1
|
Gubernator B, Króliczewski J, Kallas T, Szczepaniak A. Iron–sulfur cluster reconstitution of spinach chloroplast Rieske protein requires a partially prefolded apoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:735-42. [PMID: 16458619 DOI: 10.1016/j.bbapap.2005.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
The Rieske 2Fe-2S protein is a central component of the photosynthetic electron transport cytochrome b6f complex in chloroplast and cyanobacterial thylakoid membranes. We have constructed plasmids for expression in Escherichia coli of full-length and truncated Spinacia oleracea Rieske (PetC) proteins fused to the MalE, maltose binding protein. The expressed Rieske fusion proteins were found predominantly in soluble form in the E. coli cytoplasm. These proteins could be readily purified for further experimentation. In vitro reconstitution of the characteristic, "Rieske-type" 2Fe-2S cluster into these fused proteins was accomplished by a chemical method employing reduced iron and sulfide. Cluster incorporation was monitored by electron paramagnetic resonance and optical circular dichroism (CD) spectroscopy. CD spectral analysis in the ultraviolet region suggests that the spinach Rieske apoprotein must be in a partially folded conformation to incorporate an appropriate iron-sulfur cluster. These data further suggest that upon cluster integration, further folding occurs, allowing the Rieske protein to attain a final, native structure. The data presented here are the first to demonstrate successful chemical reconstitution of the 2Fe-2S cluster into a Rieske apoprotein from higher plant chloroplasts.
Collapse
Affiliation(s)
- Beata Gubernator
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | | | | | | |
Collapse
|
2
|
Nomata J, Swem LR, Bauer CE, Fujita Y. Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:229-37. [PMID: 15953479 DOI: 10.1016/j.bbabio.2005.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/12/2005] [Accepted: 02/15/2005] [Indexed: 11/21/2022]
Abstract
Dark-operative protochlorophyllide oxidoreductase (DPOR) plays a crucial role in light-independent (bacterio)chlorophyll biosynthesis in most photosynthetic organisms. However, the biochemical properties of DPOR are still largely undefined. Here, we constructed an overexpression system of two separable components of DPOR, L-protein (BchL) and NB-protein (BchN-BchB), in the broad-host-range vector pJRD215 in Rhodobacter capsulatus. We established a stable DPOR assay system by mixing crude extracts from the two transconjugants under anaerobic conditions. Using this assay system, we demonstrated some basic properties of DPOR. The Km value for protochlorophyllide was 10.6 muM. Ferredoxin functioned as an electron donor to DPOR. Elution profiles in gel filtration chromatography indicated that L-protein and NB-protein are a homodimer [(BchL)(2)] and a heterotetramer [(BchN)(2)(BchB)(2)], respectively. These results provide a framework for the characterization of these components in detail, and further support a nitrogenase model of DPOR.
Collapse
Affiliation(s)
- Jiro Nomata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
3
|
Gubernator B, Seidler A, Rögner M, Szczepaniak A. Overexpression and reconstitution of a Rieske iron-sulfur protein from the higher plant. Protein Expr Purif 2003; 29:8-14. [PMID: 12729720 DOI: 10.1016/s1046-5928(03)00016-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iron-sulfur protein subunit, known as the Rieske protein, is one of the central components of the cytochrome b(6)f complex residing in chloroplast and cyanobacterial thylakoid membranes. We have constructed plasmids for overexpression in Escherichia coli of full-length and truncated Rieske (PetC) proteins from the Spinacia oleracea fused to MalE. Overexpressed fusion proteins were predominantly found (from 55 to 70%) in cytoplasm in a soluble form. The single affinity chromatography step (amylose resine) was used to purify about 15mg of protein from 1 liter of E. coli culture. The isolated proteins were electrophoretically pure and could be used for further experiments. The NifS-like protein IscS from the cyanobacterium Synechocystis PCC 6803 mediates the incorporation of 2Fe-2S clusters into apoferredoxin and cyanobacterial Rieske apoprotein in vitro. Here, we used the recombinant IscS protein for the enzymatic reconstitution of the iron-sulfur cluster into full-length Rieske fusion and truncated Rieske fused proteins. Characterization by EPR spectroscopy of the reconstituted proteins demonstrated the presence of a 2Fe-2S cluster in both full-length and truncated Rieske fusion proteins.
Collapse
Affiliation(s)
- Beata Gubernator
- Institute of Biochemistry and Molecular Biology, Wrocław University, Tamka 2, 50-137 Wrocław, Poland
| | | | | | | |
Collapse
|
4
|
Richards JD, Davé SH, Chou CH, Mamchak AA, DeFranco AL. Inhibition of the MEK/ERK signaling pathway blocks a subset of B cell responses to antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3855-64. [PMID: 11238629 DOI: 10.4049/jimmunol.166.6.3855] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signal transduction initiated by B cell Ag receptor (BCR) cross-linking plays an important role in the development and activation of B cells. Therefore, considerable effort has gone into determining the biochemical signaling events initiated by the BCR and delineating which events participate in specific biological responses to Ag. We used two inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) 1 and MEK2, PD98059, and U0126, to assess the role the Ras-mitogen-activated protein kinase pathway plays in several BCR-induced responses. PD98059 or U0126 treatment substantially inhibited the BCR-induced activation of the extracellular signal-regulated kinase (ERK) forms of mitogen-activated protein kinase in the immature B cell line WEHI-231, in immature splenic B cells, and in mature splenic B cells. However, MEK-ERK inhibition did not block BCR-induced growth arrest or apoptosis of WEHI-231 cells or apoptosis of immature splenic B cells, indicating that the MEK-ERK pathway is not required for these events. In contrast, PD98059 and U0126 treatment did inhibit the up-regulation of specific BCR-induced proteins, including the transcription factor Egr-1 in WEHI-231 and mature splenic B cells, and the CD44 adhesion molecule and CD69 activation marker in mature splenic B cells. Moreover, both inhibitors suppressed BCR-induced proliferation of mature splenic B cells, in the absence and in the presence of IL-4. Therefore, activation of the MEK-ERK pathway is necessary for a subset of B cell responses to Ag.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Apoptosis/drug effects
- Apoptosis/immunology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- Butadienes/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cell Division/drug effects
- Cell Division/immunology
- Cell Separation
- Cells, Cultured
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- Early Growth Response Protein 1
- Enzyme Activation/drug effects
- Enzyme Activation/immunology
- Enzyme Inhibitors/pharmacology
- Female
- Flavonoids/pharmacology
- Growth Inhibitors/pharmacology
- Hyaluronan Receptors/biosynthesis
- Immediate-Early Proteins
- Lectins, C-Type
- Lymphocyte Activation/drug effects
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- MAP Kinase Kinase Kinases/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinases/physiology
- Nitriles/pharmacology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/physiology
- Spleen/cytology
- Spleen/immunology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/biosynthesis
- Tumor Cells, Cultured
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- J D Richards
- Department of Microbiology and Immunology, G. W. Hooper Foundation, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
5
|
Jung YS, Gao-Sheridan HS, Christiansen J, Dean DR, Burgess BK. Purification and biophysical characterization of a new [2Fe-2S] ferredoxin from Azotobacter vinelandii, a putative [Fe-S] cluster assembly/repair protein. J Biol Chem 1999; 274:32402-10. [PMID: 10542283 DOI: 10.1074/jbc.274.45.32402] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the purification of site-directed mutant variants of Azotobacter vinelandii ferredoxin I (FdI), a pink protein, which was not observed in native FdI preparations, appeared to associate specifically with variants that had mutations in ligands to FdI [Fe-S] clusters. That protein, which we designate FdIV, has now been purified. NH(2)-terminal sequence analysis revealed that the protein is the product of a previously described gene, herein designated fdxD, that is in the A. vinelandii iscSUA operon that encodes proteins involved in iron-sulfur cluster assembly or repair. An apoprotein molecular mass of 12,434.03 +/- 0.21 Da was determined by mass spectrometry consistent with the known gene sequence. The monomeric protein was shown to contain a single [2Fe-2S](2+/+) cluster by UV/visible, CD, and EPR spectroscopies with a reduction potential of -344 mV versus the standard hydrogen electrode. When overexpressed in Escherichia coli, recombinant FdIV holoprotein was successfully assembled. However, the polypeptide of the recombinant protein was modified in some way such that the apoprotein molecular mass increased by 52 Da. Antibodies raised against FdIV and EPR spectroscopy were used to examine the relative levels of FdIV and FdI in various A. vinelandii strains leading to the conclusion that FdIV levels appear to be specifically increased under conditions where another protein, NADPH:ferredoxin reductase is also up-regulated. In that case, the fpr gene is known to be activated in response to oxidative stress. This suggests that the fdxD gene and other genes in the iron-sulfur cluster assembly or repair operon might be similarly up-regulated in response to oxidative stress.
Collapse
Affiliation(s)
- Y S Jung
- Department of Molecular Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
6
|
Johnson MK, Duderstadt RE, Duin EC. Biological and Synthetic [Fe3S4] Clusters. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Menon AL, Hendrix H, Hutchins A, Verhagen MF, Adams MW. The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins. Biochemistry 1998; 37:12838-46. [PMID: 9737861 DOI: 10.1021/bi980979p] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate ferredoxin oxidoreductase (POR) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) catalyzes the final oxidative step in carbohydrate fermentation in which pyruvate is oxidized to acetyl-CoA and CO2, coupled to the reduction of ferredoxin (Fd). POR is composed of two 'catalytic units' of molecular mass approximately 120 kDa. Each unit consists of four subunits, alpha beta gamma delta, with masses of approximately 44, 36, 20, and 12 kDa, respectively, and contains at least two [4Fe-4S] clusters. The precise mechanism of catalysis and the role of the individual subunits are not known. The gene encoding the delta-subunit of Pf POR has been expressed in E. coli, and the protein was purified after reconstitution with iron and sulfide. The reconstituted delta-subunit (recPOR-delta) is monomeric with a mass of 11 879 +/- 1.2 Da as determined by mass spectrometry, in agreement with that predicted from the gene sequence. Purified recPOR-delta contains 8 Fe mol/mol and remained intact when incubated at 85 degreesC for 2 h, as judged by its visible absorption properties. The reduced form of the protein exhibited an EPR spectrum characteristic of two, spin-spin interacting [4Fe-4S]1+ clusters. When compared with the EPR properties of the reduced holoenzyme, the latter was shown to contain a third [4Fe-4S]1+ cluster in addition to the two within the delta-subunit. The reduction potential of the two 4Fe clusters in isolated recPOR-delta (-403 +/- 8 mV at pH 8.0 and 24 degreesC) decreased linearly with temperature (-1.55 mV/ degreesC) up to 82 degreesC. RecPOR-delta replaced Pf Fd as an in vitro electron carrier for two oxidoreductases from Pf, POR and Fd:NADP oxidoreductase, and the POR holoenzyme displayed a higher apparent affinity for its own subunit (apparent Km = 1.0 microM at 80 degreesC) than for Fd (apparent Km = 4.4 microM). The molecular and spectroscopic properties and amino acid sequence of the isolated delta-subunit suggest that it evolved from an 8Fe-type Fd by the addition of approximately 40 residues at the N-terminus, and that this extension enabled it to interact with additional subunits within POR.
Collapse
Affiliation(s)
- A L Menon
- Department of Biochemistry and Molecular Biology, Center for Metalloenzyme Studies, University of Georgia, Athens 30602-7229, USA
| | | | | | | | | |
Collapse
|
8
|
Siddiqui MA, Fujiwara S, Takagi M, Imanaka T. Phylogenetic analysis and effect of heat on conformational change of ferredoxin from hyperthermophilic archaeon Pyrococcus sp. KOD1. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)85674-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Busch JL, Breton JL, Bartlett BM, James R, Hatchikian EC, Thomson AJ. Expression in Escherichia coli and characterization of a reconstituted recombinant 7Fe ferredoxin from Desulfovibrio africanus. Biochem J 1996; 314 ( Pt 1):63-71. [PMID: 8660311 PMCID: PMC1217053 DOI: 10.1042/bj3140063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Desulfovibrio africanus ferredoxin III is a monomeric protein (molecular mass of 6585 Da) that contains one [3Fe-4S]1+/0 and one [4Fe-4S]2+/1+ cluster when isolated aerobically. The amino acid sequence consists of 61 amino acids, including seven cysteine residues that are all involved in co-ordination to the clusters. In order to isolate larger quantities of D. africanus ferredoxin III, we have overexpressed it in Escherichia coli by constructing a synthetic gene based on the amino acid sequence of the native protein. The recombinant ferredoxin was expressed in E. coli as an apoprotein. We have reconstituted the holoprotein by incubating the apoprotein with excess iron and sulphide in the presence of a reducing agent. The reconstituted recombinant ferredoxin appeared to have a lower stability than that of wild-type D. africanus ferredoxin III. We have shown by low-temperature magnetic circular dichroism and EPR spectroscopy that the recombinant ferredoxin contains a [3Fe-4S]1+/0 and a [4Fe-4S]2+/1+ cluster similar to those found in native D. africanus ferredoxin III. These results indicate that the two clusters have been correctly inserted into the recombinant ferredoxin.
Collapse
Affiliation(s)
- J L Busch
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, U.K
| | | | | | | | | | | |
Collapse
|
10
|
Adams MW, Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:101-80. [PMID: 8791625 DOI: 10.1016/s0065-3233(08)60362-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
11
|
Jouanneau Y, Meyer C, Naud I, Klipp W. Characterization of an fdxN mutant of Rhodobacter capsulatus indicates that ferredoxin I serves as electron donor to nitrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:33-42. [PMID: 7495836 DOI: 10.1016/0005-2728(95)00106-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A mutant of Rhodobacter capsulatus, carrying an insertion into the fdxN gene encoding ferredoxin I (FdI), has been studied by biochemical analysis and genetic complementation experiments. When compared to the wild-type strain, the fdxN mutant exhibited altered nitrogen fixing ability and 20-fold lower levels of nitrogenase activity as assayed in vivo. When assayed in vitro with an artificial reductant, nitrogenase activity was only 3- to 4-fold lower than in the wild type. These results suggested that the FdI-deleted mutant had impaired electron transport to nitrogenase. Immunochemical assay of both nitrogenase components showed that the fdxN mutant contained about 4-fold less enzyme than wild-type cells. Results of pulse-chase labeling experiments using [35S]methionine indicated that nitrogenase was significantly less stable in the FdI-deleted mutant. When a copy of fdxN was introduced in the mutant in trans, the resulting strain appeared to be fully complemented with respect to both diazotrophic growth and nitrogenase activity. Depending on whether fdxN expression was driven by a nif promoter or a fructose-inducible promoter, FdI was synthesized either at wild-type level or in 10-fold lower amounts. The strain producing 10-fold less FdI did, however, display normal N2-fixing ability. Analysis of cytosolic proteins by bidimensional electrophoresis revealed that the fdxN mutant produced a 14 kDa polypeptide in amounts about 3-fold greater than wild-type cells. This protein was identified by N-terminal microsequencing as a recently purified [2Fe-2S] ferredoxin, called FdV, which cannot reduce nitrogenase. It is concluded that FdI serves as the main electron donor to nitrogenase in R. capsulatus and that an ancillary electron carrier, distinct of FdV, is responsible for the residual nitrogenase activity observed in the FdI-deleted mutant.
Collapse
Affiliation(s)
- Y Jouanneau
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
12
|
Riedel KU, Jouanneau Y, Masepohl B, Pühler A, Klipp W. A Rhizobium meliloti ferredoxin (FdxN) purified from Escherichia coli donates electrons to Rhodobacter capsulatus nitrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:742-6. [PMID: 7649175 DOI: 10.1111/j.1432-1033.1995.tb20756.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fdxN gene from Rhizobium meliloti encoding a bacterial-type ferredoxin (FdxN) was expressed in Escherichia coli under the control of the lac promoter. The fdxN gene product was purified under anaerobic conditions by ion-exchange chromatography and gel-filtration steps using an antiserum raised against an FdxN-LacZ fusion protein as a detection system. The purified ferredoxin was shown to be identical to the predicted R. meliloti FdxN protein in its amino acid composition and N-terminal amino acid sequence. Chemical determination of the iron content revealed 8.6 +/- 0.6 mol Fe/mol FdxN. The ultraviolet/visible absorption spectrum of the FdxN protein in the oxidized form exhibited maxima at 284 nm and 378 nm, with an A378/A284 ratio of 0.7. EPR spectroscopy revealed a rhombic signal when FdxN was partially reduced, and a broad signal indicative of spin-spin interaction when fully reduced, suggesting the presence of two Fe-S cluster/ferredoxin polypeptide. Our data suggest that FdxN contains two [4Fe-4S] clusters. Purified FdxN was able to mediate electron transport between illuminated chloroplasts and Rhodobacter capsulatus nitrogenase in vitro.
Collapse
Affiliation(s)
- K U Riedel
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | | | |
Collapse
|
13
|
Armengaud J, Gaillard J, Forest E, Jouanneau Y. Characterization of a 2[4Fe-4S] ferredoxin obtained by chemical insertion of the Fe-S clusters into the apoferredoxin II from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:396-404. [PMID: 7635151 DOI: 10.1111/j.1432-1033.1995.tb20712.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Rhodobacter capsulatus ferredoxin II (FdII) belongs to a family of 7Fe ferredoxins containing one [3Fe-4S] cluster and one [4Fe-4S] cluster. This protein, encoded by the fdxA gene, has been overproduced in Escherichia coli as a soluble apoferredoxin. The purified recombinant protein was subjected to reconstitution experiments by chemical incorporation of the Fe-S clusters under anaerobic conditions. A brown protein was obtained, the formation of which was dependent upon the complete unfolding of the polypeptide prior to incorporation of iron and sulfur atoms. The yield of the reconstituted product was higher when the reaction was carried out at slightly basic pH. The reconstituted ferredoxin was purified and shown to be distinct from the native [7Fe-8S] ferredoxin, based on several biochemical and spectroscopic criteria. In the oxidized state, EPR revealed the quasi-absence of [3Fe-4S] cluster. 1H-NMR spectroscopic analyses provided evidence that the protein was reconstituted as a 2[4Fe-4S] ferredoxin. This conclusion was further supported by the determination by electrospray mass spectrometry of the molecular mass of the reconstituted protein, which matched within 2 Da to the mass of the FdII polypeptide incremented of eight atoms each of iron and sulfur. Exposure of the reconstituted protein to air resulted in a fast and irreversible oxidative denaturation of the Fe-S clusters, without formation of [7Fe-8S] form. Unlike the natural 7Fe ferredoxin, the reconstituted ferredoxin appeared incompetent in an electron-transfer assay coupled to nitrogenase activity. The fact that the apoFdII was reconstituted as a highly unstable 8Fe ferredoxin instead of the 7Fe naturally occurring FdII is discussed in relation to the results obtained with other types of ferredoxins.
Collapse
Affiliation(s)
- J Armengaud
- CEA, CNRS URA 1130 alliée à l'INSERM, Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
14
|
Chen B, Menon NK, Dervertarnian L, Moura JJ, Przybyla AE. Cloning, sequencing and overexpression of the Desulfovibrio gigas ferredoxin gene in E. coli. FEBS Lett 1994; 351:401-4. [PMID: 8082803 DOI: 10.1016/0014-5793(94)00891-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have cloned the gene encoding Desulfovibrio gigas ferredoxin using a photodigoxigenin-labelled probe synthesized with the polymerase chain reaction. The DNA sequence of the gene predicts a polypeptide of 58 residues after removal of the initial formyl methionine (polypeptide M(r) = 6,276). The ferredoxin gene was expressed in aerobically grown E. coli behind the lac promoter of pUC18 resulting in a high level of ferredoxin expression which comprises about 10% of the total cell protein. EPR analysis of recombinant ferredoxin revealed the presence of a [3Fe-4S] cluster which is characteristic of native D. gigas ferredoxin II.
Collapse
Affiliation(s)
- B Chen
- Department of Biochemistry, University of Georgia, Athens 30602
| | | | | | | | | |
Collapse
|
15
|
Duport C, Meyer C, Naud I, Jouanneau Y. A new gene expression system based on a fructose-dependent promoter from Rhodobacter capsulatus. Gene 1994; 145:103-8. [PMID: 8045407 DOI: 10.1016/0378-1119(94)90330-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Translational lacZ fusions were constructed to analyse transcription of the fructose operon, encoding the fructose-specific phosphotransferase system of Rhodobacter capsulatus. It was demonstrated that transcription from the fru promoter (fruP) was negligible without fructose, and stimulated more than 100-fold by the presence of the inducer. A multiple cloning site, fruP, and a cassette conferring gentamycin resistance were assembled to form a cloning cartridge which is easily transferable to a broad-host-range vector. The sequence initiating the first gene of the fru operon was altered to introduce a NdeI site, allowing insertion of the 5' end of a gene at the correct distance from the ribosome-binding site. The system has been used to express the Escherichia coli lacZ gene in R. capsulatus. beta Gal activity was shown to be specifically and rapidly induced by fructose, at low concentrations. Vectors for fructose-dependent gene expression also proved to be useful in the complementation analysis of mutants. A fdxN mutant of R. capsulatus, markedly impaired in its ability to fix nitrogen due to the lack of a ferredoxin, could be fully complemented using a plasmid carrying a copy of fdxN behind fruP. Complementation, as well as the synthesis of the ferredoxin, were found to be strictly fructose dependent.
Collapse
Affiliation(s)
- C Duport
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
16
|
Armengaud J, Meyer C, Jouanneau Y. Recombinant expression of the fdxD gene of Rhodobacter capsulatus and characterization of its product, a [2Fe-2S] ferredoxin. Biochem J 1994; 300 ( Pt 2):413-8. [PMID: 8002946 PMCID: PMC1138178 DOI: 10.1042/bj3000413] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A gene called fdxD that could potentially code for a ferredoxin has recently been identified upstream of the nitrogenase structural genes in Rhodobacter capsulatus [Willison, Pierrard and Hübner (1993) Gene 133, 39-46]. In the present study, the fdxD gene product has been overproduced in Escherichia coli in a soluble form. The recombinant protein, pink in colour, was purified to homogeneity, and biochemically characterized as a new ferredoxin. It represents the fifth ferredoxin so far identified in R. capsulatus and was designated FdV. Its N-terminal sequence is identical with that of the native ferredoxin isolated from R. capsulatus. U.v-visible-absorption spectra as well as results of c.d. and e.p.r. spectroscopy demonstrated that the fdxD product contained a [2Fe-2S] cluster correctly assembled and incorporated into the polypeptide. Although similar to plant-type ferredoxins, FdV appeared poorly competent in the photo-reduction of NADP+. On the basis of in vitro assays, FdV cannot serve as an electron donor for nitrogenase. The lack of reactivity of FdV in either of these assays may primarily be due to its relatively high mid-point redox potential (E'o = -220 mV, pH 7.5).
Collapse
Affiliation(s)
- J Armengaud
- Laboratoire de Biochimie Microbienne (CNRS URA 1130, alliée à l'INSERM), Départment de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | |
Collapse
|