DOI: 10.1371/journal.pone.0119540] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/14/2015] [Indexed: 12/01/2022] Open
Abstract
The purpose of the present work was to progress in our understanding of the pathophysiology of L-2-hydroxyglutaric aciduria, due to a defect in L-2-hydroxyglutarate dehydrogenase, by creating and studying a mouse model of this disease. L-2-hydroxyglutarate dehydrogenase-deficient mice (l2hgdh-/-) accumulated L-2-hydroxyglutarate in tissues, most particularly in brain and testis, where the concentration reached ≈ 3.5 μmol/g. Male mice showed a 30% higher excretion of L-2-hydroxyglutarate compared to female mice, supporting that this dicarboxylic acid is partially made in males by lactate dehydrogenase C, a poorly specific form of this enzyme exclusively expressed in testes. Involvement of mitochondrial malate dehydrogenase in the formation of L-2-hydroxyglutarate was supported by the commensurate decrease in the formation of this dicarboxylic acid when down-regulating this enzyme in mouse l2hgdh-/- embryonic fibroblasts. The concentration of lysine and arginine was markedly increased in the brain of l2hgdh-/- adult mice. Saccharopine was depleted and glutamine was decreased by ≈ 40%. Lysine-α-ketoglutarate reductase, which converts lysine to saccharopine, was inhibited by L-2-hydroxyglutarate with a Ki of ≈ 0.8 mM. As low but significant activities of the bifunctional enzyme lysine-α-ketoglutarate reductase/saccharopine dehydrogenase were found in brain, these findings suggest that the classical lysine degradation pathway also operates in brain and is inhibited by the high concentrations of L-2-hydroxyglutarate found in l2hgdh-/- mice. Pathological analysis of the brain showed significant spongiosis. The vacuolar lesions mostly affected oligodendrocytes and myelin sheats, as in other dicarboxylic acidurias, suggesting that the pathophysiology of this model of leukodystrophy may involve irreversible pumping of a dicarboxylate in oligodendrocytes. Neurobehavioral testing indicated that the mice mostly suffered from a deficit in learning capacity. In conclusion, the findings support the concept that L-2-hydroxyglutaric aciduria is a disorder of metabolite repair. The accumulation of L-2-hydroxyglutarate exerts toxic effects through various means including enzyme inhibition and glial cell swelling.
Collapse
Affiliation(s)
- Rim Rzem
- Welbio and Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Younes Achouri
- Welbio and Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Etienne Marbaix
- Cell Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Elsa Wiame
- Welbio and Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Marie
- Laboratory of Metabolic Diseases, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Marie-Françoise Vincent
- Laboratory of Metabolic Diseases, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Maria Veiga-da-Cunha
- Welbio and Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emile Van Schaftingen
- Welbio and Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 921] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
36
|
Abstract
TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator] protein is known for its ability to inhibit glycolysis, shifting glucose consumption towards the pentose phosphate pathway to promote antioxidant protection of cancer cells. According to sequence homology and activity analyses, TIGAR was initially considered to be a fructose-2,6-bisphosphatase; it has thus received much attention in cancer cell metabolism, given its dependence on p53 and the key role of F26BP (fructose 2,6-bisphosphate) at modulating glycolysis and gluconeogenesis. However, in a rigorous study published in this issue of the Biochemical Journal, Gerin and colleagues report that recombinant TIGAR is a 23BPG (2,3-bisphosphoglycerate) phosphatase, although it also dephosphorylates other carboxylic acid-phosphate esters and, weakly, F26BP. As such, inhibition of endogenous TIGAR leads to a dramatic increase in cellular 23BPG, influencing F26BP to a lower extent that depends on the cellular context. These results challenge the currently held notion that TIGAR modulates glycolysis through decreasing F26BP, and opens a yet unrecognized function(s) for TIGAR-mediated 23BPG control of cellular metabolism in health and disease.
Collapse
|