1
|
Tagami U, Shimba N, Nakamura M, Yokoyama KI, Suzuki EI, Hirokawa T. Substrate specificity of microbial transglutaminase as revealed by three-dimensional docking simulation and mutagenesis. Protein Eng Des Sel 2009; 22:747-52. [PMID: 19850674 PMCID: PMC2777024 DOI: 10.1093/protein/gzp061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transglutaminases (TGases) are used in fields such as food and pharmaceuticals. Unlike other TGases, microbial transglutaminase (MTG) activity is Ca2+-independent, broadening its application. Here, a three-dimensional docking model of MTG binding to a peptide substrate, CBZ-Gln-Gly, was simulated. The data reveal CBZ-Gln-Gly to be stretched along the MTG active site cleft with hydrophobic and/or aromatic residues interacting directly with the substrate. Moreover, an oxyanion binding site for TGase activity may be constructed from the amide groups of Cys64 and/or Val65. Alanine mutagenesis verified the simulated binding region and indicated that large molecules can be widely recognized on the MTG cleft.
Collapse
Affiliation(s)
- Uno Tagami
- Institute of Life Sciences, Ajinomoto Co., Inc, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi 210-8681, Japan
| | | | | | | | | | | |
Collapse
|
2
|
Lentini A, Provenzano B, Caraglia M, Shevchenko A, Abbruzzese A, Beninati S. Impairment of the metastatic activity of melanoma cells by transglutaminase-catalyzed incorporation of polyamines into laminin and Matrigel. Amino Acids 2007; 34:251-6. [PMID: 17356804 DOI: 10.1007/s00726-007-0505-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Previously published evidences highlighted the effect of transglutaminase (TG, EC 2.3.2.13) activation on the reduction of the in vitro adhesive and invasive behaviour of murine B16-F10 melanoma cells, as well as in vivo. Here, we investigated the influence of spermidine (SPD) incorporation by TG into basement membrane components i.e. laminin (LN) or Matrigel (MG), on the adhesion and invasion of B16-F10 melanoma cells by these TG/SPD-modified substrates. The adhesion assays showed that cell binding to the TG/SPD-modified LN was reduced by 30%, when compared to untreated LN, whereas the reduction obtained using TG/SPD-modified MG was 35%. Similarly, tumor cell invasion by the Boyden chamber system through TG/SPD modified LN or MG was respectively reduced by 45%, and by 69%. Evaluation of matrix metalloproteinase (gelatinases MMP-2 and MMP-9) activities by gel-zymography showed that MMP-2 activity was unaffected, while MMP-9 activity was reduced by about 32% using TG/SPD-modified substrate. These results strongly suggest that the observed antiinvasive effect of TG activation in the host may be ascribed to the covalent incorporation of polyamines, which led to the post-translational modification of some components of the cell basement membrane. This modification may interfere with the metastatic property of melanoma cells, affecting the proteolytic activity necessary for their migration and invasion activities.
Collapse
Affiliation(s)
- A Lentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Suzuki EI, Ishikawa K, Mihara Y, Shimba N, Asano Y. Structural-Based Engineering for Transferases to Improve the Industrial Production of 5′-Nucleotides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Wu YW, Lai WFT, Tsai YH. Characterization of purified rat testicular transglutaminase and age-dependent changes of the enzyme activities. Int J Biochem Cell Biol 2005; 37:386-96. [PMID: 15474983 DOI: 10.1016/j.biocel.2004.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/26/2004] [Accepted: 07/13/2004] [Indexed: 11/23/2022]
Abstract
The Ca2+-dependent tissue transglutaminase is widely distributed in various tissues and has been reported to participate in many cellular growth and differentiation processes. In the past decade, tissue transglutaminase is also identified as a G protein, G(alphah), for intercellular signaling. To further characterize testicular transglutaminase, the rat testicular transglutaminase was purified by ammonium sulfate precipitation, DEAE ion-exchange, heparin-agarose, and GTP-agarose affinity chromatographies. This purification protocol resulted in a 8400-fold enrichment of the enzyme with a reproducible 15% yield. The purified enzyme showed as a single band of 78kDa on SDS-polyacrylamide gel. Western blot analysis using anti-liver tissue transglutaminase monoclonal antibody also recognized the enzyme, indicating it is a t-TGase in nature. The Km values of purified testicular transglutaminase for putrescine and N,N-dimethylcasein were determined to be 35 and 17 microM, respectively. Its transglutaminase cross-linking activity was strongly inhibited by EGTA, GTP, polyamines, and cystamine, as well as moderately by ATP and NaCl. The enzyme exhibited a magnesium-dependent GTP-hydrolyzing capacity, but its GTP-binding activity did not require magnesium. Furthermore, the enzyme activity was found to be closely related with the first wave of spermatogenesis. Thus, testicular transglutaminase is speculated to participate in the event of spermatogenesis. In conclusion, the purified testicular transglutaminase displays property of either the tissue-type transglutaminase, or the GTP-binding and hydrolyzing characteristics. The activity of testicular transglutaminase is age-dependent, greatly stimulated during the first wave of spermatogenesis.
Collapse
Affiliation(s)
- Yu-Wei Wu
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | |
Collapse
|
5
|
Shimba N, Shinohara M, Yokoyama KI, Kashiwagi T, Ishikawa K, Ejima D, Suzuki EI. Enhancement of transglutaminase activity by NMR identification of its flexible residues affecting the active site. FEBS Lett 2002; 517:175-9. [PMID: 12062432 DOI: 10.1016/s0014-5793(02)02616-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many food proteins, such as tofu, boiled fish paste, and sausage. By using nuclear magnetic resonance, we have shown that the residues exhibiting relatively high flexibility in MTG are localized in the N-terminal region; however, the N-terminal region influences the microenvironment of the active site. These results suggest that the N-terminal region is not of primary importance for the global fold, but influences the substrate binding. Therefore, in order to increase the transglutaminase activity, the N-terminal residues were chosen as candidates for site-directed replacement and deletion. We obtained several mutants with higher activity, del1-2, del1-3, and S2R. We propose a strategy for enzyme engineering targeted toward flexible regions involved in the enzymatic activity. In addition, we also briefly describe how the number of glutamine residues in a substrate protein can be increased by mixing more than two kinds of TGases with different substrate specificities.
Collapse
Affiliation(s)
- Nobuhisa Shimba
- Central Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Shi Q, Kim SY, Blass JP, Cooper AJL. Expression in Escherichia coli and purification of hexahistidine-tagged human tissue transglutaminase. Protein Expr Purif 2002; 24:366-73. [PMID: 11922752 DOI: 10.1006/prep.2001.1587] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that aberrant transglutaminase activity is associated with a wide variety of diseases. Tissue transglutaminase is the most widely distributed of the six well-characterized transglutaminases in humans. We describe a method for expressing hexahistidine-tagged human tissue transglutaminase in Escherichia coli BL21(DE3) using the pET-30 Ek/LIC expression vector. Purification of the expressed enzyme from suspensions of E. coli cells treated with CelLytic B Bacterial Cell Lysis/Extraction Reagent was accomplished by immobilized metal (Ni2+) affinity column chromatography. The procedure typically yields highly purified and highly active recombinant human tissue transglutaminase in about 1 day (about 0.6 mg/from a 1-liter culture).
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
7
|
Shimba N, Yokoyama KI, Suzuki EI. NMR-based screening method for transglutaminases: rapid analysis of their substrate specificities and reaction rates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:1330-1334. [PMID: 11878998 DOI: 10.1021/jf010995k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many food proteins such as tofu, boiled fish paste, and sausage. Other transglutaminases (TGases) are expected to be used in the same way, and also to extend the scope of industrial applications to materials, drugs, and so on. The TGases have great diversity, not only in amino acid sequence and size, but also in their substrate specificities and catalytic activities, and therefore, it is quite difficult to estimate their reactivity. We have developed an NMR-based method using the enzymatic labeling technique (ELT) for simultaneous analysis of the substrate specificities and reaction rates of TGases. It is quite useful for comparing the existing TGases and for screening new TGases or TGases variants. This method has shown that MTG is superior for industrial use because of its lower substrate specificity compared with those of guinea pig liver transglutaminase (GTG) and red sea bream liver transglutaminase (FTG). We have also found that an MTG variant lacking an N-terminal aspartic acid residue has higher activity than that of the native enzyme.
Collapse
Affiliation(s)
- Nobuhisa Shimba
- Central Research Laboratories, Ajinomoto Company, Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi 210-8681, Japan
| | | | | |
Collapse
|
8
|
Mitkevich OV, Shainoff JR, DiBello PM, Yee VC, Teller DC, Smejkal GB, Bishop PD, Kolotushkina IS, Fickenscher K, Samokhin GP. Coagulation factor XIIIa undergoes a conformational change evoked by glutamine substrate. Studies on kinetics of inhibition and binding of XIIIA by a cross-reacting antifibrinogen antibody. J Biol Chem 1998; 273:14387-91. [PMID: 9603949 DOI: 10.1074/jbc.273.23.14387] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coagulation factor XIIIa, plasma transglutaminase (endo-gamma-glutamine:epsilon-lysine transferase EC 2.3.2.13) catalyzes isopeptide bond formation between glutamine and lysine residues and rapidly cross-links fibrin clots. A monoclonal antibody (5A2) directed to a fibrinogen Aalpha-chain segment 529-539 was previously observed from analysis of end-stage plasma clots to block fibrin alpha-chain cross-linking. This prompted the study of its effect on nonfibrinogen substrates, with the prospect that 5A2 was inhibiting XIIIa directly. It inhibited XIIIa-catalyzed incorporation of the amine donor substrate dansylcadaverine into the glutamine acceptor dimethylcasein in an uncompetitive manner with respect to dimethylcasein utilization and competitively with respect to dansylcadaverine. Uncompetitive inhibition was also observed with the synthetic glutamine substrate, LGPGQSKVIG. Theoretically, uncompetitive inhibition arises from preferential interaction of the inhibitor with the enzyme-substrate complex but is also found to inhibit gamma-chain cross-linking. The conjunction of the uncompetitive and competitive modes of inhibition indicates in theory that this bireactant system involves an ordered reaction in which docking of the glutamine substrate precedes the amine exchange. The presence of substrate enhanced binding of 5A2 to XIIIa, an interaction deemed to occur through a C-terminal segment of the XIIIa A-chain (643-658, GSDMTVTVQFTNPLKE), 55% of which comprises sequences occurring in the fibrinogen epitope Aalpha-(529-540) (GSESGIFTNTKE). Removal of the C-terminal domain from XIIIa abolishes the inhibitory effect of 5A2 on activity. Crystallographic studies on recombinant XIIIa place the segment 643-658 in the region of the groove through which glutamine substrates access the active site and have predicted that for catalysis, a conformational change may accompany glutamine-substrate binding. The uncompetitive inhibition and the substrate-dependent binding of 5A2 provide evidence for the conformational change.
Collapse
Affiliation(s)
- O V Mitkevich
- Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wilhelm B, Meinhardt A, Seitz J. Transglutaminases: purification and activity assays. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:163-77. [PMID: 8906472 DOI: 10.1016/0378-4347(95)00562-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transglutaminases (TGases) are a widely distributed family of proteins found in many tissues and body fluids of vertebrates. To date the following types have been distinguished: secretory, tissue, epidermal, keratinocyte, and hemocyte TGase as well as factor XIIIa and erythrocyte hand 4.2 TGases are difficult to isolate, as they tend to form irreversible aggregates under native conditions. In this review, the isolation procedures for the different types of TGases are summarized. The most common chromatographic separation methods used for TGase purification are size-exclusion and ion-exchange chromatography. Additionally, other chromatographic methods (hydrophobic-interaction, affinity, adsorption chromatography) and electrophoretic techniques [preparative isoelectric focusing, sodium dodecyl sulphate polyacrylamide gel electrophoresis and zone electrophoresis] are described. Based on the enzymatic function of TGases (cross-linking of a primary amine and peptide bound glutamine), several established activity assays are described.
Collapse
Affiliation(s)
- B Wilhelm
- Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | | | | |
Collapse
|
10
|
Piacentini M, Autuori F, Dini L, Farrace MG, Ghibelli L, Piredda L, Fesus L. "Tissue" transglutaminase is specifically expressed in neonatal rat liver cells undergoing apoptosis upon epidermal growth factor-stimulation. Cell Tissue Res 1991; 263:227-35. [PMID: 1672508 DOI: 10.1007/bf00318764] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently reported that activation of "tissue" transglutaminase (EC 2.3.2.13; tTG) in liver cells undergoing apoptosis determines extensive cross-linking of cellular proteins resulting in the formation of SDS-insoluble shells in the so-called "apoptotic bodies". In attempt to obtain further insight into the role played by tTG in apoptosis of liver cells, we investigated its expression in primary cultures of neonatal rat liver cells stimulated with epidermal growth factor (EGF). EGF-treatment of neonatal rat liver cells induces first hyperplasia of hepatocytes, followed by involution characterized by a high incidence of apoptosis. The proliferative phase of hepatocytes is paralleled by a 10-fold increase in tTG mRNA level, which is followed, during the phase of involution, by sequential increases in enzyme activity and levels of SDS-insoluble apoptotic bodies. tTG immunostaining at both the light- and electron-microscopic levels shows that the most intensive reaction is present in globular structures showing the typical morphological appearance of mature apoptotic bodies. In early apoptotic stages, tTG protein is localized in the perinuclear region of the cell. Intense immunostaining is also found in the apoptotic bodies present inside phagosomes within the cytoplasm of neighboring cells. This evidence confirms and extends our previous findings, indicating that tTG induction and activation specifically takes place in cells undergoing apoptosis, suggesting a key role for the enzyme in the apoptotic program.
Collapse
Affiliation(s)
- M Piacentini
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Ando Y, Imamura S, Owada MK, Kannagi R. Calcium-induced intracellular cross-linking of lipocortin I by tissue transglutaminase in A431 cells. Augmentation by membrane phospholipids. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35288-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|