1
|
Cunha CMC, Abreu VHP, Estato V, Soares GMV, Moraes BPT, Oliveira GP, Silva JD, Silva PL, Immler R, Rocco PR, Sperandio M, Silva AR, Bozza PT, Castro-Faria-Neto HC, Gonçalves-de-Albuquerque CF. Bosutinib mitigates inflammation in experimental sepsis. Eur J Clin Invest 2025:e70055. [PMID: 40292988 DOI: 10.1111/eci.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Sepsis, a leading cause of death globally, lacks targeted and effective treatment. Its pathophysiology involves unbalanced inflammation, marked by a high release of inflammatory mediators, leukocyte recruitment, vascular changes and dysfunction of the nervous and respiratory systems. Src family tyrosine kinases (SFK) play a critical role in immune responses, and their inhibition can modulate excessive inflammation. This study investigates the potential of bosutinib, an SFK inhibitor, as a treatment for sepsis. METHODS Clinical signs, survival rates, systemic and neuronal inflammatory responses, cell recruitment, lung function and cerebral microcirculation were analysed in mice treated with bosutinib (3 mg/kg) or DMSO/saline followed by cecal ligation and puncture (CLP)-induced sepsis. RESULTS Bosutinib treatment reduced the severity of sepsis, improved survival rates and reduced the levels of pro-inflammatory cytokines and chemokines in peritoneal lavage, plasma and brain tissue. It also reduced cellular infiltration and bacterial growth at the infection site and protected lung function by reducing diffuse alveolar damage. Using intravital microscopy and laser speckle techniques, bosutinib improved capillary density and blood perfusion and reduced leukocyte recruitment and adhesion in the cerebral microcirculation of septic animals. CONCLUSIONS Bosutinib pretreatment attenuated dysregulated inflammatory responses and neurovascular changes in experimental sepsis.
Collapse
Affiliation(s)
- C M C Cunha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - V H P Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - V Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - G M V Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B P T Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G P Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Immler
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - P R Rocco
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - M Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - A R Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - P T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - H C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - C F Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Ye JS, Majumdar A, Park BC, Black MH, Hsieh TS, Osinski A, Servage KA, Kulkarni K, Naidoo J, Alto NM, Stratton MM, Alfandari D, Ready JM, Pawłowski K, Tomchick DR, Tagliabracci VS. Bacterial ubiquitin ligase engineered for small molecule and protein target identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644192. [PMID: 40166235 PMCID: PMC11957136 DOI: 10.1101/2025.03.20.644192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Legionella SidE effectors ubiquitinate host proteins independently of the canonical E1-E2 cascade. Here we engineer the SidE ligases to develop a modular proximity ligation approach for the identification of targets of small molecules and proteins, which we call SidBait. We validate the method with known small molecule-protein interactions and use it to identify CaMKII as an off-target interactor of the breast cancer drug ribociclib. Structural analysis and activity assays confirm that ribociclib binds the CaMKII active site and inhibits its activity. We further customize SidBait to identify protein-protein interactions, including substrates for enzymes, and discover the F-actin capping protein (CapZ) as a target of the Legionella effector RavB during infection. Structural and biochemical studies indicate that RavB allosterically binds CapZ and decaps actin, thus functionally mimicking eukaryotic CapZ interacting proteins. Collectively, our results establish SidBait as a reliable tool for identifying targets of small molecules and proteins.
Collapse
Affiliation(s)
- James S. Ye
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abir Majumdar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brenden C. Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miles H. Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting-Sung Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kartik Kulkarni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
3
|
Liang W, Zhang C, Wang D, Su X, Tan X, Yang Y, Cong C, Wang Y, Huo D, Wang H, Wang S, Wang X, Feng H. Inhibition of Salt-Inducible Kinase 2 Protects Motor Neurons From Degeneration in ALS by Activating Autophagic Flux and Enhancing mTORC1 Activity. CNS Neurosci Ther 2025; 31:e70341. [PMID: 40135564 PMCID: PMC11937914 DOI: 10.1111/cns.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVES Autophagic impairment has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Salt-inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK) family widely expressed in the central nervous system, plays critical roles in neuronal survival, neurogenesis, and the regulation of autophagy. This study aims to investigate the effects and underlying mechanisms of SIK2 in the pathogenesis of ALS. METHODS In our work, we used both in vivo and in vitro models of ALS to study the effect of SIK2. Protein and RNA levels were assessed by Western blot, RT-qPCR, immunofluorescence, and immunohistochemistry. Cell viability and apoptosis were evaluated using CCK-8 assay and flow cytometry. Transmission electron microscopy was employed to examine autophagic vacuoles. Additionally, lentivirus particles carrying shRNA targeting SIK2 (sh-SIK2) were injected into the lateral ventricle of ALS mice at 60 days of age. Motor performance was evaluated by the rotarod test. RESULTS We observed that increased expression of SIK2 significantly contributed to the degeneration of motor neurons in both the cellular model and the hSOD1G93A transgenic mice model of ALS. SIK2 knockdown enhanced neuronal survival and restored mTORC1 activity. Furthermore, SIK2 suppression facilitated the clearance of mutant SOD1 accumulation by activating autophagic flux and enhancing lysosomal acidification. Conversely, SIK2 overexpression impaired mTORC1 activity, exacerbating autophagy dysfunction by inhibiting lysosomal function, and ultimately led to motor neuron degeneration. In vivo, SIK2 deficiency delayed disease onset and extended the lifespan of ALS mice by enhancing autophagy-mediated clearance of mutant SOD1 aggregates. CONCLUSIONS Our findings reveal that SIK2 regulates autophagic flux by modulating lysosomal acidification, thereby influencing the degradation of mutant SOD1 aggregates. SIK2 suppression enhances autophagy-mediated clearance of toxic protein aggregates and protects motor neurons, highlighting its potential as a therapeutic target for ALS.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
- Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Chunting Zhang
- Division of Life Science and Technology of China, Department of NeurologyThe First Affiliated Hospital of USTCHefeiP.R. China
| | - Di Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Xiaoli Su
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Xingli Tan
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Yueqing Yang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Chaohua Cong
- Department of NeurologyShanghai No. 9 People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Ying Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Di Huo
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Hongyong Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Shuyu Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Xudong Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Honglin Feng
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| |
Collapse
|
4
|
Rodríguez-Mora S, Sánchez-Menéndez C, Bautista-Carrascosa G, Mateos E, Moreno-Serna L, Megías D, Cantón J, García-Gutiérrez V, Murciano-Antón MA, Cervero M, Spivak A, Planelles V, Coiras M. Dasatinib interferes with HIV-1 proviral integration and the inflammatory potential of monocyte-derived macrophages from people with HIV. Biochem Pharmacol 2024; 229:116512. [PMID: 39222713 DOI: 10.1016/j.bcp.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
HIV-1 infection is efficiently controlled by the antiretroviral treatment (ART) but viral persistence in long-lived reservoirs formed by CD4 + T cells and macrophages impedes viral eradication and creates a chronic inflammatory environment. Dasatinib is a tyrosine kinase inhibitor clinically used against chronic myeloid leukemia (CML) that has also showed an anti-inflammatory potential. We previously reported that dasatinib is very efficient at interfering with HIV-1 infection of CD4 + T cells by preserving the antiviral activity of SAMHD1, an innate immune factor that blocks T-cell activation and proliferation and that is inactivated by phosphorylation at T592 (pSAMHD1). We observed that short-term treatment in vitro with dasatinib significantly reduced pSAMHD1 in monocyte-derived macrophages (MDMs) isolated from people with HIV (PWH) and healthy donors, interfering with HIV-1 infection. This inhibition was based on low levels of 2-LTR circles and proviral integration, while viral reverse transcription was not affected. MDMs isolated from people with CML on long-term treatment with dasatinib also showed low levels of pSAMHD1 and were resistant to HIV-1 infection. In addition, dasatinib decreased the inflammatory potential of MDMs by reducing the release of M1-related cytokines like TNFα, IL-1β, IL-6, CXCL8, and CXCL9, but preserving the antiviral activity through normal levels of IL-12 and IFNγ. Due to the production of M2-related anti-inflammatory cytokines like IL-1RA and IL-10 was also impaired, dasatinib appeared to interfere with MDMs differentiation. The use of dasatinib along with ART could be used against HIV-1 reservoir in CD4 and macrophages and to alleviate the chronic inflammation characteristic of PWH.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucia Moreno-Serna
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Diego Megías
- Microscopy and Imaging Facility, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Cantón
- PhD Program in Health Sciences, Universidad de Alcalá, Madrid, Spain; Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María Aránzazu Murciano-Antón
- PhD Program in Epidemiology and Public Health, Universidad Rey Juan Carlos, Madrid, Spain; Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain; School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Adam Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
5
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Soghrati S. Co-delivery of Interferon Regulatory Factor 5 (IRF5) siRNA and dasatinib by a disulfide bond bearing polymeric carrier for enhanced anti-inflammatory effects. Int J Biol Macromol 2024; 282:137094. [PMID: 39486736 DOI: 10.1016/j.ijbiomac.2024.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Co-delivery of chemical drugs and nucleic acids has attracted a great interest recently for treatment of inflammatory diseases. Dasatinib (DB), a tyrosine kinase inhibitor with anti-cancer effects, and Interferon Regulatory Factor 5 (IRF5) siRNA have shown anti-inflammatory effects. In the present study, a novel redox-responsive polymeric micelle was designed for co-delivery of DB and IRF5 siRNA-expressing plasmid (psiRF5) to enhance anti-inflammatory effects on macrophages. psiRF5 was condensed efficiently to redox-responsive micelles of DB-conjugated chitosan (CN) composed of disulfide bond, from different molecular weights of CN to form CN-SS-DB/psiRF5 micelles. The micelles with optimum N/P ratios had particle sizes of 287.8 and 245.4 nm and positive zeta potentials. The disulfide bond bearing micelles showed a redox-responsive drug release, protected the plasmid from being dissociated or degraded in exposure with heparin, serum and DNase I, and significantly enhanced the transfection efficiency and IRF5-gene silencing compared to naked psiRF5. The optimum micelles exhibited a dramatic reduction in IRF5 expression and revealed a notably higher anti-inflammatory effect than either DB or psiRF5, as indicated by more IL-10 and less IL-6 and TNF-α production by LPS-stimulated RAW264.7 macrophages incubated with the co-delivery system. The resultant nanocarriers might be promising for more effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sahel Soghrati
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Momenzadeh K, Yeritsyan D, Abbasian M, Kheir N, Hanna P, Wang J, Dosta P, Papaioannou G, Goldfarb S, Tang CC, Amar-Lewis E, Nicole Prado Larrea M, Martinez Lozano E, Yousef M, Wixted J, Wein M, Artzi N, Nazarian A. Stimulation of fracture mineralization by salt-inducible kinase inhibitors. Front Bioeng Biotechnol 2024; 12:1450611. [PMID: 39359266 PMCID: PMC11445660 DOI: 10.3389/fbioe.2024.1450611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Over 6.8 million fractures occur annually in the US, with 10% experiencing delayed- or non-union. Anabolic therapeutics like PTH analogs stimulate fracture repair, and small molecule salt inducible kinase (SIK) inhibitors mimic PTH action. This study tests whether the SIK inhibitor YKL-05-099 accelerates fracture callus osteogenesis. Methods 126 female mice underwent femoral shaft pinning and midshaft fracture, receiving daily injections of PBS, YKL-05-099, or PTH. Callus tissues were analyzed via RT-qPCR, histology, single-cell RNA-seq, and μCT imaging. Biomechanical testing evaluated tissue rigidity. A hydrogel-based delivery system for PTH and siRNAs targeting SIK2/SIK3 was developed and tested. Results YKL-05-099 and PTH-treated mice showed higher mineralized callus volume fraction and improved structural rigidity. RNA-seq indicated YKL-05-099 increased osteoblast subsets and reduced chondrocyte precursors. Hydrogel-released siRNAs maintained target knockdown, accelerating callus mineralization. Discussion YKL-05-099 enhances fracture repair, supporting selective SIK inhibitors' development for clinical use. Hydrogel-based siRNA delivery offers targeted localized treatment at fracture sites.
Collapse
Affiliation(s)
- Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Hanna
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jialiang Wang
- The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pere Dosta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Garyfallia Papaioannou
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Goldfarb
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eliz Amar-Lewis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michaela Nicole Prado Larrea
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edith Martinez Lozano
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohamed Yousef
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John Wixted
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Marc Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Natalie Artzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
7
|
Bonastre-Férez J, Giménez-Orenga K, Falaguera-Vera FJ, Garcia-Escudero M, Oltra E. Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1. Int J Mol Sci 2024; 25:9523. [PMID: 39273470 PMCID: PMC11394909 DOI: 10.3390/ijms25179523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Fibromyalgia (FM), classified by ICD-11 with code MG30.0, is a chronic debilitating disease characterized by widespread pain, fatigue, cognitive impairment, sleep, and intestinal alterations, among others. FM affects a large proportion of the worldwide population, with increased prevalence among women. The lack of understanding of its etiology and pathophysiology hampers the development of effective treatments. Our group had developed a manual therapy (MT) pressure-controlled custom manual protocol on FM showing hyperalgesia/allodynia, fatigue, and patient's quality of life benefits in a cohort of 38 FM cases (NCT04174300). With the aim of understanding the therapeutic molecular mechanisms triggered by MT, this study interrogated Peripheral Blood Mononuclear Cell (PBMC) transcriptomes from FM participants in this clinical trial using whole RNA sequencing (RNAseq) and reverse transcription followed by quantitative Polymerase Chain Reaction (RT-qPCR) technologies. The results show that the salt-induced kinase SIK1 gene was consistently downregulated by MT in FM, correlating with improvement of patient symptoms. In addition, this study compared the findings in a non-FM control cohort subjected to the same MT protocol, evidencing that those changes in SIK1 expression with MT only occurred in individuals with FM. This positions SIK1 as a potential biomarker to monitor response to MT and as a therapeutic target of FM, which will be further explored by continuation studies.
Collapse
Affiliation(s)
- Javier Bonastre-Férez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.B.-F.); (K.G.-O.)
| | - Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.B.-F.); (K.G.-O.)
| | - Francisco Javier Falaguera-Vera
- School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.J.F.-V.); (M.G.-E.)
| | - María Garcia-Escudero
- School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.J.F.-V.); (M.G.-E.)
| | - Elisa Oltra
- Department of Pathology, School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
8
|
Öster L, Castaldo M, de Vries E, Edfeldt F, Pemberton N, Gordon E, Cederblad L, Käck H. The structures of salt-inducible kinase 3 in complex with inhibitors reveal determinants for binding and selectivity. J Biol Chem 2024; 300:107201. [PMID: 38508313 PMCID: PMC11061224 DOI: 10.1016/j.jbc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.
Collapse
Affiliation(s)
- Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Pemberton
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Cederblad
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
9
|
Babbe H, Sundberg TB, Tichenor M, Seierstad M, Bacani G, Berstler J, Chai W, Chang L, Chung DM, Coe K, Collins B, Finley M, Guletsky A, Lemke CT, Mak PA, Mathur A, Mercado-Marin EV, Metkar S, Raymond DD, Rives ML, Rizzolio M, Shaffer PL, Smith R, Smith J, Steele R, Steffens H, Suarez J, Tian G, Majewski N, Volak LP, Wei J, Desai PT, Ong LL, Koudriakova T, Goldberg SD, Hirst G, Kaushik VK, Ort T, Seth N, Graham DB, Plevy S, Venable JD, Xavier RJ, Towne JE. Identification of highly selective SIK1/2 inhibitors that modulate innate immune activation and suppress intestinal inflammation. Proc Natl Acad Sci U S A 2024; 121:e2307086120. [PMID: 38147543 PMCID: PMC10769863 DOI: 10.1073/pnas.2307086120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023] Open
Abstract
The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.
Collapse
Affiliation(s)
- Holger Babbe
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Thomas B. Sundberg
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | - Mark Tichenor
- Janssen Research and Development, LLC., San Diego, CA92121
| | - Mark Seierstad
- Janssen Research and Development, LLC., San Diego, CA92121
| | - Genesis Bacani
- Janssen Research and Development, LLC., San Diego, CA92121
| | - James Berstler
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | - Wenying Chai
- Janssen Research and Development, LLC., San Diego, CA92121
| | - Leon Chang
- Janssen Research and Development, LLC., San Diego, CA92121
| | | | - Kevin Coe
- Janssen Research and Development, LLC., San Diego, CA92121
| | | | - Michael Finley
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Alexander Guletsky
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | - Christopher T. Lemke
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | - Puiying A. Mak
- Janssen Research and Development, LLC., San Diego, CA92121
| | - Ashok Mathur
- Janssen Research and Development, LLC., Spring House, PA19477
| | | | - Shailesh Metkar
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | - Donald D. Raymond
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | | | | | - Paul L. Shaffer
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Russell Smith
- Janssen Research and Development, LLC., San Diego, CA92121
| | | | - Ruth Steele
- Janssen Research and Development, LLC., Spring House, PA19477
| | | | - Javier Suarez
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Gaochao Tian
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Nathan Majewski
- Janssen Research and Development, LLC., Spring House, PA19477
| | | | - Jianmei Wei
- Janssen Research and Development, LLC., San Diego, CA92121
| | - Prerak T. Desai
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Luvena L. Ong
- Janssen Research and Development, LLC., Spring House, PA19477
| | | | | | - Gavin Hirst
- Janssen Research and Development, LLC., San Diego, CA92121
| | - Virendar K. Kaushik
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA02142
| | - Tatiana Ort
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Nilufer Seth
- Janssen Research and Development, LLC., Spring House, PA19477
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Scott Plevy
- Janssen Research and Development, LLC., Spring House, PA19477
| | | | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA02142
| | | |
Collapse
|
10
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Cai X, Wang L, Yi Y, Deng D, Shi M, Tang M, Li N, Wei H, Zhang R, Su K, Ye H, Chen L. Discovery of pyrimidine-5-carboxamide derivatives as novel salt-inducible kinases (SIKs) inhibitors for inflammatory bowel disease (IBD) treatment. Eur J Med Chem 2023; 256:115469. [PMID: 37178481 DOI: 10.1016/j.ejmech.2023.115469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Salt-inducible kinases (SIKs) play a crucial role in inflammation process, acting as molecular switches that regulate the transformation of M1/M2 macrophages. HG-9-91-01 is a SIKs inhibitor with potent inhibitory activity against SIKs in the nanomolar range. However, its poor drug-like properties, including a rapid elimination rate, low in vivo exposure and high plasma protein binding rate, have hindered further research and clinical application. To improve the drug-like properties of HG-9-91-01, a series of pyrimidine-5-carboxamide derivatives were designed and synthesized through a molecular hybridization strategy. The most promising compound 8h was obtained with favorable activity and selectivity on SIK1/2, excellent metabolic stability in human liver microsome, enhanced in vivo exposure and suitable plasma protein binding rate. Mechanism research showed that compound 8h significantly up-regulated the expression of anti-inflammatory cytokine IL-10 and reduced the expression of pro-inflammatory cytokine IL-12 in bone marrow-derived macrophages. Furthermore, it significantly elevated expression of cAMP response element-binding protein (CREB) target genes IL-10, c-FOS and Nurr77. Compound 8h also induced the translocation of CREB-regulated transcriptional coactivator 3 (CRTC3) and elevated the expression of LIGHT, SPHK1 and Arginase 1. Additionally, compound 8h demonstrated excellent anti-inflammatory effects in a DSS-induced colitis model. Generally, this research indicated that compound 8h has the potential to be developed as an anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lun Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyao Yi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dexin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingsong Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoche Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, China.
| |
Collapse
|
12
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Hajhashemi V, Shamaeizadeh N, Sadeghi HMM. Smart redox-sensitive micelles based on chitosan for dasatinib delivery in suppressing inflammatory diseases. Int J Biol Macromol 2023; 229:696-712. [PMID: 36529222 DOI: 10.1016/j.ijbiomac.2022.12.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Dasatinib (DAS) exhibits anti-inflammatory effects by retrieving the balance between inflammatory and anti-inflammatory cytokines secreted by macrophages. The aim of this study was the development of redox-responsive micelles with the potential of passive targeting and on-demand drug release for DAS delivery to macrophages. For this purpose, two molecular weights of chitosan (CHIT) were conjugated to DAS at different molar ratios using 3,3'-dithiodipropionic anhydride (DTDPA) as disulfide bond containing linker to synthesize a series of CHIT-S-S-DAS amphiphilic conjugates. Micelles obtained by the sonication method had particle sizes of 129.3-172.2 nm, zeta potentials of +17.5 to +20.9 mV, drug contents of 0.90-7.20 %, CMC values of 35.3-96.6 μg/ml, and exhibited redox-responsive in vitro drug release. Optimized micelles were non-toxic and dramatically more efficient than non-redox responsive micelles in reducing TNF-α and IL-6 and increasing IL-10 secretion from LPS-stimulated RAW264.7 cells. Furthermore, the redox-responsive micelles were able to reduce the mice paw edema, reduce the plasma levels of pro-inflammatory cytokines and increase plasma level of IL-10, considerably more than free DAS and non-redox responsive micelles in carrageenan-induced mice paw edema model of inflammation.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Valiollah Hajhashemi
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahal Shamaeizadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir-Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
van Gijsel-Bonnello M, Darling NJ, Tanaka T, Di Carmine S, Marchesi F, Thomson S, Clark K, Kurowska-Stolarska M, McSorley HJ, Cohen P, Arthur JSC. Salt-inducible kinase 2 regulates fibrosis during bleomycin-induced lung injury. J Biol Chem 2022; 298:102644. [PMID: 36309093 PMCID: PMC9706632 DOI: 10.1016/j.jbc.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Manuel van Gijsel-Bonnello
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Takashi Tanaka
- Research Centre of Specialty, Ono Pharmaceutical Co Ltd, Osaka, Japan
| | - Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, United Kingdom
| | - Kristopher Clark
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
14
|
COVID-19 Impact on Chronic Myeloid Leukemia Patients. J Pers Med 2022; 12:jpm12111886. [PMID: 36573722 PMCID: PMC9699250 DOI: 10.3390/jpm12111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a blood dyscrasia that accounts for about 20% of all leukemia cases. Tyrosine kinase inhibitors (TKIs) are used as first line treatment of CML. The 2019 SARS-CoV-2 outbreak raised new concerns for CML patients, such as whether CML increases the risk of contracting COVID-19, whether TKIs increase that risk, whether these drugs are safe to use during the infection, and whether any other hematologic parameters influence infection outcomes. (2) Methods: In our study we addressed these intriguing questions by using a retrospective analysis of 51 CML patients treated at the Ion Chiricuta Cancer Center, Cluj-Napoca, Romania. Furthermore, we investigated the effects of currently approved COVID-19 vaccines in our CML patients treated with tyrosine kinase inhibitors. (3) Results: Our results have shown that hemoglobin level upon diagnosis of CML has been the only hematologic parameter correlated to the risk of contracting COVID-19 in our CML patients. (4) Conclusions: TKI treatment did not negatively influence COVID-19 risk or the response to the vaccine in our patients. The safety profile of the currently approved COVID-19 vaccines was similar to that of the general population.
Collapse
|
15
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Salt-inducible kinases: new players in pulmonary arterial hypertension? Trends Pharmacol Sci 2022; 43:806-819. [PMID: 35851157 DOI: 10.1016/j.tips.2022.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022]
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases belonging to the AMP-activated protein kinase (AMPK) family. Accumulating evidence indicates that SIKs phosphorylate multiple targets, including histone deacetylases (HDACs) and cAMP response element-binding protein (CREB)-regulated transcriptional coactivators (CRTCs), to coordinate signaling pathways implicated in metabolism, cell growth, proliferation, apoptosis, and inflammation. These pathways downstream of SIKs are altered not only in pathologies like cancer, systemic hypertension, and inflammatory diseases, but also in pulmonary arterial hypertension (PAH), a multifactorial disease characterized by pulmonary vasoconstriction, inflammation and remodeling of pulmonary arteries owing to endothelial dysfunction and aberrant proliferation of smooth muscle cells (SMCs). In this opinion article, we present evidence of SIKs as modulators of key signaling pathways involved in PAH pathophysiology and discuss the potential of SIKs as therapeutic targets for PAH, emphasizing the need for deeper molecular insights on PAH.
Collapse
|
18
|
Shi M, Wang L, Liu K, Chen Y, Hu M, Yang L, He J, Chen L, Xu D. Molecular dynamics simulations of the conformational plasticity in the active pocket of salt-inducible kinase 2 (SIK2) multi-state binding with bosutinib. Comput Struct Biotechnol J 2022; 20:2574-2586. [PMID: 35685353 PMCID: PMC9160496 DOI: 10.1016/j.csbj.2022.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
The kinase domain is highly conserved among protein kinases 'in terms of both sequence and structure. Conformational rearrangements of the kinase domain are affected by the phosphorylation of residues and the binding of kinase inhibitors. Interestingly, the conformational rearrangement of the active pocket plays an important role in kinase activity and can be used to design novel kinase inhibitors. We characterized the conformational plasticity of the active pocket when bosutinib was bound to salt-inducible kinase 2 (SIK2) using homology modeling and molecular dynamics simulations. Ten different initial complex models were constructed using the Morph server, ranging from open to closed conformations of SIK2 binding with bosutinib. Our simulation showed that bosutinib binds SIK2 with up or down conformations of the P-loop and with all the conformations of the activation loop. In addition, the αC-helix conformation was induced by the conformation of the activation loop, and the salt bridge formed only with its open conformation. The binding affinity of the models was also determined using the molecular mechanics generalized Born surface area method. Bosutinib was found to form a strong binding model with SIK2 and hydrophobic interactions were the dominant factor. This discovery may help guide the design of novel SIK2 inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kongjun Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengshi Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
19
|
Zou L, Hong D, Li K, Jiang B. Salt-inducible kinase 2 (SIK2) inhibitor ARN-3236 attenuates bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 2022; 22:140. [PMID: 35410283 PMCID: PMC9004037 DOI: 10.1186/s12890-022-01940-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022] Open
Abstract
Background Pulmonary fibrosis is a fatal lung disease with complex pathogenesis and limited effective therapies. Salt-inducible kinase 2 (SIK2) is a kinase that phosphorylates CRTCs and regulates many physiological processes. However, the role of SIK2 on pulmonary fibrosis remains unclear, and whether SIK2 inhibitor can attenuate pulmonary fibrosis is unknown. Method We subjected human fetal lung fibroblasts (HFLs) to transforming growth factor-β1 (5 ng/mL) for 12 h, and examined the expression of SIK2, CRTCs and pCRTCs in fibroblasts by western-blot. To address the roles of SIK2 and CRTCs involved in the progression of pulmonary fibrosis, HFLs were treated with a small-molecule inhibitor ARN-3236 or by siRNA-mediated knockdown of SIK2 expression. Pulmonary fibrosis model was established with mice by exposing to bleomycin, and assessed by H&E and Masson’s trichrome staining. COL1A and α-SMA distributions were detected in lung tissues by immunohistochemical staining. Results We discovered that SIK2 and phosphorylated-CRTC2 were expressed at a low basal level in normal lung tissues and quiescent fibroblasts, but increased in fibrotic lung tissues and activated fibroblasts. Inhibition of SIK2 by ARN-3236 prevented the fibroblasts differentiation and extracellular matrix expression in HFLs and attenuated bleomycin-induced pulmonary fibrosis in mice. Mechanistically, inactivation of SIK2 resulted in the dephosphorylation and nuclear translocation of CRTC2. Within the nucleus, CRTC2 binds to CREB, promoting CREB-dependent anti-fibrotic actions. Conclusion In conclusion, our results elucidated a previously unexplored role of SIK2 in pulmonary fibrosis, and identified SIK2 as a new target for anti-fibrosis medicines.
Collapse
Affiliation(s)
- Liangneng Zou
- Department of General Medicine, The Fifth Hospital of Xiamen, 101 Min'an Road, Maxiang, Xiang'an, Xiamen, 361101, Fujian, People's Republic of China
| | - Dequn Hong
- Department of Emergency, The Fifth Hospital of Xiamen, 101 Min'an Road, Maxiang, Xiang'an, Xiamen, 361101, Fujian, People's Republic of China
| | - Kecong Li
- The Affiliated Second Hospital of Xiamen Medical College, 566 Shengguang Road, Ji'mei, Xiamen, 361000, Fujian, People's Republic of China.
| | - Bingyuan Jiang
- Critical Care Medicine, The Fifth Hospital of Xiamen, 101 Min'an Road, Maxiang, Xiang'an, Xiamen, 361101, Fujian, People's Republic of China.
| |
Collapse
|
20
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
21
|
Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women. Biomedicines 2021; 9:biomedicines9091105. [PMID: 34572288 PMCID: PMC8469608 DOI: 10.3390/biomedicines9091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
In following study we examined whether blood arsenic (As) levels combined with specific polymorphisms in MT1B, GSTP1, ABCB1, NQO1, CRTC3, GPX1, SOD2, CAT, XRCC1, ERCC2 can be used as a marker for the detection of colorectal cancer (CRC) among Polish women. A retrospective case-control study of CRC included 83 CRC cases and 78 healthy controls. From each study participant pre-treatment peripheral blood was collected for As level measurement by inductively coupled–plasma mass spectrometry (ICP-MS). We estimated the odds ratio (OR) of the association between blood-As levels and CRC using multivariable unconditional logistic regression models. A low blood-As level (0.27–0.67 µg/L) was associated with an increased frequency of CRC (OR: 3.69; p = 0.005). This correlation was significantly greater when participants carried particular gene variants: CAT, rs1001179-nonCC (OR: 19.4; p = 0.001); ABCB1 rs2032582–CC (OR: 14.8; p = 0.024); GPX1 rs1050450-CC (OR: 11.6; p = 0.002) and CRTC3 rs12915189-nonGG (OR: 10.3; p = 0.003). Our study provides strong evidence that low blood-As levels are significantly associated with increased CRC occurrence and that particular gene variants significantly enhanced this correlation however, due to the novelty of these findings, we suggest further validation before a definitive statement that the combined effect of low blood-As levels with specific gene polymorphisms is a suitable CRC biomarker.
Collapse
|
22
|
Shi M, Zhao M, Wang L, Liu K, Li P, Liu J, Cai X, Chen L, Xu D. Exploring the stability of inhibitor binding to SIK2 using molecular dynamics simulation and binding free energy calculation. Phys Chem Chem Phys 2021; 23:13216-13227. [PMID: 34086021 DOI: 10.1039/d1cp00717c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salt inducible kinase 2 (SIK2) is a calcium/calmodulin-dependent protein kinase-like kinase that is implicated in a variety of biological phenomena, including cellular metabolism, growth, and apoptosis. SIK2 is the key target for various cancers, including ovarian, breast, prostate, and lung cancers. Although potent inhibitors of SIK2 are being developed, their binding stability and functional role are not presently known. In this work, we studied the detailed interactions between SIK2 and four of its inhibitors, HG-9-91-01, KIN112, MRT67307, and MRT199665, using molecular docking, molecular dynamics simulation, binding free energy calculation, and interaction fingerprint analysis. Intermolecular interactions revealed that HG-9-91-01 and KIN112 have stronger interactions with SIK2 than those of MRT199665 and MRT67307. The key residues involved in binding with SIK2 are conserved among all four inhibitors. Our results explain the detailed interaction of SIK2 with its inhibitors at the molecular level, thus paving the way for the development of targeted efficient anti-cancer drugs.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Min Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Kongjun Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Jiang Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoying Cai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China. and Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
23
|
Liu Z, Chen S, Zhang X, Liu F, Yang K, Du G, Rui X. Dasatinib protects against acute respiratory distress syndrome via Nrf2-regulated M2 macrophages polarization. Drug Dev Res 2021; 82:1247-1257. [PMID: 34105172 DOI: 10.1002/ddr.21839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Dasatinib, a tyrosine kinase inhibitor, has a protective effect on experimental acute respiratory distress syndrome (ARDS). This study investigated the effect and mechanism of dasatinib in ARDS. C57BL/6 mice were administered with dasatinib (1 and 10 mg/kg) after lipopolysaccharide (LPS) treatment to evaluate the effect of dasatinib on white blood cells (WBC), neutrophils, lymphocytes and macrophages in bronchoalveolar lavage fluid (BALF). The levels and mRNA expressions of inflammation-related cytokines in lung tissues and RAW 264.7 cells were detected by enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. The protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO1) were determined by Western blot. MTT assay was performed to detect the viability of RAW 264.7 cell. Rescue experiments were used to assess the effect of Nrf2 silencing on the LPS- and dasatinib-treated mice. Under LPS treatment, levels of the WBC, neutrophils, lymphocytes and macrophages in BALF and mRNA expressions of IL-6, TNF-α and IL-10 as well as expression of iNOS were increased, but the expression of arginase-1 was inhibited, while no obvious changes of the protein expressions of Nrf2 and HO1 were observed. Dasatinib partially reversed the effects of LPS above, and further promoted the mRNA expression of IL-10 and the protein expressions of Nrf2 and HO1, while Nrf2 silencing counteracted the effect of dasatinib. Dasatinib induced the polarization of M2 subtype of macrophages and alleviated LPS-induced ARDS through activating Nrf2 signaling pathway, which may provide a new strategy for the treatment of ARDS.
Collapse
Affiliation(s)
- Zishuang Liu
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Shanshan Chen
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xinfeng Zhang
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Fangfang Liu
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Kai Yang
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Ge Du
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xi Rui
- Intensive Care Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Shi M, Wang L, Li P, Liu J, Chen L, Xu D. Dasatinib-SIK2 Binding Elucidated by Homology Modeling, Molecular Docking, and Dynamics Simulations. ACS OMEGA 2021; 6:11025-11038. [PMID: 34056256 PMCID: PMC8153941 DOI: 10.1021/acsomega.1c00947] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
![]()
Salt-inducible kinases
(SIKs) are calcium/calmodulin-dependent
protein kinase (CAMK)-like (CAMKL) family members implicated in insulin
signal transduction, metabolic regulation, inflammatory response,
and other processes. Here, we focused on SIK2, which is a target of
the Food and Drug Administration (FDA)-approved pan inhibitor N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide
(dasatinib), and constructed four representative SIK2 structures by
homology modeling. We investigated the interactions between dasatinib
and SIK2 via molecular docking, molecular dynamics simulation, and
binding free energy calculation and found that dasatinib showed strong
binding affinity for SIK2. Binding free energy calculations suggested
that the modification of various dasatinib regions may provide useful
information for drug design and to guide the discovery of novel dasatinib-based
SIK2 inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Penghui Li
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiang Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
25
|
Ntari L, Nikolaou C, Kranidioti K, Papadopoulou D, Christodoulou-Vafeiadou E, Chouvardas P, Meier F, Geka C, Denis MC, Karagianni N, Kollias G. Combination of subtherapeutic anti-TNF dose with dasatinib restores clinical and molecular arthritogenic profiles better than standard anti-TNF treatment. J Transl Med 2021; 19:165. [PMID: 33892739 PMCID: PMC8063445 DOI: 10.1186/s12967-021-02764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.
Collapse
Affiliation(s)
| | - Christoforos Nikolaou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Panagiotis Chouvardas
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | | | | | | | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece.
- Department of Physiology and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
26
|
Nuts and bolts of the salt-inducible kinases (SIKs). Biochem J 2021; 478:1377-1397. [PMID: 33861845 PMCID: PMC8057676 DOI: 10.1042/bcj20200502] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
The salt-inducible kinases, SIK1, SIK2 and SIK3, most closely resemble the AMP-activated protein kinase (AMPK) and other AMPK-related kinases, and like these family members they require phosphorylation by LKB1 to be catalytically active. However, unlike other AMPK-related kinases they are phosphorylated by cyclic AMP-dependent protein kinase (PKA), which promotes their binding to 14-3-3 proteins and inactivation. The most well-established substrates of the SIKs are the CREB-regulated transcriptional co-activators (CRTCs), and the Class 2a histone deacetylases (HDAC4/5/7/9). Phosphorylation by SIKs promotes the translocation of CRTCs and Class 2a HDACs to the cytoplasm and their binding to 14-3-3s, preventing them from regulating their nuclear binding partners, the transcription factors CREB and MEF2. This process is reversed by PKA-dependent inactivation of the SIKs leading to dephosphorylation of CRTCs and Class 2a HDACs and their re-entry into the nucleus. Through the reversible regulation of these substrates and others that have not yet been identified, the SIKs regulate many physiological processes ranging from innate immunity, circadian rhythms and bone formation, to skin pigmentation and metabolism. This review summarises current knowledge of the SIKs and the evidence underpinning these findings, and discusses the therapeutic potential of SIK inhibitors for the treatment of disease.
Collapse
|
27
|
Sabbah M, Krayem M, Najem A, Sales F, Miller W, Del Rincon S, Awada A, Ghanem GE, Journe F. Dasatinib Stimulates Its Own Mechanism of Resistance by Activating a CRTC3/MITF/Bcl-2 Pathway in Melanoma with Mutant or Amplified c-Kit. Mol Cancer Res 2021; 19:1221-1233. [PMID: 33741716 DOI: 10.1158/1541-7786.mcr-20-1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Amplification or activating mutations of c-Kit are a frequent oncogenic alteration, which occurs commonly in acral and mucosal melanoma. Among c-Kit inhibitors, dasatinib is the most active due to its ability to bind both active and inactive conformations of the receptor. However, its use as a single agent in melanoma showed limited clinical benefit. We first found that sensitivity to dasatinib is restricted to melanoma cell lines harboring c-Kit alteration but, unexpectedly, we observed lower effect at higher concentrations that can readily be found in patient blood. We then investigated relevant pathway alterations and found complete inhibition of MAPK and PI3K/AKT pathways but an increase in MITF and its downstream target Bcl-2 through CRTC3 pathway, which turn on the CREB regulated transcription of MITF. More importantly, dasatinib upregulates MITF and Bcl-2 through SIK2 inhibition revealed by CRTC3 reduced phosphorylation, CREB transcription activation of MITF, MITF transcription activation of Bcl-2 as well as pigmentation. Furthermore, overexpression of MITF renders melanoma cells resistant to all dasatinib concentrations. Selective Bcl-2 inhibition by ABT-199 or Bcl-2 knockout restores the sensitivity of melanoma cells to dasatinib, validating the involvement of MITF and Bcl-2 axis in the resistance of melanoma to dasatinib. In conclusion, we showed for the first time that dasatinib in melanoma stimulates its proper mechanism of resistance, independently of MAPK and PI3K/AKT pathways reactivation commonly associated to secondary c-Kit mutations, but through CRTC3/MITF/Bcl-2 pathway activation at clinically relevant doses which may explain the weak clinical benefit of dasatinib in patients with melanoma. IMPLICATIONS: Dasatinib stimulates its proper mechanism of resistance through CRTC3/MITF/Bcl-2 pathway, which may explain its modest clinical efficiency in patients with melanoma.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - François Sales
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Wilson Miller
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Sonia Del Rincon
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ahmad Awada
- Medical Oncolgy Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Kleinveld DJB, Botros L, Maas MAW, Kers J, Aman J, Hollmann MW, Juffermans NP. Bosutinib reduces endothelial permeability and organ failure in a rat polytrauma transfusion model. Br J Anaesth 2021; 126:958-966. [PMID: 33685634 PMCID: PMC8258973 DOI: 10.1016/j.bja.2021.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Trauma-induced shock is associated with endothelial dysfunction. We examined whether the tyrosine kinase inhibitor bosutinib as an adjunct therapy to a balanced blood component resuscitation strategy reduces trauma-induced endothelial permeability, thereby improving shock reversal and limiting transfusion requirements and organ failure in a rat polytrauma transfusion model. METHODS Male Sprague-Dawley rats (n=13 per group) were traumatised and exsanguinated until a MAP of 40 mm Hg was reached, then randomised to two groups: red blood cells, plasma and platelets in a 1:1:1 ratio with either bosutinib or vehicle. Controls were randomised to sham (median laparotomy, no trauma) with bosutinib or vehicle. Organs were harvested for histology and wet/dry (W/D) weight ratio. RESULTS Traumatic injury resulted in shock, with higher lactate levels compared with controls. In trauma-induced shock, the resuscitation volume needed to obtain a MAP of 60 mm Hg was lower in bosutinib-treated animals (2.8 [2.7-3.2] ml kg-1) compared with vehicle (6.1 [5.1-7.2] ml kg-1, P<0.001). Lactate levels in the bosutinib group were 2.9 [1.7-4.8] mM compared with 6.2 [3.1-14.1] mM in the vehicle group (P=0.06). Bosutinib compared with vehicle reduced lung vascular leakage (W/D ratio of 5.1 [4.6-5.3] vs 5.7 [5.4-6.0] (P=0.046) and lung injury scores (P=0.027). CONCLUSIONS Bosutinib as an adjunct therapy to a balanced transfusion strategy reduced resuscitation volume, improved shock reversal, and reduced vascular leak and organ injury in a rat polytrauma model.
Collapse
Affiliation(s)
- Derek J B Kleinveld
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Experimental Intensive Care and Anesthesiology, Department of Trauma Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Trauma Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Liza Botros
- Department of Pulmonary Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Adrie W Maas
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Experimental Intensive Care and Anesthesiology, Department of Trauma Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jurjan Aman
- Department of Pulmonary Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Trauma Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Trauma Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Darling NJ, Arthur JSC, Cohen P. Salt-inducible kinases are required for the IL-33-dependent secretion of cytokines and chemokines in mast cells. J Biol Chem 2021; 296:100428. [PMID: 33600797 PMCID: PMC7988334 DOI: 10.1016/j.jbc.2021.100428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cytokines and chemokines are important regulators of airway hyper-responsiveness, immune cell infiltration, and inflammation and are produced when mast cells are stimulated with interleukin-33 (IL-33). Here, we establish that the salt-inducible kinases (SIKs) are required for the IL-33-stimulated transcription of il13, gm-csf and tnf and hence the production of these cytokines. The IL-33-stimulated secretion of IL-13, granulocyte-macrophage colony stimulating factor, and tumor necrosis factor was strongly reduced in fetal liver-derived mast cells from mice expressing a kinase-inactive mutant of SIK3 and abolished in cells expressing kinase-inactive mutants of SIK2 and SIK3. The IL-33-dependent secretion of these cytokines and several chemokines was also abolished in SIK2/3 double knock-out bone marrow-derived mast cells (BMMC), reduced in SIK3 KO cells but little affected in BMMC expressing kinase-inactive mutants of SIK1 and SIK2 or lacking SIK2 expression. In SIK2 knock-out BMMC, the expression of SIK3 was greatly increased. Our studies identify essential roles for SIK2 and SIK3 in producing inflammatory mediators that trigger airway inflammation. The effects of SIKs were independent of IκB kinase β, IκB kinase β-mediated NF-κB-dependent gene transcription, and activation of the mitogen-activated protein kinase family members p38α and c-jun N-terminal kinases. Our results suggest that dual inhibitors of SIK2 and SIK3 may have therapeutic potential for the treatment of mast cell-driven diseases.
Collapse
Affiliation(s)
- Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Angus, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, Angus, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Angus, UK.
| |
Collapse
|
30
|
Kim A, Seong KM, Choi YY, Shim S, Park S, Lee SS. Inhibition of EphA2 by Dasatinib Suppresses Radiation-Induced Intestinal Injury. Int J Mol Sci 2020; 21:ijms21239096. [PMID: 33265912 PMCID: PMC7730170 DOI: 10.3390/ijms21239096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Radiation-induced multiorgan dysfunction is thought to result primarily from damage to the endothelial system, leading to a systemic inflammatory response that is mediated by the recruitment of leukocytes. The Eph–ephrin signaling pathway in the vascular system participates in various disease developmental processes, including cancer and inflammation. In this study, we demonstrate that radiation exposure increased intestinal inflammation via endothelial dysfunction, caused by the radiation-induced activation of EphA2, an Eph receptor tyrosine kinase, and its ligand ephrinA1. Barrier dysfunction in endothelial and epithelial cells was aggravated by vascular endothelial–cadherin disruption and leukocyte adhesion in radiation-induced inflammation both in vitro and in vivo. Among all Eph receptors and their ligands, EphA2 and ephrinA1 were required for barrier destabilization and leukocyte adhesion. Knockdown of EphA2 in endothelial cells reduced radiation-induced endothelial dysfunction. Furthermore, pharmacological inhibition of EphA2–ephrinA1 by the tyrosine kinase inhibitor dasatinib attenuated the loss of vascular integrity and leukocyte adhesion in vitro. Mice administered dasatinib exhibited resistance to radiation injury characterized by reduced barrier leakage and decreased leukocyte infiltration into the intestine. Taken together, these data suggest that dasatinib therapy represents a potential approach for the protection of radiation-mediated intestinal damage by targeting the EphA2–ephrinA1 complex.
Collapse
Affiliation(s)
- Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
- Correspondence:
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (K.M.S.); (Y.Y.C.)
| | - You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (K.M.S.); (Y.Y.C.)
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (K.M.S.); (Y.Y.C.)
| | - Seung Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul 01812, Korea; (S.S.); (S.P.); (S.S.L.)
| |
Collapse
|
31
|
Elsayed HRH, El-Nablaway M, Othman BH, Abdalla AM, El Nashar EM, Abd-Elmonem MM, El-Gamal R. Can Dasatinib Ameliorate the Hepatic changes, Induced by Long Term Western Diet, in Mice? Ann Anat 2020; 234:151626. [PMID: 33144268 DOI: 10.1016/j.aanat.2020.151626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a worldwide disease that progresses into steatohepatitis (NASH) that has no current effective treatment. This study aimed, for the first time, to investigate the effect of Dasatinib; a tyrosine kinase inhibitor showing anti-PDGFR activity with a macrophage modulating efficacy, on NASH. METHODS NASH was induced, in C57BL/6 mice by western diet (WD). Control groups received either DMSO or Dasatinib. After 12 weeks, WD-fed mice received DMSO, Dasatinib (4 mg/kg) or Dasatinib (8 mg/kg) once daily, for four weeks. Serum was examined for ALT and lipid profile. Immunohistochemical staining for SREBP1 (lipogenesis marker), iNOS, arginase-1, CD68, CD163 (macrophage polarization markers), TGF-β (fibrosis marker) and ASMA (a marker for activated hepatic stellate cell), hepatic mRNA expression for SREBP-1, iNOS, arginase-1, TGF-β and PDGFA genes; and western blotting for phosphorylated PDGFR α and β, SREBP1, iNOS, arginase-1, IL1α, COX2, TGF-β and ASMA were performed. Liver sections were stained also for H & E, Oil red O and Sirius red. RESULTS Dasatinib could ameliorate the WD-induced disturbance of serum ALT, lipid profile and significantly reduced hepatic expression of PDGFA, phosphorylated PDGFR α and β, IL1α, COX2, SREBP-1, iNOS, CD68, TGF-β and ASMA but increased expression for arginase-1 and CD163 (M2 macrophage markers). Moreover, Dasatinib reduced the steatosis, inflammation, hepatocellular ballooning, hepatic fibrosis and the high NAFLD activity scoring induced by WD. CONCLUSION Dasatinib can prevent the progression of WD-induced NASH by attenuating lipogenesis, and inducing M2 macrophage polarization with antifibrotic activity.
Collapse
Affiliation(s)
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Egypt
| | - Basma H Othman
- Mansoura Experimental Research Center, Faculty of Medicine, Mansoura University, Egypt
| | - Asim Mohammed Abdalla
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eman Mohammad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
32
|
Fiani ML, Barreca V, Sargiacomo M, Ferrantelli F, Manfredi F, Federico M. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Int J Mol Sci 2020; 21:ijms21176318. [PMID: 32878276 PMCID: PMC7503580 DOI: 10.3390/ijms21176318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30–150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.
Collapse
Affiliation(s)
- Maria Luisa Fiani
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| | | | | | | | | | - Maurizio Federico
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| |
Collapse
|
33
|
Roberts KE, Deininger MW, Hildebrandt GC, Gackenbach BK, Krem MM. Use of dasatinib dose-reduction periods to remedy poor surgical wound healing in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma 2020; 61:3507-3510. [PMID: 32835547 DOI: 10.1080/10428194.2020.1808210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kandice E Roberts
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Gerhard C Hildebrandt
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Brian K Gackenbach
- Division of Blood and Marrow Transplantation, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maxwell M Krem
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
34
|
Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020; 5:150. [PMID: 32788639 PMCID: PMC7423983 DOI: 10.1038/s41392-020-00265-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Salt-inducible kinases (SIKs) belong to AMP-activated protein kinase (AMPK) family, and functions mainly involve in regulating energy response-related physiological processes, such as gluconeogenesis and lipid metabolism. However, compared with another well-established energy-response kinase AMPK, SIK roles in human diseases, especially in diabetes and tumorigenesis, are rarely investigated. Recently, the pilot roles of SIKs in tumorigenesis have begun to attract more attention due to the finding that the tumor suppressor role of LKB1 in non-small-cell lung cancers (NSCLCs) is unexpectedly mediated by the SIK but not AMPK kinases. Thus, here we tend to comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for SIKs, and shed light on SIKs as the potential therapeutic targets for cancer therapies.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.,Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
35
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Tavares LP, Negreiros-Lima GL, Lima KM, E Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159:105030. [PMID: 32562817 DOI: 10.1016/j.phrs.2020.105030] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.
Collapse
Affiliation(s)
- Luciana P Tavares
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA..
| | - Graziele L Negreiros-Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Kátia M Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Patrícia M R E Silva
- Inflammation Laboratory, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Vanessa Pinho
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Department of Morphology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Mauro M Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Lirlândia P Sousa
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| |
Collapse
|
38
|
Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Curr Hematol Malig Rep 2020; 15:20-30. [DOI: 10.1007/s11899-020-00560-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Hutchinson LD, Darling NJ, Nicolaou S, Gori I, Squair DR, Cohen P, Hill CS, Sapkota GP. Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses. Cell Death Dis 2020; 11:49. [PMID: 31969556 PMCID: PMC6976658 DOI: 10.1038/s41419-020-2241-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
The signalling pathways initiated by members of the transforming growth factor-β (TGFβ) family of cytokines control many metazoan cellular processes, including proliferation and differentiation, epithelial-mesenchymal transition (EMT) and apoptosis. TGFβ signalling is therefore strictly regulated to ensure appropriate context-dependent physiological responses. In an attempt to identify novel regulatory components of the TGFβ signalling pathway, we performed a pharmacological screen by using a cell line engineered to report the endogenous transcription of the TGFβ-responsive target gene PAI-1. The screen revealed that small molecule inhibitors of salt-inducible kinases (SIKs) attenuate TGFβ-mediated transcription of PAI-1 without affecting receptor-mediated SMAD phosphorylation, SMAD complex formation or nuclear translocation. We provide evidence that genetic inactivation of SIK isoforms also attenuates TGFβ-dependent transcriptional responses. Pharmacological inhibition of SIKs by using multiple small-molecule inhibitors potentiated apoptotic cell death induced by TGFβ stimulation. Our data therefore provide evidence for a novel function of SIKs in modulating TGFβ-mediated transcriptional and cellular responses.
Collapse
Affiliation(s)
- Luke D Hutchinson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Stephanos Nicolaou
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Ilaria Gori
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Caroline S Hill
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
40
|
Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, Teixeira LCR, Pinho V, Teixeira MM, Sugimoto MA, Sousa LP. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis. Cells 2020; 9:E128. [PMID: 31935860 PMCID: PMC7017228 DOI: 10.3390/cells9010128] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Collapse
Affiliation(s)
- Graziele L. Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Kátia M. Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Isabella Z. Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Bruna Lorrayne O. Jardim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Juliana P. Vago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Lívia Cristina R. Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Mauro M. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Michelle A. Sugimoto
- Programa de Pós-Graduação em Doenças Infecciosas e Medicina Tropical, Escola de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil;
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| |
Collapse
|
41
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
42
|
Guo K, Bu X, Yang C, Cao X, Bian H, Zhu Q, Zhu J, Zhang D. Treatment Effects of the Second-Generation Tyrosine Kinase Inhibitor Dasatinib on Autoimmune Arthritis. Front Immunol 2019; 9:3133. [PMID: 30687331 PMCID: PMC6335562 DOI: 10.3389/fimmu.2018.03133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease that primarily manifests as persistent synovitis and progressive joint destruction. Imatinib exhibited a therapeutic effect in murine collagen-induced arthritis (CIA) via selective inhibition tyrosine kinases. The second-generation tyrosine kinase inhibitor dasatinib exhibits more durable hematological and cytogenetic effects and more potency compared to imatinib. However, the effect of dasatinib on CIA is poorly understood. The present study investigated the treatment effect of dasatinib on autoimmune arthritis. We demonstrated that dasatinib alleviated arthritis symptoms and histopathological destruction in CIA mice. Dasatinib treatment inhibited the production of proinflammatory cytokines including IL-1β, TNF-α, and IL-6, and promoted the production of the anti-inflammatory cytokine IL-10. Dasatinib treatment also suppressed the expression of anti-mouse CII antibodies including total IgG, IgG1, IgG2, and IgG2b, in CIA mice. We further demonstrated that dasatinib inhibited the migration and proliferation of fibroblast-like synoviocytes (FLS) from RA patients and promoted FLS apoptosis. The mRNA expression of MMP13, VEGF, FGF, and DKK1 was down-regulated in FLS treated with dasatinib. Our findings suggest that dasatinib exhibited treatment effects on CIA mice and that FLS are an important target cell of dasatinib treatment in autoimmune arthritis.
Collapse
Affiliation(s)
- Kai Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin Bu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Chongfei Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaorui Cao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Bian
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qingsheng Zhu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinyu Zhu
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Dawei Zhang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
Sakamoto K, Bultot L, Göransson O. The Salt-Inducible Kinases: Emerging Metabolic Regulators. Trends Endocrinol Metab 2018; 29:827-840. [PMID: 30385008 DOI: 10.1016/j.tem.2018.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023]
Abstract
The discovery of liver kinase B1 (LKB1) as an upstream kinase for AMP-activated protein kinase (AMPK) led to the identification of several related kinases that also rely on LKB1 for their catalytic activity. Among these, the salt-inducible kinases (SIKs) have emerged as key regulators of metabolism. Unlike AMPK, SIKs do not respond to nucleotides, but their function is regulated by extracellular signals, such as hormones, through complex LKB1-independent mechanisms. While AMPK acts on multiple targets, including metabolic enzymes, to maintain cellular ATP levels, SIKs primarily regulate gene expression, by acting on transcriptional regulators, such as the cAMP response element-binding protein-regulated transcription coactivators and class IIa histone deacetylases. This review describes the development of research on SIKs, from their discovery to the most recent findings on metabolic regulation.
Collapse
Affiliation(s)
- Kei Sakamoto
- Nestlé Research, EPFL Innovation Park, Bâtiment G, 1015 Lausanne, Switzerland.
| | - Laurent Bultot
- Nestlé Research, EPFL Innovation Park, Bâtiment G, 1015 Lausanne, Switzerland; Current address: Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, BMC C11, 221 84 Lund, Sweden.
| |
Collapse
|
44
|
Wehrstedt S, Kubis J, Zimmermann A, Bruns H, Mayer D, Grieshober M, Stenger S. The tyrosine kinase inhibitor dasatinib reduces the growth of intracellular Mycobacterium tuberculosis despite impairing T-cell function. Eur J Immunol 2018; 48:1892-1903. [PMID: 30242834 DOI: 10.1002/eji.201847656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
Tyrosine kinases are checkpoints for multiple cellular pathways and dysregulation induces malignancies, most notably chronic myeloid leukemia (CML). Inhibition of Abl-tyrosine kinases has evolved as a new concept for the treatment of CML and other malignant diseases. Due to the multiple immune-modulatory pathways controlled by tyrosine kinases, treatment with tyrosine kinase inhibitors (TKIs) will not only affect the biology of malignant cells but also modulate physiological immune functions. To understand the effects of TKIs on host defense against intracellular bacteria, we investigated the immunological impact of the dual Abl/Src TKI dasatinib on the cellular immune response to Mycobacterium tuberculosis (Mtb). Our results demonstrate that dasatinib impaired proliferation, cytokine release (IFN-γ, TNF-α, GM-CSF), expression of granulysin and degranulation of cytotoxic effector molecules of human Mtb-specific T-lymphocytes by inhibition of lymphocyte-specific protein tyrosine kinase (Lck) phosphorylation. Despite this profound inhibition of T-cell function, dasatinib suppressed growth of virulent Mtb in human macrophages co-cultured with autologous Mtb-specific T-cells (49±15%). Functional analysis suggested that growth inhibition is due to dasatinib-triggered lysosomal acidification in Mtb-infected macrophages. These results highlight the significance of innate immune responses, i.e. acidification of lysosomes, which control the multiplication of intracellular bacteria despite the lack of efficient T-cell support.
Collapse
Affiliation(s)
- Stephanie Wehrstedt
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Germany
| | - Jan Kubis
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Germany
| | - Andreas Zimmermann
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Germany
| | - Daniel Mayer
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Germany
| | - Mark Grieshober
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Germany
| |
Collapse
|
45
|
Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM, Dueñas M. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods? Clin Transl Oncol 2018; 21:391-403. [PMID: 30291519 DOI: 10.1007/s12094-018-1952-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Macrophages are major components of the immune infiltration in cancer where they can affect tumor behavior. In the bladder, they play important roles during the resolution of infectious processes and they have been associated with a worse clinical prognosis in bladder cancer. The present review focused on the characteristics of these important immune cells, not only eliciting an innate immune surveillance, but also on their importance during the cancer immunoediting process. We further discuss the potential of targeting macrophages for anticancer therapy, the current strategies and the state of the art as well as the foreseen role on combined therapies on the near future. This review shows how a comprehensive understanding of macrophages within the tumor should translate to better clinical outcome and new therapeutic strategies focusing especially on bladder cancer.
Collapse
Affiliation(s)
- C Rubio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - E Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - I Lodewijk
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - C Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - V Karaivanova
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - R Ruiz-Palomares
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - J M Paramio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| | - M Dueñas
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
46
|
Okamura Y, Makita N, Hizukuri Y, Hayashi Y. Genome-wide siRNA screening in mouse bone marrow-derived macrophages revealed that knockdown of ribosomal proteins suppresses IL-10 and enhances TNF-α production. J Clin Exp Hematop 2018; 58:87-94. [PMID: 29657255 PMCID: PMC6413152 DOI: 10.3960/jslrt.17036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/15/2018] [Accepted: 02/26/2018] [Indexed: 11/01/2022] Open
Abstract
Macrophages play a central role in the immune response, and their diverse functions are attributed to the spectrum of their functional states. To elucidate molecules involved in modulating the balance between the anti-inflammatory cytokine IL-10 and the pro-inflammatory cytokine TNF-α, we conducted genome-wide siRNA screening. First, we established an siRNA screening system using mouse bone marrow-derived macrophages, which are a suitable model for studying functional states of macrophages in vitro. In the primary screen and the subsequent reproducibility assay, 112 siRNA pools demonstrated enhancement of IL-10 production and 497 siRNA pools suppressed IL-10 production. After a deconvolution assay for IL-10-up-regulating siRNA pools, 8 genes were identified as IL-10 repressors, including Cnot1 and Rc3h1, components of the CCR4-NOT complex known to degrade cytokine mRNAs. On the other hand, siRNA pools targeting ribosomal proteins were frequently found among those that down-regulated IL-10 production and up-regulated TNF-α production. Four pools were assayed using deconvoluted siRNAs and identified as high-confidence hits. Thus, we found that the genome-wide knockdown of 19 ribosomal proteins resulted in decreased IL-10 and increased TNF-α production.
Collapse
Affiliation(s)
| | | | | | - Yasuhiro Hayashi
- Asubio Pharma Co., Ltd.,
Kobe, Japan
- Present Address: Oncology Laboratories, Daiichi Sankyo Co.,
Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710,
Japan. E-mail:
| |
Collapse
|
47
|
Zhu C, Kros JM, Cheng C, Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro Oncol 2018; 19:1435-1446. [PMID: 28575312 DOI: 10.1093/neuonc/nox081] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
"Tumor-associated macrophages" (TAMs) form a significant cell population in malignant tumors and contribute to tumor growth, metastasis, and neovascularization. Gliomas are characterized by extensive neo-angiogenesis, and knowledge of the role of TAMs in neovascularization is important for future anti-angiogenic therapies. The phenotypes and functions of TAMs are heterogeneous and more complex than a classification into M1 and M2 inflammation response types would suggest. In this review, we provide an update on the current knowledge of the ontogeny of TAMs, focusing on diffuse gliomas. The role of TAMs in the regulation of the different processes in tumor angiogenesis is highlighted and the most recently discovered mechanisms by which TAMs mediate resistance against current antivascular therapies are mentioned. Novel compounds tested in clinical trials are discussed and brought in relation to different TAM-related angiogenesis pathways. In addition, potential therapeutic targets used to intervene in TAM-regulated tumor angiogenesis are summarized.
Collapse
Affiliation(s)
- Changbin Zhu
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan M Kros
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline Cheng
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dana Mustafa
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
48
|
Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin II, Leonova KI, Consiglio CR, Gollnick SO, Chernova OB, Gudkov AV. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY) 2018; 9:1867-1884. [PMID: 28768895 PMCID: PMC5611982 DOI: 10.18632/aging.101268] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022]
Abstract
Constitutive p16Ink4a expression, along with senescence-associated β-galactosidase (SAβG), are commonly accepted biomarkers of senescent cells (SCs). Recent reports attributed improvement of the healthspan of aged mice following p16Ink4a-positive cell killing to the eradication of accumulated SCs. However, detection of p16Ink4a/SAβG-positive macrophages in the adipose tissue of old mice and in the peritoneal cavity of young animals following injection of alginate-encapsulated SCs has raised concerns about the exclusivity of these markers for SCs. Here we report that expression of p16Ink4a and SAβG in macrophages is acquired as part of a physiological response to immune stimuli rather than through senescence, consistent with reports that p16Ink4a plays a role in macrophage polarization and response. Unlike SCs, p16Ink4a/SAβG-positive macrophages can be induced in p53-null mice. Macrophages, but not mesenchymal SCs, lose both markers in response to M1- [LPS, IFN-α, Poly(I:C)] and increase their expression in response to M2-inducing stimuli (IL-4, IL-13). Moreover, interferon-inducing agent Poly(I:C) dramatically reduced p16Ink4a expression in vivo in our alginate bead model and in the adipose tissue of aged mice. These observations suggest that the antiaging effects following eradication of p16Ink4a-positive cells may not be solely attributed to SCs but also to non-senescent p16Ink4a/SAβG-positive macrophages.
Collapse
Affiliation(s)
| | - Vitaly Balan
- Everon Biosciences, Inc., Buffalo, NY 14203, USA
| | | | | | | | | | | | | | - Karina Balan
- Everon Biosciences, Inc., Buffalo, NY 14203, USA
| | - Ilya I Gitlin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Katerina I Leonova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Camila R Consiglio
- Department of Tumor Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sandra O Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Andrei V Gudkov
- Everon Biosciences, Inc., Buffalo, NY 14203, USA.,Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
49
|
Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tõnisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B. The target landscape of clinical kinase drugs. Science 2018; 358:358/6367/eaan4368. [PMID: 29191878 DOI: 10.1126/science.aan4368] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Collapse
Affiliation(s)
- Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Harald Polzer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany
| | | | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Svenja Petzoldt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chen Meng
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Reiter
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Huichao Qiao
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Dominic Helm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Heiner Koch
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Schoof
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | - Elena Casale
- Oncology, Nerviano Medical Sciences Srl, Milan, Italy
| | | | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | | | | | - Anne-Kathrin Garz
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Bjoern-Oliver Gohlke
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Structural Bioinformatics Group, Charité-Universitätsmedizin, Berlin, Germany
| | - Daniel Paul Zolg
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Gian Kayser
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tonu Vooder
- Center of Thoracic Surgery, Krefeld, Germany.,Estonian Genome Center, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Robert Preissner
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Structural Bioinformatics Group, Charité-Universitätsmedizin, Berlin, Germany
| | - Hannes Hahne
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Neeme Tõnisson
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Karl Kramer
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Katharina Götze
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | | | | | | | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philipp A Greif
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Sabine Schneider
- Department of Chemistry, TUM, Garching, Germany.,Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | | | - Juergen Ruland
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institut für Klinische Chemie und Pathobiochemie, TUM, Munich, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany.,Department of Pediatrics, Dr von Hauner Children's Hospital, LMU, Munich, Germany
| | - Karsten Spiekermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center For Integrated Protein Science Munich (CIPSM), Munich, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany
| |
Collapse
|
50
|
Knoll BM, Seiter K. Infections in patients on BCR-ABL tyrosine kinase inhibitor therapy: cases and review of the literature. Infection 2018; 46:409-418. [DOI: 10.1007/s15010-017-1105-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/03/2017] [Indexed: 01/23/2023]
|