1
|
Lamanna WC, Lawrence R, Sarrazin S, Esko JD. Secondary storage of dermatan sulfate in Sanfilippo disease. J Biol Chem 2011; 286:6955-62. [PMID: 21193389 PMCID: PMC3044951 DOI: 10.1074/jbc.m110.192062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/19/2010] [Indexed: 01/23/2023] Open
Abstract
Mucopolysaccharidoses are a group of genetically inherited disorders that result from the defective activity of lysosomal enzymes involved in glycosaminoglycan catabolism, causing their intralysosomal accumulation. Sanfilippo disease describes a subset of mucopolysaccharidoses resulting from defects in heparan sulfate catabolism. Sanfilippo disorders cause severe neuropathology in affected children. The reason for such extensive central nervous system dysfunction is unresolved, but it may be associated with the secondary accumulation of metabolites such as gangliosides. In this article, we describe the accumulation of dermatan sulfate as a novel secondary metabolite in Sanfilippo. Based on chondroitinase ABC digestion, chondroitin/dermatan sulfate levels in fibroblasts from Sanfilippo patients were elevated 2-5-fold above wild-type dermal fibroblasts. Lysosomal turnover of chondroitin/dermatan sulfate in these cell lines was significantly impaired but could be normalized by reducing heparan sulfate storage using enzyme replacement therapy. Examination of chondroitin/dermatan sulfate catabolic enzymes showed that heparan sulfate and heparin can inhibit iduronate 2-sulfatase. Analysis of the chondroitin/dermatan sulfate fraction by chondroitinase ACII digestion showed dermatan sulfate storage, consistent with inhibition of iduronate 2-sulfatase. The discovery of a novel storage metabolite in Sanfilippo patients may have important implications for diagnosis and understanding disease pathology.
Collapse
Affiliation(s)
- William C. Lamanna
- From the Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687
| | - Roger Lawrence
- From the Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687
| | - Stéphane Sarrazin
- From the Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687
| | - Jeffrey D. Esko
- From the Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687
| |
Collapse
|
2
|
Abstract
The lysosomal storage diseases are a family of inherited disorders usually caused by a deficiency in a single lysosomal enzyme, and are characterised by progressive intralysosomal storage in multiple cell types. Although individual syndromes can be uncommon, as a whole this family of diseases affects approximately 1 in 3,000 live births. The severity of disease can be variable, ranging from minimal evidence of lysosomal storage to widespread multi-system involvement and early mortality. Although the enzymatic defects responsible for most of these diseases are known, treatment options for the majority of these disorders are limited to supportive care and genetic counselling. Knowledge of the genetic defects underlying these diseases, coupled with advances in the fields of gene transfer and expression, provide an opportunity to utilise gene therapy strategies in order to treat these disorders. Here we provide a description of the biochemical and molecular basis of gene therapy for lysosomal storage diseases, as well as an overview of some of the in vitro and in vivo studies that have been performed.
Collapse
Affiliation(s)
- T M Daly
- Department of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
3
|
Bosch A, Heard JM. Gene therapy for mucopolysaccharidosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:271-96. [PMID: 12968541 DOI: 10.1016/s0074-7742(03)01012-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Assumpció Bosch
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Centre de Biotecnologia Animal i Teràpia Gènica (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
4
|
Fu H, Samulski RJ, McCown TJ, Picornell YJ, Fletcher D, Muenzer J. Neurological correction of lysosomal storage in a mucopolysaccharidosis IIIB mouse model by adeno-associated virus-mediated gene delivery. Mol Ther 2002; 5:42-9. [PMID: 11786044 DOI: 10.1006/mthe.2001.0514] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mucopolysaccharidosis (MPS) IIIB is characterized by mild somatic features and severe neurological diseases leading to premature death. No definite treatment is available for MPS IIIB patients. We constructed two recombinant adeno-associated virus (rAAV) vectors containing the human alpha-N-acetylglucosaminidase (NaGlu) cDNA driven by either a CMV or a neuron-specific enolase (NSE) promoter. In vitro, these rAAV vectors mediated efficient expression of recombinant NaGlu in human MPS IIIB fibroblasts and mouse MPS IIIB somatic and brain primary cell cultures. The secreted rNaGlu was taken up by both human and mouse MPS IIIB cells in culture and degraded the accumulated glycosaminoglycans (GAG). A direct microinjection (10(7) viral particles, 1 microl/10 minutes per injection) of vectors containing the NSE promoter resulted in long-term (6 months, the duration of the experiments) expression of rNaGlu in multiple brain structures/areas of adult MPS IIIB mice. Consistent with previous studies, the main target cells were neurons. However, while vector typically transduced an area of 400-500 microm surrounding the infusion sites, the correction of GAG storage involved neurons of a much broader area (1.5 mm) in a 6-month duration of experiments. These results provide a basis for the development of a treatment for neurological disease in MPS IIIB patients using AAV vectors.
Collapse
Affiliation(s)
- Haiyan Fu
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
5
|
Estruch EJ, Hart SL, Kinnon C, Winchester BG. Non-viral, integrin-mediated gene transfer into fibroblasts from patients with lysosomal storage diseases. J Gene Med 2001; 3:488-97. [PMID: 11601762 DOI: 10.1002/jgm.214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Non-viral vectors consisting of Lipofectin/integrin-targeting peptide/DNA (LID) complexes have great potential for gene therapy, as they are safe, simple, and able to package large DNA molecules. In this study, these vectors were evaluated in vitro for the therapy of lysosomal storage disorders. METHODS Non-viral vectors were designed to deliver therapeutic genes by integrin-mediated uptake into fibroblasts from patients with the lysosomal storage disorders fucosidosis and Fabry disease, which result from deficiencies of alpha-L-fucosidase and alpha-galactosidase A, respectively. The vectors consisted of a complex (LID) of Lipofectin and a peptide containing an integrin-targeting domain and a poly-lysine domain to which was bound plasmid DNA, containing alpha-L-fucosidase (LID-alpha-Fuc) or alpha-galactosidase A (LID-alpha-Gal). RESULTS Patients' fibroblasts transfected with LID-alpha-Fuc and LID-alpha-Gal produced the corresponding enzyme at levels which were 10-40% of the total activity in cultures of normal fibroblasts. However, 95-98% of this activity was secreted. Transfection of endothelial cells, the main target cells in Fabry disease, with an LID-alpha-Gal produced a total alpha-galactosidase activity 65% higher than that in untransfected cultures after 6 days, 67% of the activity being secreted. Although transfection of fibroblasts with LID complexes also caused small changes in the distribution of endogenous lysosomal enzymes, it did not appear to affect the viability of the cells. CONCLUSIONS The integrin-mediated transfer of genes encoding lysosomal enzymes into cells results in the secretion of large amounts of normal enzyme that could be taken up by other cells. This could be a useful strategy for enzyme-replacement therapy.
Collapse
Affiliation(s)
- E J Estruch
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health at Great Ormond Street Hospital, University College London, England, UK.
| | | | | | | |
Collapse
|
6
|
Sena-Esteves M, Camp SM, Alroy J, Breakefield XO, Kaye EM. Correction of acid beta-galactosidase deficiency in GM1 gangliosidosis human fibroblasts by retrovirus vector-mediated gene transfer: higher efficiency of release and cross-correction by the murine enzyme. Hum Gene Ther 2000; 11:715-27. [PMID: 10757351 DOI: 10.1089/10430340050015617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the lysosomal acid beta-galactosidase (EC 3.2.1.23) underlie two different disorders: GM1 gangliosidosis, which involves the nervous system and visceral organs to varying extents, and Morquio's syndrome type B (Morquio B disease), which is a skeletal-connective tissue disease without any CNS symptoms. This article shows that transduction of human GM1 gangliosidosis fibroblasts with retrovirus vectors encoding the human acid beta-galactosidase cDNA leads to complete correction of the enzymatic deficiency. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. Cross-correction experiments using retrovirus-modified cells as enzyme donors showed, however, that the human enzyme is transferred at low efficiencies. Experiments using a different retrovirus vector carrying the human cDNA confirmed this observation. Transduction of human GM1 fibroblasts and mouse NIH 3T3 cells with a retrovirus vector encoding the mouse beta-galactosidase cDNA resulted in high levels of enzymatic activity. Furthermore, the mouse enzyme was found to be transferred to human cells at high efficiency. Enzyme activity measurements in medium conditioned by genetically modified cells suggest that the human beta-galactosidase enzyme is less efficiently released to the extracellular space than its mouse counterpart. This study suggests that lysosomal enzymes, contrary to the generalized perception in the field of gene therapy, may differ significantly in their properties and provides insights for design of future gene therapy interventions in acid beta-galactosidase deficiency.
Collapse
Affiliation(s)
- M Sena-Esteves
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02129, USA
| | | | | | | | | |
Collapse
|
7
|
Menotti-Raymond M, David VA, Lyons LA, Schäffer AA, Tomlin JF, Hutton MK, O'Brien SJ. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 1999; 57:9-23. [PMID: 10191079 DOI: 10.1006/geno.1999.5743] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Of the nonprimate mammalian species with developing comparative gene maps, the feline gene map (Felis catus, Order Carnivora, 2N = 38) displays the highest level of syntenic conservation with humans, with as few as 10 translocation exchanges discriminating the human and feline genome organization. To extend this model, a genetic linkage map of microsatellite loci in the feline genome has been constructed including 246 autosomal and 7 X-linked loci. Two hundred thirty-five dinucleotide (dC. dA)n. (dG. dT)n and 18 tetranucleotide repeat loci were identified and genotyped in a two-family, 108-member multigeneration interspecies backcross pedigree between the domestic cat (F. catus) and the Asian leopard cat (Prionailurus bengalensis). Two hundred twenty-nine loci were linked to at least one other marker with a lod score >/=3.0, identifying 34 linkage groups. Representative markers from each linkage group were assigned to specific cat chromosomes by somatic cell hybrid analysis, resulting in chromosomal assignments to 16 of the 19 feline chromosomes. Genome coverage spans approximately 2900 cM, and we estimate a genetic length for the sex-averaged map as 3300 cM. The map has an average intragroup intermarker spacing of 11 cM and provides a valuable resource for mapping phenotypic variation in the species and relating it to gene maps of other mammals, including human.
Collapse
Affiliation(s)
- M Menotti-Raymond
- Laboratory of Genomic Diversity, NCI-FCRDC, Frederick, Maryland, 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fillat C, Simonaro CM, Yeyati PL, Abkowitz JL, Haskins ME, Schuchman EH. Arylsulfatase B activities and glycosaminoglycan levels in retrovirally transduced mucopolysaccharidosis type VI cells. Prospects for gene therapy. J Clin Invest 1996; 98:497-502. [PMID: 8755662 PMCID: PMC507455 DOI: 10.1172/jci118817] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mucopolysacchariodosis type VI (MPS VI) is the lysosomal storage disorder caused by the deficient activity of arylsulfatase B (ASB; N-acetylgalactosamine 4-sulfatase) and the subsequent accumulation of the glycosaminoglycan (GAG), dermatan sulfate. In this study, a retroviral vector containing the full-length human ASB cDNA was constructed and used to transduce skin fibroblasts, chondrocytes, and bone marrow cells from human patients, cats, or rats with MPS VI. The ASB vector expressed high levels of enzymatic activity in each of the cell types tested and, in the case of cat and rat cells, enzymatic expression led to complete normalization of 35SO4 incorporation. In contrast, overexpression of ASB in human MPS VI skin fibroblasts did not lead to metabolic correction. High-level ASB expression was detected for up to eight weeks in transduced MPS VI cat and rat bone marrow cultures, and PCR analysis demonstrated retroviral-mediated gene transfer to approximately 30-50% of the CFU GM-derived colonies. Notably, overexpression of ASB in bone marrow cells led to release of the enzyme into the media and uptake by MPS VI cat and rat skin fibroblasts and/or chondrocytes via the mannose-6-phosphate receptor system, leading to metabolic correction. Thus, these studies provide important rationale for the development of gene therapy for this disorder and lay the frame-work for future in vivo studies in the animal model systems.
Collapse
Affiliation(s)
- C Fillat
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
9
|
Enomaa N, Danos O, Peltonen L, Jalanko A. Correction of deficient enzyme activity in a lysosomal storage disease, aspartylglucosaminuria, by enzyme replacement and retroviral gene transfer. Hum Gene Ther 1995; 6:723-31. [PMID: 7548272 DOI: 10.1089/hum.1995.6.6-723] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The ability of lysosomal enzymes to be secreted and subsequently captured by adjacent cells provides an excellent basis for investigating different therapy strategies in lysosomal storage disorders. Aspartylglucosaminuria (AGU) is caused by deficiency of aspartylglucosaminidase (AGA) leading to interruption of the ordered breakdown of glycoproteins in lysosomes. As a consequence of the disturbed glycoprotein catabolism, patients with AGU exhibit severe cell dysfunction especially in the central nervous system (CNS). The uniform phenotype observed in these patients will make effective evaluation of treatment trials feasible in future. Here we have used fibroblasts and lymphoblasts from AGU patients and murine neural cell lines as targets to evaluate in vitro the feasibility of enzyme replacement and gene therapy in the treatment of this disorder. Complete correction of the enzyme deficiency was obtained both with recombinant AGA enzyme purified from CHO-K1 cells and with retrovirus-mediated transfer of the AGA gene. Furthermore, we were able to demonstrate enzyme correction by cell-to-cell interaction of transduced and nontransduced cells.
Collapse
Affiliation(s)
- N Enomaa
- Department of Human Molecular Genetics, National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
10
|
Metabolic correction and cross-correction of mucopolysaccharidosis type II (Hunter syndrome) by retroviral-mediated gene transfer and expression of human iduronate-2-sulfatase. Proc Natl Acad Sci U S A 1993. [PMID: 8265633 DOI: 10.1073/pnas.90.24.11830.pmid:8265633;pmcid:pmc48078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
To explore the possibility of using gene transfer to provide iduronate-2-sulfatase (IDS; EC 3.1.6.13) enzyme activity for treatment of Hunter syndrome, an amphotropic retroviral vector, L2SN, containing the human IDS coding sequence was constructed and studied for gene expression in vitro. Lymphoblastoid cell lines (LCLs) from patients with Hunter syndrome were transduced with L2SN and expressed high levels of IDS enzyme activity, 10- to 70-fold higher than normal human peripheral blood leukocytes or LCLs. Such L2SN-transduced LCLs failed to show accumulation of 35SO4 into glycosaminoglycan (35SO4-GAG), indicating that recombinant IDS enzyme participated in GAG metabolism. Coculture of L2SN-transduced LCLs with fibroblasts from patients with Hunter syndrome reduced the accumulation of 35SO4-GAG. These results demonstrated retroviral-mediated IDS gene transfer into lymphoid cells and the ability of such cells to provide recombinant enzyme for intercellular metabolic cross-correction.
Collapse
|
11
|
Braun SE, Aronovich EL, Anderson RA, Crotty PL, McIvor RS, Whitley CB. Metabolic correction and cross-correction of mucopolysaccharidosis type II (Hunter syndrome) by retroviral-mediated gene transfer and expression of human iduronate-2-sulfatase. Proc Natl Acad Sci U S A 1993; 90:11830-4. [PMID: 8265633 PMCID: PMC48078 DOI: 10.1073/pnas.90.24.11830] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To explore the possibility of using gene transfer to provide iduronate-2-sulfatase (IDS; EC 3.1.6.13) enzyme activity for treatment of Hunter syndrome, an amphotropic retroviral vector, L2SN, containing the human IDS coding sequence was constructed and studied for gene expression in vitro. Lymphoblastoid cell lines (LCLs) from patients with Hunter syndrome were transduced with L2SN and expressed high levels of IDS enzyme activity, 10- to 70-fold higher than normal human peripheral blood leukocytes or LCLs. Such L2SN-transduced LCLs failed to show accumulation of 35SO4 into glycosaminoglycan (35SO4-GAG), indicating that recombinant IDS enzyme participated in GAG metabolism. Coculture of L2SN-transduced LCLs with fibroblasts from patients with Hunter syndrome reduced the accumulation of 35SO4-GAG. These results demonstrated retroviral-mediated IDS gene transfer into lymphoid cells and the ability of such cells to provide recombinant enzyme for intercellular metabolic cross-correction.
Collapse
Affiliation(s)
- S E Braun
- Department of Genetics and Cell Biology, University of Minnesota, Minneapolis 55455
| | | | | | | | | | | |
Collapse
|
12
|
Morgan JR, Tompkins RG, Yarmush ML. Advances in recombinant retroviruses for gene delivery. Adv Drug Deliv Rev 1993. [DOI: 10.1016/0169-409x(93)90056-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Anson DS, Muller V, Bielicki J, Harper GS, Hopwood JJ. Overexpression of N-acetylgalactosamine-4-sulphatase induces a multiple sulphatase deficiency in mucopolysaccharidosis-type-VI fibroblasts. Biochem J 1993; 294 ( Pt 3):657-62. [PMID: 8379921 PMCID: PMC1134512 DOI: 10.1042/bj2940657] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High-titre stocks of an amphotropic retrovirus, constructed so as to express a full-length cDNA encoding the human lysosomal enzyme N-acetylgalactosamine-4-sulphatase (4-sulphatase) from the cytomegalovirus immediate early promoter, were used to infect skin fibroblasts from a clinically severe mucopolysaccharidosis type VI (MPS VI) patient. The infected MPS VI cells showed correction of the enzymic defect with the enzyme being expressed at high levels and in the correct subcellular compartment. Surprisingly this did not result in correction of glycosaminoglycan turnover as measured by accumulation of 35S in metabolically labelled cells. We demonstrate that this is apparently caused by an induced reduction of the activities of other lysosomal sulphatases, presumably due to competition for a sulphatase-specific processing mechanism by the over-expressed 4-sulphatase. The level of steroid sulphatase, which is a microsomal sulphatase, was also reduced. Infection of skin fibroblasts from a second, clinically mildly affected, MPS VI patient with the same virus also resulted in no significant change in the level of glycosaminoglycan storage. However, in this case the cause of the observed phenomenon was less clear. These results are of obvious practical importance when considering gene therapy for a sulphatase deficiency such as MPS VI and also provide possible new avenues for exploration of the processes involved in sulphatase synthesis and genetically determined multiple sulphatase deficiency.
Collapse
Affiliation(s)
- D S Anson
- Department of Chemical Pathology, Adelaide Children's Hospital, South Australia
| | | | | | | | | |
Collapse
|
14
|
Rommerskirch W, von Figura K. Multiple sulfatase deficiency: catalytically inactive sulfatases are expressed from retrovirally introduced sulfatase cDNAs. Proc Natl Acad Sci U S A 1992; 89:2561-5. [PMID: 1348358 PMCID: PMC48701 DOI: 10.1073/pnas.89.7.2561] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is an inherited lysosomal storage disease characterized by the deficiency of at least seven sulfatases. The basic defect in MSD is thought to be in a post-translational modification common to all sulfatases. In accordance with this concept, RNAs of normal size and amount were detected in MSD fibroblasts for three sulfatases tested. cDNAs encoding arylsulfatase A, arylsulfatase B, or steroid sulfatase were introduced into MSD fibroblasts and fibroblasts with a single sulfatase deficiency by retroviral gene transfer. Infected fibroblasts overexpressed the respective sulfatase polypeptides. While in single-sulfatase-deficiency fibroblasts a concomitant increase of sulfatase activities was observed, MSD fibroblasts expressed sulfatase polypeptides with a severely diminished catalytic activity. From these results we conclude that the mutation in MSD severely decreases the capacity of a co- or post-translational process that renders sulfatases enzymatically active or prevents their premature inactivation.
Collapse
Affiliation(s)
- W Rommerskirch
- Georg-August-Universität, Abteilung Biochemie II, Göttingen, Federal Republic of Germany
| | | |
Collapse
|
15
|
Rommerskirch W, Fluharty AL, Peters C, von Figura K, Gieselmann V. Restoration of arylsulphatase A activity in human-metachromatic-leucodystrophy fibroblasts via retroviral-vector-mediated gene transfer. Biochem J 1991; 280 ( Pt 2):459-61. [PMID: 1684103 PMCID: PMC1130570 DOI: 10.1042/bj2800459] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease caused by the deficiency of arylsulphatase A (ASA). A human ASA cDNA was subcloned into the retroviral vector pXT1. Replication-defective retrovirus was generated by transfection of the vector into the amphotropic packaging cell line PA317. Human fibroblasts from a patient suffering from metachromatic leucodystrophy was infected with the recombinant retrovirus. Infected fibroblasts expressed ten times more ASA compared with control fibroblasts from a normal individual. The ASA encoded by the integrated provirus was shown to be correctly transported into the lysosomes and to normalize the impaired degradation of cerebroside sulphate.
Collapse
Affiliation(s)
- W Rommerskirch
- Universität Göttingen, Abteilung Biochemie II, Federal Republic of Germany
| | | | | | | | | |
Collapse
|