1
|
Berezhnov AV, Fedotova EI, Nenov MN, Kokoz YM, Zinchenko VP, Dynnik VV. Destabilization of the cytosolic calcium level and the death of cardiomyocytes in the presence of derivatives of long-chain fatty acids. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
Cimini A, Benedetti E, Cristiano L, Sebastiani P, D'Amico MA, D'Angelo B, Di Loreto S. Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience 2005; 130:325-37. [PMID: 15664689 DOI: 10.1016/j.neuroscience.2004.09.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
Neuronal differentiation is a complex process involving the sequential expression of several factors. The important role of lipid molecules in brain development is well known. Many fatty acid cell signaling activities are mediated by peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors belonging to the steroid, thyroid and retinoid nuclear receptor superfamily. They are activated by fatty acids and their derivatives. Different isotypes of PPARs (alpha, beta/delta and gamma) have distinct physiological functions depending on their different ligand activation profiles and tissue distribution. PPARs have been involved in neural cell differentiation and death as well as in inflammation and neurodegeneration. Although PPARs have been described in neurons by in situ studies, the presence and possible modulation of these receptors during neuronal differentiation has not been explored yet. In this study we analyzed the expression of PPARs and of their heterodimeric partners, RXRs, in embryonic rat cortical neurons during their in vitro maturation. Our results demonstrate the presence of PPARs alpha, beta/delta and gamma and of RXRs beta and gamma. PPARalpha, beta/delta and gamma are differentially modulated during culture time suggesting that they may be involved in neuronal maturation. In particular, we point toward the PPARbeta/delta isotype as a key factor in neuronal differentiation.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Biology, University of L'Aquila, via Vetoio n.10, 67010 Coppito (AQ), Italy.
| | | | | | | | | | | | | |
Collapse
|
3
|
Remizov O, Jakubov R, Düfer M, Krippeit Drews P, Drews G, Waring M, Brabant G, Wienbergen A, Rustenbeck I, Schöfl C. Palmitate-induced Ca2+-signaling in pancreatic beta-cells. Mol Cell Endocrinol 2003; 212:1-9. [PMID: 14654245 DOI: 10.1016/j.mce.2003.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Free fatty acids (FFA) have been proposed to participate in the regulation of insulin release from pancreatic beta-cells (beta-cells). As a rise in cytosolic free Ca2+ ([Ca(2+)]i) is a key event for the stimulation of insulin secretion, the effects of saturated FFA on [Ca2+]i were investigated. Palmitate was used as a reference compound and [Ca2+]i was measured in single fura-2 loaded HIT-T15 and in primary mouse beta-cells. Stimulation of single beta-cells with palmitate (100 microM) caused either repetitive Ca2+ transients or a plateau-like rise in [Ca2+]i. In HIT-T15 and in mouse beta-cells, the number of palmitate-responsive cells, and the amplitude of the palmitate-induced Ca2+-signals were dependent on the extracellular glucose concentration. In Ca2+-free medium palmitate (100 microM) caused only 1 or 2 Ca2+ transients indicating mobilization of Ca2+ from internal stores. Withdrawal of external Ca2+, the addition of voltage-sensitive Ca2+ channel (VSCC) blockers, as well as the K(ATP)-channel opener diazoxide (100 microM) reversibly blocked the palmitate-induced cytosolic Ca2+ responses. This demonstrates that Ca2+ influx through VSCC of the L-type coupled to membrane depolarization through closure of K(ATP)-channels are crucial for a sustained Ca2+-signal in response to palmitate. Methyl palmoxirate (100 microM) and 2-bromopalmitate (100 microM), which both inhibit transport of acyl-CoA into the mitochondria, reversibly blocked the palmitate-induced Ca2+-signals in HIT-T15 as well as in primary mouse beta-cells. By contrast, cerulenin (100 microM), an inhibitor of protein acylation, had no effect on the palmitate-induced changes in [Ca2+]i, which suggests that mitochondrial palmitate metabolism is required for eliciting the Ca2+-signals. Simultaneous measurement of [Ca2+]i and the mitochondrial membrane potential (DeltaPsi) revealed palmitate-induced depolarization of DeltaPsi which demonstrates that palmitate does not enhance mitochondrial ATP production. Therefore mitochondrial signals other than ATP appear to be generated from palmitate metabolism that underly the palmitate-induced Ca2+-signals in pancreatic beta-cells.
Collapse
Affiliation(s)
- Oleg Remizov
- Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cimini A, Bernardo A, Cifone MG, Di Marzio L, Di Loreto S, Cifone G, Di Muzio L. TNFalpha downregulates PPARdelta expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. Glia 2003; 41:3-14. [PMID: 12465041 DOI: 10.1002/glia.10143] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
TNFalpha has been implicated in several demyelinating disorders, including multiple sclerosis (MS) and X-adrenoleukodystrophy (X-ALD). TNFalpha abundance is greatly increased in the areas surrounding damaged regions of the central nervous system of patients with MS and X-ALD, but its role in the observed demyelination remains to be elucidated. A class of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs), has been implicated in several physiological and pathological processes. In particular, PPARdelta has been shown to promote oligodendrocyte (OL) survival and differentiation and PPARgamma has been implicated in inflammation. In the present study, we investigate on the effects of TNFalpha on OLs during differentiation in vitro. The results obtained show that TNFalpha treatment impairs PPARdelta expression with concomitant decrease of lignocerolyl-CoA synthase and very-long-chain fatty acid beta-oxidation as well as plasmalogen biosynthesis. We propose a hypothetical model possibly explaining the perturbation effects of proinflammatory cytokines on myelin synthesis, maturation, and turnover.
Collapse
Affiliation(s)
- Annamaria Cimini
- Department of Basic and Applied Biology, Università di L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
6
|
Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W. Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 1999; 274:35881-8. [PMID: 10585473 DOI: 10.1074/jbc.274.50.35881] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.
Collapse
Affiliation(s)
- S Basu-Modak
- Institut de Biologie Animale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
A study on the kinetic properties of the nonspecific acyl-coenzyme A (CoA) synthetase activity in liver microsomal vesicles from both normal and calcium-deficient Wistar rats was carried out. After a 65-d treatment, the calcium-deficient diet reflected a 75% increase in the synthetase activity with respect to control animals. The apparent Vm was significantly enhanced, while the Km remained unchanged. We also provided experimental evidence about various fatty acids of different carbon length and unsaturation which depressed the biosynthesis of palmitoyl-CoA following different behaviors in control or calcium-deprived liver microsomes. In addition, we studied in detail the inhibition reflected by stearic, alpha-linolenic, or arachidonic acids, in the biosynthesis of palmitoyl-CoA in microsomal suspensions either from control or hypocalcemic rats. In control microsomes, stearic acid produced a pure competitive effect, while the other fatty acids followed a mixed-type inhibition. The competitive effect of stearic acid was not observed in calcium-deprived microsomes. At the same time, a mixed-type inhibition produced by either alpha-linolenic or arachidonic acid was diminished in deprived microsomes due to an increase in the noncompetitive component (alphaKi). These changes observed in apparent kinetic constants (Km, Vm, Ki, and alphaKi), as determined by Lineweaver-Burks and Dixon plots, were attributed to the important alterations in the physicochemical properties of the endoplasmic reticulum membranes induced by the calcium-deficient diet. The solubilization of the enzyme activity from both types of microsomes demonstrated that the kinetic behavior of the enzyme depends on the microenvironment in the membrane, and that the calcium ion plays a crucial role in determining the alterations observed.
Collapse
Affiliation(s)
- C A Marra
- Instituto Nac. de Investigaciones Bioquímicas (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Bioquímica, Facultad de Ciencias Médicas de la UNLP (Universidad Nacional de La Plata), Argenti
| | | |
Collapse
|
8
|
Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergaard TB, Gaigg B. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol Cell Biochem 1999; 192:95-103. [PMID: 10331663 DOI: 10.1007/978-1-4615-4929-1_11] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6].
Collapse
Affiliation(s)
- J Knudsen
- Biokemisk Institut, Odense Universitet, Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Fitzsimmons TJ, McRoberts JA, Tachiki KH, Pandol SJ. Acyl-coenzyme A causes Ca2+ release in pancreatic acinar cells. J Biol Chem 1997; 272:31435-40. [PMID: 9395476 DOI: 10.1074/jbc.272.50.31435] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The regulation of cytosolic Ca2+ is important for a variety of cell functions. One non-inositol 1,4,5-trisphosphate (IP3) compound that may regulate Ca2+ is palmitoyl-coenzyme A (CoA), a fatty acid-CoA that is reported to cause Ca2+ release from intracellular stores of oocytes, myocytes, and hepatocytes. To study the role of palmitoyl-CoA in the pancreatic acinar cell, rat pancreatic acini were isolated by collagenase digestion, permeablized with streptolysin O, and the release of Ca2+ from internal stores was measured with fura-2. Palmitoyl-CoA released Ca2+ from internal stores (EC50 = 14 microM). The palmitoyl-CoA-sensitive pool was distinct from, and overlapping with the IP3-sensitive Ca2+ pool. The effects of submaximal doses of IP3 or cyclic ADP-ribose plus palmitoyl-CoA were additive. Fatty acid-CoA derivatives with carbon chain lengths of 16-18 were the most potent and efficacious. Ryanodine and caffeine or elevated resting [Ca2+] sensitized the Ca2+ pool to the actions of palmitoyl-CoA. Fatty acid-CoA levels in pancreatic acini were measured by extraction with 2-propanol/acetonitrile, followed by separation and quantification using reverse phase high performance liquid chromatography, and were found to be 10.17 +/- 0.93 nmol/mg protein. These data suggest the presence of an IP3-insensitive palmitoyl-CoA-sensitive Ca2+ store in pancreatic acinar cells and suggest that palmitoyl-CoA may be needed for Ca2+-induced Ca2+ release.
Collapse
Affiliation(s)
- T J Fitzsimmons
- Department of Veterans Affairs Medical Center, West Los Angeles, California, USA.
| | | | | | | |
Collapse
|
10
|
Missiaen L, De Smedt H, Parys JB, Sipma H, Maes K, Vanlingen S, Sienaert I, Van Driessche W, Casteels R. Synergism between hypotonically induced calcium release and fatty acyl-CoA esters induced calcium release from intracellular stores. Cell Calcium 1997; 22:151-6. [PMID: 9330785 DOI: 10.1016/s0143-4160(97)90008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-mitochondrial Ca2+ stores in permeabilized A7r5 cells responded to a decrease in Mg-ATP concentration with a pronounced Ca2+ release if 20 microM CoA was present. This release was rather specific for the preincubation or removal of ATP. ATP gamma S was much less effective and AMP-PNP, GTP, ITP, CTP, UTP, ADP, AMP, adenosine and adenine had no effect. CoA activated with an EC50 of 6 microM. Dephospho-CoA was a less effective cofactor and desulfo-CoA was ineffective. The release induced by Mg-ATP removal did not occur in the presence of 2% fatty acid-free bovine serum albumin and did not develop at 4 degrees C. All these findings suggest that CoA had to be acylated by endogenous fatty-acyl-CoA synthetase to become effective. Myristoyl- and palmitoyl-CoA esters were identified as the most effective cofactors for the release. Ca2+ release induced by removing Mg-ATP did not occur if the osmolality of the medium was kept constant by addition of mannitol, sucrose, KCl, MgCl2 or Mg-GTP, indicating that the decrease in tonicity was the trigger for the release. Mg-ATP plus CoA also synergized with Ca2+ release induced by a hypotonic shock imposed by diluting the medium with H2O. Osmolality changes induced by decreasing the Mg-ATP concentration were more effective in releasing Ca2+ than equal decreases in concentration of all solutes. We conclude that fatty acyl-CoA esters sensitize the hypotonically induced Ca2+ release from the non-mitochondrial Ca2+ stores.
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, KU Leuven Campus Gasthuisberg, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Missiaen L, Parys JB, Smedt HD, Sienaert I, Sipma H, Vanlingen S, Maes K, Casteels R. Effect of adenine nucleotides on myo-inositol-1,4,5-trisphosphate-induced calcium release. Biochem J 1997; 325 ( Pt 3):661-6. [PMID: 9271086 PMCID: PMC1218609 DOI: 10.1042/bj3250661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1, 4,5)P3 receptor. It was observed that 3'-phosphoadenosine 5'-phosphoulphate, CoA, di(adenosine-5')tetraphosphate (Ap4A) and di(adenosine-5')pentaphosphate (Ap5A) were more effective than ATP. Ap4A and Ap5A also interacted with a lower EC50 than ATP. In order to find out how these adenine nucleotides affected Ins(1,4, 5)P3-induced Ca2+ release, we have measured their effect on the response of permeabilized A7r5 cells to a progressively increasing Ins(1,4,5)P3 concentration. Stimulatory ATP and Ap5A concentrations had no effect on the threshold Ins(1,4,5)P3 concentration for initiating Ca2+ release, but they stimulated Ca2+ release in the presence of supra-threshold Ins(1,4,5)P3 concentrations by increasing the co-operativity of the release process. Inhibition of the Ins(1,4,5)P3-induced Ca2+ release at higher ATP concentrations was associated with a further increase in co-operativity and also with a shift in threshold towards higher Ins(1,4,5)P3 concentrations. ATP had no effect on the non-specific Ca2+ leak in the absence of Ins(1,4,5)P3. We conclude that the adenine-nucleotide-binding site can be activated by many different adenine nucleotides. Binding of these compounds to the transducing domain of the Ins(1,4,5)P3 receptor increases the efficiency of transmitting Ins(1,4,5)P3 binding to channel opening. The inhibition by high ATP concentrations is exerted at a different site, related to Ins(1,4,5)P3 binding.
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997; 323 ( Pt 1):1-12. [PMID: 9173866 PMCID: PMC1218279 DOI: 10.1042/bj3230001] [Citation(s) in RCA: 539] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase.
Collapse
Affiliation(s)
- N J Faergeman
- Institute of Biochemistry, Odense University, DK-5230 Odense, Denmark
| | | |
Collapse
|
13
|
Affiliation(s)
- P A Watkins
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Csala M, Bánhegyi G, Kardon T, Fulceri R, Gamberucci A, Giunti R, Benedetti A, Mandl J. Inhibition of glucuronidation by an acyl-CoA-mediated indirect mechanism. Biochem Pharmacol 1996; 52:1127-31. [PMID: 8831732 DOI: 10.1016/0006-2952(96)00423-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of the inhibition of glucuronidation by long-chain fatty acyl-CoAs was studied in rat liver microsomal membranes and in isolated hepatocytes. Palmitoyl- and oleoyl-CoA did not affect p-nitrophenol UDP-glucuronosyltransferase activity in native microsomes but were inhibitory in permeabilised vesicles. The extent of inhibition was dependent on the effectiveness of permeabilisation and was constant in time in fully permeabilised microsomes. Fatty acyl-CoAs mobilised calcium from calcium-loaded microsomes. Elevation of the intracellular acyl-CoA level by the addition of palmitate or oleate inhibited the glucuronidation of p-nitrophenol in isolated hepatocytes. This effect could be abolished by emptying the intracellular calcium stores. Therefore, it is concluded that fatty acyl-CoAs inhibit glucuronidation indirectly, presumably via calcium mobilisation.
Collapse
Affiliation(s)
- M Csala
- Department of Medical Chemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mithieux G, Zitoun C. Mechanisms by which fatty-acyl-CoA esters inhibit or activate glucose-6-phosphatase in intact and detergent-treated rat liver microsomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:799-803. [PMID: 8654431 DOI: 10.1111/j.1432-1033.1996.00799.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have studied the effects of fatty-acyl-CoA esters on the activity of glucose-6-phosphatase (Glc6Pase) in untreated and detergent-treated liver microsomes. Fatty-acyl-CoA esters with chain lengths less than or equal to nine carbons do not inhibit Glc6Pase. Medium-chain fatty-acyl-CoA esters (10-14 carbons) inhibit Glc6Pase of untreated microsomes in a dose-dependent manner in the range 1-20 microM. The inhibitory effect is also dependent on the acyl-chain length. The higher the chain length, the stronger the inhibitory effect. It is also dependent on the microsomal protein concentration. The higher the protein concentration, the lower the inhibitory effect. Fatty-acyl-CoA esters with longer chain length (equal to or higher than 16 carbons) inhibit Glc6Pase of untreated microsomes within the range 1-2 microM. However, the inhibitory effect is either partially or totally cancelled, or even changed into an activation effect at higher concentrations. This is due to the release of mannose-6-phosphatase latency. The inhibition is fully reversible in the presence of bovine serum albumin. The mechanism of the Glc6Pase inhibition in untreated microsomes is uncompetitive (Ki for myristoyl-CoA = 1.2 +/- 0.3 microM, mean +/- SD, n = 3). Glc6Pase of detergent-treated microsomes is also inhibited by fatty-acyl-CoA esters, albeit less efficiently. In this case, the mechanism is non-competitive (Ki for myristoyl-CoA = 29 +/- 3 microM).
Collapse
Affiliation(s)
- G Mithieux
- Institut National de la Santé et de la Recherche Médicale, Unité 449, Faculté de Médecine A. Carrel, Lyon, France
| | | |
Collapse
|
16
|
Chini EN, Dousa TP. Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C530-7. [PMID: 8779916 DOI: 10.1152/ajpcell.1996.270.2.c530] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclic ADP-ribose (cADPR) is a potent mediator of Ca2+ mobilization from intracellular stores in sea urchin eggs that ultimately activates the ryanodine channel. We now report that certain long-chain acyl-CoA derivative metabolites (14-18 carbons in length), such as palmitoyl-CoA, greatly potentiate the effect of cADPR on Ca2+ release. Furthermore, in higher concentrations, palmitoyl-CoA and other closely related long-chain acyl-CoA derivatives trigger Ca2+ release apparently through the ryanodine channel in sea urchin egg homogenates. Palmitoyl-CoA-induced Ca2+ release was suppressed by ruthenium red, spermine, and the calmodulin antagonist N-(6-aminohexyl)-1-naphthalenesulfonamide, which all prevent activation of the ryanodine channel, but not by heparin or thionicotinamide-NADP. In addition, cADPR was able to desensitize the sea urchin egg homogenates to the subsequent Ca2+ release induced by palmitoyl-CoA and vice versa. In contrast, neither inositol 1,4,5-trisphosphate (IP3) nor the newly identified Ca2+ release agonist nicotinate adenine dinucleotide phosphate was able to desensitize the homogenate to palmitoyl-CoA, indicating that palmitoyl-CoA probably acts selectively by activating the ryanodine channel, but, unlike cADPR, palmitoyl-CoA might act directly on this channel. Finally, we found that palmitoyl-CoA was able to counteract the inhibitory effect of Mg2+ and spermine, which, in physiological concentrations, suppress specifically the cADPR-induced Ca2+ release. We propose that palmitoyl-CoA, present in micromolar concentrations, may trigger Ca2+ release through the ryanodine channel and, in lower concentrations, may increase the sensitivity of the Ca2+ release system to cADPR. Thus palmitoyl-CoA may serve as a regulatory link between the intermediary metabolism and the cADPR-induced Ca2+ release signaling pathway.
Collapse
Affiliation(s)
- E N Chini
- Department of Physiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
17
|
Fulceri R, Gamberucci A, Scott HM, Giunti R, Burchell A, Benedetti A. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes. Biochem J 1995; 307 ( Pt 2):391-7. [PMID: 7733874 PMCID: PMC1136661 DOI: 10.1042/bj3070391] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In native rat liver microsomes glucose 6-phosphatase activity is dependent not only on the activity of the glucose-6-phosphatase enzyme (which is lumenal) but also on the transport of glucose-6-phosphate, phosphate and glucose through the respective translocases T1, T2 and T3. By using enzymic assay techniques, palmitoyl-CoA or CoA was found to inhibit glucose-6-phosphatase activity in intact microsomes. The effect of CoA required ATP and fatty acids to form fatty acyl esters. Increasing concentrations (2-50 microM) of CoA (plus ATP and 20 microM added palmitic acid) or of palmitoyl-CoA progressively decreased glucose-6-phosphatase activity to 50% of the control value. The inhibition lowered the Vmax without significantly changing the Km. A non-hydrolysable analogue of palmitoyl-CoA also inhibited, demonstrating that binding of palmitoyl-CoA rather than hydrolysis produces the inhibition. Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer demonstrated that palmitoyl-CoA alone or CoA plus ATP and palmitic acid altered the microsomal permeability to glucose 6-phosphate, but not to glucose or phosphate, indicating that T1 is the site of palmitoyl-CoA binding and inhibition of glucose-6-phosphatase activity in native microsomes. The type of inhibition found suggests that liver microsomes may comprise vesicles heterogeneous with respect to glucose-6-phosphate translocase(s), i.e. sensitive or insensitive to fatty acid ester inhibition.
Collapse
Affiliation(s)
- R Fulceri
- Istituto di Patologia Generale, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Rich GT, Comerford JG, Graham S, Dawson AP. Effects of CoA and acyl-CoA on Ca(2+)-permeability of endoplasmic-reticulum membranes from rat liver. Biochem J 1995; 306 ( Pt 3):703-8. [PMID: 7702563 PMCID: PMC1136578 DOI: 10.1042/bj3060703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the effects of CoA and palmitoyl-CoA on Ca2+ movements and GTP-dependent vesicle fusion in rat liver microsomes. (1) Inhibition of membrane fusion by CoA depends on esterification of CoA to long-chain acyl-CoA using endogenous non-esterified fatty acids. (2) Binding of long-chain acyl-CoA to microsomal membranes is inhibited by BSA, which also relieves inhibition of membrane fusion. (3) Under conditions where acyl-CoA binding is inhibited, CoA causes increased Ca2+ accumulation, apparently by decreasing the Ca2+ leak rate. (4) Conversely, palmitoyl-CoA, in the presence of BSA, causes Ca2+ efflux. (5) The decrease in Ca(2+)-permeability caused by CoA does not depend on the presence of ATP or GTP, and is irreversible in the short term. (6) Using 14C-labelled CoA we show that CoA derivatives can be formed from endogenous components of microsomal membranes in the absence of ATP. (7) The results are interpreted in terms of a Ca(2+)-permeability which is controlled by CoA and/or long-chain acyl-CoA esters.
Collapse
Affiliation(s)
- G T Rich
- School of Biological Sciences, University of East Anglia, Norwich, U.K
| | | | | | | |
Collapse
|
19
|
Rys-Sikora KE, Ghosh TK, Gill DL. Modification of GTP-activated calcium translocation by fatty acyl-CoA esters. Evidence for a GTP-induced prefusion event. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31737-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Fulceri R, Nori A, Gamberucci A, Volpe P, Giunti R, Benedetti A. Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Calcium 1994; 15:109-16. [PMID: 8149410 DOI: 10.1016/0143-4160(94)90049-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of palmitoyl-CoA (PCoA) on Ca2+ fluxes in unfractionated SR, longitudinal tubules (LSR) and terminal cisternae (TC) subfractions, obtained from rabbit fast-twitch skeletal muscles, was investigated. After MgATP-dependent Ca2+ preloading, PCoA released Ca2+ from unfractionated SR and TC, but not from LSR. Both the extent and the rate of PCoA-induced Ca2+ release from TC were increased in a dose-dependent manner, the half-maximal effect being attained at [PCoA] of approximately 6 microM. Ruthenium red, a Ca2+ release channel blocker, completely inhibited PCoA-induced Ca2+ release, whereas caffeine, a Ca2+ release channel agonist, depleted TC of Ca2+ and prevented the PCoA action. Scatchard plot analysis of [3H]-ryanodine binding showed that PCoA increased the affinity without affecting Bmax. The action of PCoA was mimicked by a nonhydrolysable analog. The present results indicate that PCoA interacts and opens the Ca2+ release channel (ryanodine receptor) of TC and that the mechanism of action involves binding rather than hydrolysis.
Collapse
Affiliation(s)
- R Fulceri
- Istituto di Patologia Generale, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|