1
|
Sibilio S, Mennella R, Gregorio VD, Rocca AL, Urciuolo F, Imparato G, Netti PA. A novel membrane-on-chip guides morphogenesis for the reconstruction of the intestinal crypt-villus axis. Biofabrication 2024; 16:045019. [PMID: 39029501 DOI: 10.1088/1758-5090/ad6599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Reconstructing the microscale villous organisation and functionality of the small intestine is essential for developingin vitroplatforms tailored for absorption studies as well as for investigating intestinal morphogenesis in development and disease. However, the current fabrication techniques able to mimic the villus-crypt axis poses significant challenges in terms of reconstruction of the complex 3D microarchitecture. These challenges extend beyond mere structural intricacies to encompass the incorporation of diverse cell types and the management of intricate fluid dynamics within the system. Here, we introduce a novel microfluidic device calledIn-Crypts, which integrates a cell-instructive membrane aimed at inducing and guiding Caco-2 cells morphogenesis. Patterned topographical cues embossed onto the porous membrane induce the formation of a well-organized intestinal epithelium, characterized by proliferating crypt-like domains and differentiated villus-like regions. Notably, our cell-instructive porous membrane effectively sustains stem cells development, faithfully replicating the niche environment ofin vivointestinal crypts thus mirroring the cell biogeography observedin vivo. Moreover, by introducing dynamic fluid flow, we provide a faithful recapitulation of the native microenvironmental shear stress experienced by the intestinal epithelium. This stress plays a crucial role in influencing cell behaviour, differentiation, and overall functionality, thus offering a highly realistic model for studying intestinal physiology and pathology. The resulting intestinal epithelium exhibits significantly denser regions of mucus and microvilli, characteristic typically absent in static cultures, upregulating more than 1.5 of the amount expressed in the classical flattened configuration, enhanced epithelial cell differentiation and increased adsorptive surface area. Hence, the innovative design ofIn-Cryptsproves the critical role of employing a cell-instructive membrane in argument the physiological relevance of organs-on-chips. This aspect, among others, will contribute to a more comprehensive understanding of organism function, directly impacting drug discovery and development.
Collapse
Affiliation(s)
- Sara Sibilio
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
| | - Raffaele Mennella
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Vincenza De Gregorio
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Alessia La Rocca
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Giorgia Imparato
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Naples, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| |
Collapse
|
2
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Crowe A. Transcriptomic and western blot characterisation of the human CLEFF4 clone, a new rapid cell line replacement for the Caco2 model. Eur J Pharm Biopharm 2024; 199:114291. [PMID: 38641230 DOI: 10.1016/j.ejpb.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The CLEFF4 sub clone from stock late passage Caco2 cells has a unique property of being able to develop polarised cell monolayers with high P-gp expression and tight junctions much quicker than the original cell line. Instead of being useful for transport studies 21-24 days after initiating culture, the CLEFF4 cell line matures in 5-6 days with tight junctions surpassing that of 3 week old Caco2 cells in that time frame [1]. This has enabled the CLEFF4 cell line to provide measures of apparent permeability for potential drug candidates, so important for pre-clinical drug development, 4 times faster than the original cell line. RNA samples were collected and analysed at days 4 and 7 of culture over a 3 year period and had full RNA transcriptome analysed by the ranaseq.eu open bioinformatics platform. Protein was also collected from day 4 to day 22 of culture. Differential expression data from the FASTQ files have shown significant differences in expression in multiple genes involved with drug efflux, tight junctions, phase 2 metabolism and growth factors, which have been confirmed from protein determination that may hold the key to understanding accelerated human cell maturation. These gene expression results may be significant for other tissues beyond the gastrointestinal tract, and potentially for accelerated cell growth for the new field of laboratory grown tissues for organ replacement. The data also confirms the different genetic expression in CLEFF4 cells compared to Caco2 and the stable nature of the different expression over many years.
Collapse
Affiliation(s)
- Andrew Crowe
- Curtin Medical School, Curtin University, Perth, WA, 6845 Australia; Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, 6845 Australia
| |
Collapse
|
4
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
5
|
Jensen-Kroll J, Demetrowitsch T, Clawin-Rädecker I, Klempt M, Waschina S, Schwarz K. Microbiota independent effects of oligosaccharides on Caco-2 cells -A semi-targeted metabolomics approach using DI-FT-ICR-MS coupled with pathway enrichment analysis. Front Mol Biosci 2022; 9:968643. [PMID: 36353731 PMCID: PMC9638022 DOI: 10.3389/fmolb.2022.968643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 08/07/2024] Open
Abstract
Milk oligosaccharides (MOS) and galactooligosaccharides (GOS) are associated with many benefits, including anti-microbial effects and immune-modulating properties. However, the cellular mechanisms of these are largely unknown. In this study, the effects of enriched GOS and MOS mixtures from caprine and bovine milk consisting mainly 6'-galactosyllactose, 3'-sialyllactose, and 6'-sialyllactose on Caco-2 cells were investigated, and the treatment-specific metabolomes were described. In the control, the cells were treated with a sugar mix consisting of one-third each of glucose, galactose and lactose. A local metabolomics workflow with pathway enrichment was established, which specifically addresses DI-FT-ICR-MS analyses and includes adaptations in terms of measurement technology and sample matrices. By including quality parameters, especially the isotope pattern, we increased the precision of annotation. The independence from online tools, the fast adaptability to changes in databases, and the specific adjustment to the measurement technology and biomaterial used, proved to be a great advantage. For the first time it was possible to find 71 active pathways in a Caco-2 cell experiment. These pathways were assigned to 12 main categories, with amino acid metabolism and carbohydrate metabolism being the most dominant categories in terms of the number of metabolites and metabolic pathways. Treatment of Caco-2 cells with high GOS and glucose contents resulted in significant effects on several metabolic pathways, whereas the MOS containing treatments resulted only for individual metabolites in significant changes. An effect based on bovine or caprine origin alone could not be observed. Thus, it was shown that MOS and GOS containing treatments can exert microbiome-independent effects on the metabolome of Caco-2 cells.
Collapse
Affiliation(s)
- Julia Jensen-Kroll
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Kiel, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Kiel, Germany
| | - Ingrid Clawin-Rädecker
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institute, Kiel, Germany
| | - Martin Klempt
- Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Max Rubner-Institute, Kiel, Germany
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Division of Nutriinformatics, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Zhouyao H, Malunga LN, Chu YF, Eck P, Ames N, Thandapilly SJ. The inhibition of intestinal glucose absorption by oat-derived avenanthramides. J Food Biochem 2022; 46:e14324. [PMID: 35892210 DOI: 10.1111/jfbc.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Avenanthramides are phenolic compounds unique to oats and may contribute to health-promoting properties associated with oat consumption. This study used Xenopus laevis oocytes expressing the glucose transporters, glucose transporter 2 (GLUT2) or sodium-glucose transport protein 1 (SGLT1) and human Caco-2 cells models to investigate the effect of oat avenanthramides on human intestinal glucose transporters. The presence of avenanthramide reduced the glucose uptake in a dose-dependent manner in Caco-2 cells. Glucose uptake in oocytes expressing either GLUT2 or SGLT1 was nullified by oat avenanthramide. There was no significant difference between the inhibition potencies of avenanthramides C and B. Thus, our results suggest that avenanthramides may contribute to the antidiabetic properties of oats. PRACTICAL APPLICATIONS: The present research focus on the antidiabetic properties of avenanthramides, which are unique phenolic compounds found in oats. Inhibiting the activities of the glucose transport proteins expressed in the small intestine is a known strategy to improve the control of postprandial glucose level. We therefore examined the inhibitory effects of avenanthramides on two glucose transporters, glucose transporter 2 and sodium-glucose transport protein 1, predominantly found in the small intestine using the human small intestinal cell model Caco-2 cell line and by heterologously expressing these two transporters in the Xenopus laevis oocytes. Based on our results, we have confirmed for the first time that the glucose uptake is indeed inhibited by the presence of avenanthramides, suggesting the possibility of incorporating avenanthramides in foods to enhance postprandial glucose response, and ultimately improve the management of diabetes. Therefore, future research could consider utilizing this evidence in the development of diabetic-friendly functional foods or nutraceuticals containing avenanthramides.
Collapse
Affiliation(s)
- Haonan Zhouyao
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lovemore Nkhata Malunga
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yi Fang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, Illinois, USA
| | - Peter Eck
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy Ames
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sijo Joseph Thandapilly
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. iScience 2022; 25:104542. [PMID: 35754737 PMCID: PMC9218437 DOI: 10.1016/j.isci.2022.104542] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
Intestinal organoids are physiologically relevant tools used for cellular models. However, the suitability of organoids to examine biological functions over existing established cell lines lacks sufficient evidence. Cytochrome P450 3A4 (CYP3A4) induction by pregnane X receptor ligands, glucose uptake via sodium/glucose cotransporter 1, and microsomal triglyceride transfer protein-dependent ApoB-48 secretion, which are critical for human intestinal metabolism, were observed in organoid-derived two-dimensional cells but little in Caco-2 cells. CYP3A4 induction evaluation involved a simplified method of establishing organoids that constitutively expressed a reporter gene. Compound screening identified several anticancer drugs with selective activities toward Caco-2 cells, highlighting their characteristics as cancer cells. Another compound screening revealed a decline in N-(4-hydroxyphenyl)retinamide cytotoxicity upon rifampicin treatment in organoid-derived cells, under CYP3A4-induced conditions. This study shows that organoid-derived intestinal epithelial cells (IECs) possess similar physiological properties as intestinal epithelium and can serve as tools for enhancing the prediction of biological activity in humans. Comparison of mRNA expression between organoid-derived intestinal epithelial cells (IECs) and Caco-2 cells Evaluation of CYP3A4, SGLT1, and MTP protein function in organoid-derived IECs Identification of anti-cancer drugs as selective cytotoxicity against Caco-2 cells Reduction of N-(4-hydroxyphenyl)retinamide (4-HPR) cytotoxicity by rifampicin in organoid-derived IECs
Collapse
|
8
|
Kus M, Gorniak K, Czaklosz P, Olejnik A, Skupin-Mrugalska P, Ibragimow I, Piotrowska-Kempisty H. Permeability of the Perindopril Arginine under In Vitro Conditions across Caco-2 Monolayer and Biomimetic Phospholipid Membrane. Molecules 2022; 27:molecules27072232. [PMID: 35408631 PMCID: PMC9000469 DOI: 10.3390/molecules27072232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Perindopril arginine (PA) as an angiotensin-converting enzyme (ACE) inhibitor is widely used in cardiovascular diseases, especially in systemic hypertension and heart failure. Although the pharmacokinetics of PA are well documented, there is no available detailed data on its permeation in in vitro conditions. The present study aimed to assess the transport of PA across both biological membranes and artificial biomimetic ones. For the determination of PA transport, the Caco-2 cell line was selected as a reliable in vitro model of gastrointestinal biological barriers. Additionally, a novel 96-well plate with phospholipid membrane PermeaPad was used to evaluate the transport of PA by passive diffusion. We confirmed that PA is relatively poorly permeable across the Caco-2 monolayer. The permeability results obtained from the non-cell-based model demonstrated higher transport of PA as compared to that of Caco-2. Thus, PA transport across the biological membranes might be suggested to be regulated by the membrane transporters.
Collapse
Affiliation(s)
- Marta Kus
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland; (K.G.); (P.C.); (I.I.)
| | - Klaudia Gorniak
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland; (K.G.); (P.C.); (I.I.)
| | - Piotr Czaklosz
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland; (K.G.); (P.C.); (I.I.)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Poskiego St., 60-627 Poznan, Poland
- Correspondence: (A.O.); (H.P.-K.); Tel.: +48-618-470-721 (H.P.-K.); +48-618-466-008 (A.O.)
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland;
| | - Izabela Ibragimow
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland; (K.G.); (P.C.); (I.I.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Torun, Poland
- Correspondence: (A.O.); (H.P.-K.); Tel.: +48-618-470-721 (H.P.-K.); +48-618-466-008 (A.O.)
| |
Collapse
|
9
|
Günther I, Rimbach G, Nevermann S, Neuhauser C, Stadlbauer V, Schwarzinger B, Schwarzinger C, Ipharraguerre IR, Weghuber J, Lüersen K. Avens Root ( Geum Urbanum L.) Extract Discovered by Target-Based Screening Exhibits Antidiabetic Activity in the Hen's Egg Test Model and Drosophila melanogaster. Front Pharmacol 2022; 12:794404. [PMID: 34975489 PMCID: PMC8715001 DOI: 10.3389/fphar.2021.794404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023] Open
Abstract
Medicinal plant extracts are becoming increasingly important as an alternative for traditional drugs against diabetes mellitus (DM). For this reason, we initialized a target-based screening of 111 root extracts from an open access plant extract library (PECKISH) by ascertaining their in-vitro inhibitory efficacy on α-glucosidase. The two most active extracts Geum urbanum L. (roseroot) and Rhodiola rosea L. (avens root) were further tested for their antidiabetic activities in terms of their impact on different regulatory key points of glucose homeostasis. To this end, various enzyme- and cell culture-based in-vitro assays were employed including the determination of sodium-dependent glucose transporter 1 (SGLT1) activity in Caco-2 monolayers by Ussing chambers and of glucose transporter 4 (GLUT4) translocation in a GFP-reporter cell line. Subsequently, the antidiabetic potential of the root extracts were further evaluated in in-vivo models, namely hen’s eggs test and the fruit fly Drosophila melanogaster. Avens root extract was found to be a more potent inhibitor of the enzymes α-glucosidase and dipeptidyl peptidase-4 (DPP4) than roseroot extract. Most importantly, only avens root extract exhibited antidiabetic activity in the two in-vivo models eliciting a reduced blood glucose level in the in-ovo model and a decline of the triglyceride level in a dietary starch-induced D. melanogaster obesity model. Analyses of the polyphenolic composition of the avens root extract by HPLC revealed a high content of ellagic acid and its derivatives as well as ellagitannins such as pedunculagin, stenophyllanin, stachyurin, casuarinin and gemin A. In conclusion, avens root extract represents a promising medicinal plant that should be considered in further in-vivo studies on hyperglycemia in laboratory rodents and humans.
Collapse
Affiliation(s)
- Ilka Günther
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sandra Nevermann
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Cathrina Neuhauser
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | - Verena Stadlbauer
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Bettina Schwarzinger
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | - Clemens Schwarzinger
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria
| | | | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Pini N, Huo Z, Holland-Cunz S, Gros SJ. Increased Proliferation of Neuroblastoma Cells under Fructose Metabolism Can Be Measured by Isothermal Microcalorimetry. CHILDREN-BASEL 2021; 8:children8090784. [PMID: 34572216 PMCID: PMC8467942 DOI: 10.3390/children8090784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022]
Abstract
Neuroblastoma, like other cancer types, has an increased need for energy. This results in an increased thermogenic profile of the cells. How tumor cells optimize their energy efficiency has been discussed since Warburg described the fact that tumor cells prefer an anaerobic to an aerobic metabolism in the 1920s. An important question is how far the energy efficiency is influenced by the substrate. The aim of this study was to investigate how the metabolic activity of neuroblastoma cells is stimulated by addition of glucose or fructose to the medium and if this can be measured accurately by using isothermal microcalorimetry. Proliferation of Kelly and SH-EP Tet-21/N cells was determined in normal medium, in fructose-enriched, in glucose-enriched and in a fructose/glucose-enriched environment. Heat development of cells was measured by isothermal microcalorimetry. The addition of fructose, glucose or both to the medium led to increases in the metabolic activity of the cells, resulting in increased proliferation under the influence of fructose. These changes were reflected in an enhanced thermogenic profile, mirroring the results of the proliferation assay. The tested neuroblastoma cells prefer fructose metabolism over glucose metabolism, a quality that provides them with a survival benefit under unfavorable low oxygen and low nutrient supply when fructose is available. This can be quantified by measuring thermogenesis.
Collapse
Affiliation(s)
- Nicola Pini
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4021 Basel, Switzerland
| | - Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4021 Basel, Switzerland
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4021 Basel, Switzerland
- Correspondence:
| |
Collapse
|
11
|
Zakłos-Szyda M, Pietrzyk N, Kowalska-Baron A, Nowak A, Chałaśkiewicz K, Ratajewski M, Budryn G, Koziołkiewicz M. Phenolics-Rich Extracts of Dietary Plants as Regulators of Fructose Uptake in Caco-2 Cells via GLUT5 Involvement. Molecules 2021; 26:4745. [PMID: 34443333 PMCID: PMC8401051 DOI: 10.3390/molecules26164745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The latest data link the chronic consumption of large amounts of fructose present in food with the generation of hypertension and disturbances in carbohydrate and lipid metabolism, which promote the development of obesity, non-alcoholic fatty liver disease, insulin resistance, and type 2 diabetes. This effect is possible after fructose is absorbed by the small intestine cells and, to a lesser extent, by hepatocytes. Fructose transport is dependent on proteins from the family of glucose transporters (GLUTs), among which GLUT5 selectively absorbs fructose from the intestine. In this study, we examined the effect of four phenolic-rich extracts obtained from A. graveolens, B. juncea, and M. chamomilla on fructose uptake by Caco-2 cells. Extracts from B. juncea and M. chamomilla most effectively reduced fluorescent fructose analogue (NBDF) accumulation in Caco-2, as well as downregulated GLUT5 protein levels. These preparations were able to decrease the mRNA level of genes encoding transcription factors regulating GLUT5 expression-thioredoxin-interacting protein (TXNIP) and carbohydrate-responsive element-binding protein (ChREBP). Active extracts contained large amounts of apigenin and flavonols. The molecular docking simulation suggested that some of identified phenolic constituents can play an important role in the inhibition of GLUT5-mediated fructose transport.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Nina Pietrzyk
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Agnieszka Kowalska-Baron
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland;
| | - Katarzyna Chałaśkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Marcin Ratajewski
- Institute of Medical Biology, Laboratory of Epigenetics, Polish Academy of Sciences, Tylna 3a, 90-364 Łódź, Poland;
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| |
Collapse
|
12
|
Rashed AA, Ahmad H, Abdul Khalid SK, Rathi DNG. The Potential Use of Sialic Acid From Edible Bird's Nest to Attenuate Mitochondrial Dysfunction by In Vitro Study. Front Pharmacol 2021; 12:633303. [PMID: 33912049 PMCID: PMC8072155 DOI: 10.3389/fphar.2021.633303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Edible bird's nest (EBN) is one of the expensive functional foods in herbal medicine. One of the major glyconutrients in EBN is sialic acid, which has a beneficial effect on neurological and intellectual capability in mammals. The aims of this research were to study the effects of sialic acid from EBN on cell viability and to determine its effect on mitochondria membrane potential (MtMP) in Caco-2, SK-N-MC, SH-SY5Y, and PC-12 cell lines. Fourteen samples of raw EBN were collected from four different states in Malaysia. The confluency of the epithelial monolayers measurement of the tight junction for all the cell lines was determined using transepithelial electrical resistance (TEER), and the sialic acid uptake study in cell lines was determined by using ultra-high performance liquid chromatography (UHPLC). The MTT assay was conducted for cell viability study. The MtMP in cell lines was determined using the Mito Probe JC-1 Assay by flow cytometer analysis. We have recorded a statistically significant difference between the uptake of sialic acid from EBN and the standard solution. A higher amount of sialic acid was absorbed by the cells from extract of EBN compared to the standard solution. The amounts of sialic acid uptake in Caco-2, SK-N-MC, SH-SY5Y, and PC-12 cell lines were (0.019 ± 0.001), (0.034 ± 0.006), (0.021 ± 0.002), and (0.025 ± 0.000) µmol/L, respectively. The MTT results indicated that the concentration of sialic acid increased the cell viability and showed no cytotoxicity effects on cell lines when they were exposed to the sialic acid extract and sialic acid standard at all the tested concentrations. The number of active mitochondria was found to be significantly higher in SH-SY5Y cell lines with a 195% increase when treated with sialic acid from EBN. Although many researchers around the globe use SH-SY5Y and SK-N-MC for Alzheimer's disease (AD) study, based on our finding, SH-SY5Y was found to be the most suitable cell line for AD study by in vitro works where it has a known relationship with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| | - Hafandi Ahmad
- Departments of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Khadijah Abdul Khalid
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| | - Devi-Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| |
Collapse
|
13
|
Kulkarni CP, Thevelein JM, Luyten W. Characterization of SGLT1-mediated glucose transport in Caco-2 cell monolayers, and absence of its regulation by sugar or epinephrine. Eur J Pharmacol 2021; 897:173925. [PMID: 33545159 DOI: 10.1016/j.ejphar.2021.173925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Caco-2 cells are increasingly used to study the absorption of drugs and nutrients, including D-glucose, an important nutrient that mainly gets absorbed from the intestine by the sodium/glucose cotransporter 1 (SGLT1). However, disadvantages of Caco-2 cells for such studies have been reported, e.g., D-glucose cannot elicit translocation of the intracellular pool of SGLT1 to the apical membrane, the origin of the cells affects glucose uptake, and Caco-2 cells exhibit heterogeneity. This study aimed to characterize SGLT1-mediated glucose transport across Caco-2 cell monolayers. We found that at lower glucose concentrations (5 mM) SGLT1 contributes more to total glucose transport than at higher (10 mM) glucose concentrations, suggesting contributions by another transporter at higher glucose concentrations. This contrasts with the in vivo situation, where SGLT1 dominant glucose transporter at all glucose concentrations. We also tested whether known regulators like sugars or catecholamines can stimulate glucose transport across Caco-2 cell monolayers. Neither epinephrine nor 2-deoxy-D-glucose could stimulate glucose transport. Moreover, the epinephrine could not induce accumulation of cyclic adenosine monophosphate (cAMP) in Caco-2 cells, indicating the absence of a functional β2-adrenoceptor in Caco-2 cells, which could explain the lack of epinephrine effect on glucose transport. Also, Caco-2 cells may lack some kinases required for increased SGLT1 transport. Overall, SGLT1-mediated glucose transport and its regulation in Caco-2 cells differ from that in vivo, and caution is advised when extrapolating glucose transport results obtained with this model to the in vivo situation.
Collapse
Affiliation(s)
- Chetan P Kulkarni
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium; Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Flanders, Belgium.
| | - Johan M Thevelein
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium; Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
| | - Walter Luyten
- Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
14
|
Primec M, Škorjanc D, Langerholc T, Mičetić-Turk D, Gorenjak M. Specific Lactobacillus probiotic strains decrease transepithelial glucose transport through GLUT2 downregulation in intestinal epithelial cell models. Nutr Res 2021; 86:10-22. [DOI: 10.1016/j.nutres.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
|
15
|
Rosch JC, Neal EH, Balikov DA, Rahim M, Lippmann ES. CRISPR-Mediated Isogenic Cell-SELEX Approach for Generating Highly Specific Aptamers Against Native Membrane Proteins. Cell Mol Bioeng 2020; 13:559-574. [PMID: 33184583 PMCID: PMC7596163 DOI: 10.1007/s12195-020-00651-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The generation of affinity reagents that bind native membrane proteins with high specificity remains challenging. Most in vitro selection paradigms utilize different cell types for positive and negative rounds of selection (where the positive selection is against a cell that expresses the desired membrane protein and the negative selection is against a cell that lacks the protein). However, this strategy can yield affinity reagents that bind unintended membrane proteins on the target cells. To address this issue, we developed a systematic evolution of ligands by exponential enrichment (SELEX) scheme that utilizes isogenic pairs of cells generated via CRISPR techniques. METHODS Using a Caco-2 epithelial cell line with constitutive Cas9 expression, we knocked out the SLC2A1 gene (encoding the GLUT1 glucose transporter) via lipofection with synthetic gRNAs. Cell-SELEX rounds were carried out against wild-type and GLUT1-null cells using a single-strand DNA (ssDNA) library. Next-generation sequencing (NGS) was used to quantify enrichment of prospective binders to the wild-type cells. RESULTS 10 rounds of cell-SELEX were conducted via simultaneous exposure of ssDNA pools to wild-type and GLUT1-null Caco-2 cells under continuous perfusion. The top binders identified from NGS were validated by flow cytometry and immunostaining for their specificity to the GLUT1 receptor. CONCLUSIONS Our data indicate that highly specific aptamers can be isolated with a SELEX strategy that utilizes isogenic cell lines. This approach may be broadly useful for generating affinity reagents that selectively bind to membrane proteins in their native conformations on the cell surface.
Collapse
Affiliation(s)
- Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
16
|
Ahmed I, Leach DN, Wohlmuth H, De Voss JJ, Blanchfield JT. Caco-2 Cell Permeability of Flavonoids and Saponins from Gynostemma pentaphyllum: the Immortal Herb. ACS OMEGA 2020; 5:21561-21569. [PMID: 32905390 PMCID: PMC7469392 DOI: 10.1021/acsomega.0c02180] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Gynostemma pentaphyllum (the immortal herb) has been an important component of Chinese Traditional Medicine for millennia. Recent clinical studies have revealed that the plant exhibits numerous beneficial biological activities, making it of interest to the pharmaceutical industry. An extract of the herb contains over 200 individual secondary metabolites including flavonol glycosides and dammarane saponins. To focus attention on the compounds most likely to be responsible for the biological activities, this study predicts the potential oral bioavailability of nine dammarane saponins and five flavonol glycosides from G. pentaphyllum using the Caco-2 cell monolayer permeability model. Two flavonoids, 8 and 9, and four saponins, 10, 11, 12, and 14, exhibited high permeability across the monolayers. The results indicated that a higher degree of glycosylation-facilitated permeability, suggestive of active transport. This study demonstrates the utility of the Caco-2 permeability assay as a method of identifying possible bioavailable compounds from medicinal herbal extracts.
Collapse
Affiliation(s)
- Iftekhar Ahmed
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David N. Leach
- Integria
Healthcare Limited, 2728 Logan Road, Eight Mile Plains, QLD 4113, Australia
| | - Hans Wohlmuth
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Integria
Healthcare Limited, 2728 Logan Road, Eight Mile Plains, QLD 4113, Australia
- NICM
Health Research Institute, Western Sydney
University, Westmead, Sydney, NSW 2145, Australia
| | - James J. De Voss
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joanne T. Blanchfield
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Ni D, Ai Z, Munoz-Sandoval D, Suresh R, Ellis PR, Yuqiong C, Sharp PA, Butterworth PJ, Yu Z, Corpe CP. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J 2020; 34:9995-10010. [PMID: 32564472 DOI: 10.1096/fj.202000057rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing City, China
| | - Diana Munoz-Sandoval
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Reshma Suresh
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter R Ellis
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Chen Yuqiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Paul A Sharp
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter J Butterworth
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Christopher P Corpe
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
18
|
Zhang H, Hassan YI, Liu R, Mats L, Yang C, Liu C, Tsao R. Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model. ACS OMEGA 2020; 5:10782-10793. [PMID: 32455198 PMCID: PMC7240828 DOI: 10.1021/acsomega.0c00379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 05/13/2023]
Abstract
The mechanisms of cellular absorption and transport underlying the differences between flavonoid aglycones and glycosides and the effect of the structural feature are not well established. In this study, aglycone, mono-, and diglycosides of quercetin and cyanidin were selected to examine the effects of the structural feature on the bioavailability of flavonoids using hexose transporters SGLT1 and GLUT2 in a Caco-2 BBe1 cell model. Cellular uptake and transport of all glycosides were significantly different. The glycosides also significantly inhibited cellular uptake of d-glucose, indicating the involvement of the two hexose transporters SGLT1 and GLUT2 in the absorption, and the potential of the glycosides in lowering the blood glucose level. The in silico prediction model also supported these observations. The absorption of glycosides, especially diglycosides but not the aglycones, was significantly blocked by SGLT1 and GLUT2 inhibitors (phloridzin and phloretin) and further validated in SGLT1 knockdown Caco-2 BBe1 cells.
Collapse
Affiliation(s)
- Hua Zhang
- Guelph
Research & Development Centre, Agriculture
and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Yousef I. Hassan
- Guelph
Research & Development Centre, Agriculture
and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Ronghua Liu
- Guelph
Research & Development Centre, Agriculture
and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Lili Mats
- Guelph
Research & Development Centre, Agriculture
and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Cheng Yang
- Food
Science Department, Jiangnan University, 1800 Lihu Avenue, Binhu Qu, Wuxi Shi, Jiangsu Province 214122, China
| | - Chunming Liu
- Central
Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun 130032, China
| | - Rong Tsao
- Guelph
Research & Development Centre, Agriculture
and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- . Phone: +1 226 217 8180. Fax: +1 226 217 8183
| |
Collapse
|
19
|
Wang J, Wang Z, Yuan J, Wang J, Shen X. The positive feedback between ACSL4 expression and O-GlcNAcylation contributes to the growth and survival of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7786-7800. [PMID: 32357142 PMCID: PMC7244051 DOI: 10.18632/aging.103092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/13/2020] [Indexed: 06/01/2023]
Abstract
Acyl-CoA ligase 4 (ACSL4) has been reported to be overexpressed in hepatocellular carcinoma (HCC) and to enhance cell proliferation. However, the molecular mechanisms underlying the role of ACSL4 in HCC progression remain largely unclear. Here, we aimed to investigate whether and how O-GlcNAcylation and ACSL4 regulate each other and HCC progression. The clinical significance of ACSL4, O-GlcNAc and GLUT1 in HCC was determined by Pearson chi-squared test and Kaplan-Meier analysis. CCK-8, flow cytometry and in vivo tumour formation assays were performed to detect cell proliferation, apoptosis and tumorigenesis. IP technology was used to evaluate the relationship between ACSL4 and O-GlcNAc. ACSL4, GLUT1 and O-GlcNAc levels were elevated in HCC tissues and predicted poor prognosis in HCC patients. ACSL4 overexpression significantly promoted cell proliferation and tumorigenesis and inhibited cell apoptosis, whereas these effects were all obviously impaired when mTOR signalling was repressed or GLUT1 was downregulated. ACSL4 could be O-GlcNAcylated, and silencing of ACSL4 abolished the effects of O-GlcNAcylation on cell growth promotion and apoptosis inhibition. Collectively, this study demonstrates that ACSL4 contributes to the growth and survival of HCC by enhancing GLUT1-mediated O-GlcNAcylation. In turn, O-GlcNAcylation promotes HCC growth partially by increasing ACSL4 expression.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhao Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Yuan
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinsheng Shen
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
20
|
Nanomedicines blocking adaptive signals in cancer cells overcome tumor TKI resistance. J Control Release 2020; 321:132-144. [DOI: 10.1016/j.jconrel.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
|
21
|
Pico J, Martínez MM. Unraveling the Inhibition of Intestinal Glucose Transport by Dietary Phenolics: A Review. Curr Pharm Des 2019; 25:3418-3433. [DOI: 10.2174/1381612825666191015154326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023]
Abstract
Background:Glucose transport across the intestinal brush border membrane plays a key role in metabolic regulation. Depending on the luminal glucose concentration, glucose is mainly transported by the sodium- dependent glucose transporter (SGLT1) and the facilitated-transporter glucose transporter (GLUT2). SGLT1 is apical membrane-constitutive and it is active at a low luminal glucose concentration, while at concentrations higher than 50 mM, glucose is mainly transported by GLUT2 (recruited from the basolateral membrane). Dietary phenolic compounds can modulate glucose homeostasis by decreasing the postprandial glucose response through the inhibition of SGLT1 and GLUT2.Methods:Phenolic inhibition of intestinal glucose transport has been examined using brush border membrane vesicles from rats, pigs or rabbits, Xenopus oocytes and more recently Caco-2 cells, which are the most promising for harmonizing in vitro experiments.Results:Phenolic concentrations above 100 µM has been proved to successfully inhibit the glucose transport. Generally, the aglycones quercetin, myricetin, fisetin or apigenin have been reported to strongly inhibit GLUT2, while quercetin-3-O-glycoside has been demonstrated to be more effective in SGLT1. Additionally, epigallocatechin as well as epicatechin and epigallocatechin gallates were observed to be inhibited on both SGLT1 and GLUT2.Conclusion:Although, valuable information regarding the phenolic glucose transport inhibition is known, however, there are some disagreements about which flavonoid glycosides and aglycones exert significant inhibition, and also the inhibition of phenolic acids remains unclear. This review aims to collect, compare and discuss the available information and controversies about the phenolic inhibition of glucose transporters. A detailed discussion on the physicochemical mechanisms involved in phenolics-glucose transporters interactions is also included.
Collapse
Affiliation(s)
- Joana Pico
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mario M. Martínez
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
22
|
Shimada H, Kuma C, Iseri T, Matsumura SI, Kawase A, Matsuura M, Iwaki M. Inhibitory Effect of Ocimum gratissimum Leaf Extract on Postprandial Increase of Blood Glucose. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19883728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tea of Ocimum gratissimum (OG) leaves has been commonly consumed by people living in Ishigaki Island, Okinawa prefecture, Japan, and is considered to be effective for improving diabetes mellitus. In this study, we aimed to clarify the inhibitory potential of OG leaves extract (OG-ext) on gastrointestinal glucose absorption and to provide theoretical evidence for the anti-hyperglycemic effect of OG-ext. The increase of blood glucose after oral administration of α-starch and glucose in mice was suppressed by co-administration of OG-ext. An in vitro enzymatic assay suggested that amylase and maltase were inhibited weakly by the addition of OG-ext. In Caco-2 cells, a human intestinal epithelial model, the sodium-dependent glucose transporter (SGLT) 1-mediated uptake of fluorescence glucose analog was inhibited significantly by the addition of OG-ext in a concentration-dependent manner. These results indicate that the inhibitory effect on SGLT1 is one of the mechanisms of the anti-hyperglycemic effect of the tea of OG leaves.
Collapse
Affiliation(s)
| | - Chiaki Kuma
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Taichi Iseri
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | | | - Masayoshi Matsuura
- Faculty of Pharmacy, Kindai University, Osaka, Japan
- Saera Pharmaceutical Corporation, Osaka, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka, Japan
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
- Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
23
|
Furuta T, Mizukami Y, Asano L, Kotake K, Ziegler S, Yoshida H, Watanabe M, Sato SI, Waldmann H, Nishikawa M, Uesugi M. Nutrient-Based Chemical Library as a Source of Energy Metabolism Modulators. ACS Chem Biol 2019; 14:1860-1865. [PMID: 31436407 DOI: 10.1021/acschembio.9b00444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent conjugates of multiple nutrients often exhibit greater biological activities than each individual nutrient and more predictable safety profiles than completely unnatural chemical entities. Here, we report the construction and application of a focused chemical library of 308 covalent conjugates of a variety of small-molecule nutrients. Screening of the library with a reporter gene of sterol regulatory element-binding protein (SREBP), a master regulator of mammalian lipogenesis, led to the discovery of a conjugate of docosahexaenoic acid (DHA), glucosamine, and amino acids as an inhibitor of SREBP (molecule 1, DHG). Mechanistic analyses indicate that molecule 1 impairs the SREBP activity by inhibiting glucose transporters and thereby activating AMP-activated protein kinase (AMPK). Oral administration of molecule 1 suppressed the intestinal absorption of glucose in mice. These results suggest that such synthetic libraries of nutrient conjugates serve as a source of novel chemical tools and pharmaceutical seeds that modulate energy metabolism.
Collapse
Affiliation(s)
- Tomoyuki Furuta
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuya Mizukami
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lisa Asano
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenjiro Kotake
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Hiroki Yoshida
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Mizuki Watanabe
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shin-ichi Sato
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Motonari Uesugi
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
24
|
Matsumoto Y, Ishii M, Hasegawa S, Sekimizu K. Enterococcus faecalis YM0831 suppresses sucrose-induced hyperglycemia in a silkworm model and in humans. Commun Biol 2019; 2:157. [PMID: 31069266 PMCID: PMC6497652 DOI: 10.1038/s42003-019-0407-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia caused by excessive intake of sucrose leads to lifestyle-related diseases such as diabetes. Administration of a lactic acid bacterial strain to mice suppresses sucrose-induced hyperglycemia, but evidence for a similar effect in humans is lacking. Here we show that Enterococcus faecalis YM0831, identified using an in vivo screening system with silkworms, suppressed sucrose-induced hyperglycemia in humans. E. faecalis YM0831 also suppressed glucose-induced hyperglycemia in silkworms. E. faecalis YM0831 inhibited glucose uptake by the human intestinal epithelial cell line Caco-2. A transposon insertion mutant of E. faecalis YM0831, which showed decreased inhibitory activity against glucose uptake by Caco-2 cells, also exhibited decreased inhibitory activity against both sucrose-induced and glucose-induced hyperglycemia in silkworms. In human clinical trials, oral ingestion of E. faecalis YM0831 suppressed the increase in blood glucose in a sucrose tolerance test. These findings suggest that E. faecalis YM0831 inhibits intestinal glucose transport and suppresses sucrose-induced hyperglycemia in humans.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395 Japan
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588 Japan
| | - Masaki Ishii
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-shi, Tokyo, 202-8585 Japan
- Genome Pharmaceuticals Institute Co. Ltd., 3-4-5-2D Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Setsuo Hasegawa
- Pharmaspur Inc., Toyo building, 1-2-10 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395 Japan
- Genome Pharmaceuticals Institute Co. Ltd., 3-4-5-2D Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
25
|
Pico J, Corbin S, Ferruzzi MG, Martinez MM. Banana flour phenolics inhibit trans-epithelial glucose transport from wheat cakes in a coupled in vitrodigestion/Caco-2 cell intestinal model. Food Funct 2019; 10:6300-6311. [DOI: 10.1039/c9fo01679a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A 10% replacement of wheat flour with banana flour subjected to different processing conditions resulted in from 45.0 to 54.5% higher glucose transport inhibition.
Collapse
Affiliation(s)
- Joana Pico
- School of Engineering
- University of Guelph
- Guelph
- Canada
| | - Sydney Corbin
- Plants for Human Health Institute
- Department of Food
- Bioprocessing and Nutrition Science
- North Carolina State University
- Kannapolis
| | - Mario G. Ferruzzi
- Plants for Human Health Institute
- Department of Food
- Bioprocessing and Nutrition Science
- North Carolina State University
- Kannapolis
| | | |
Collapse
|
26
|
Gil-Iturbe E, Castilla-Madrigal R, Barrenetxe J, Villaro AC, Lostao MP. GLUT12 expression and regulation in murine small intestine and human Caco-2 cells. J Cell Physiol 2018; 234:4396-4408. [PMID: 30352123 DOI: 10.1002/jcp.27231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
GLUT12 was cloned from the mammary cancer cell line MCF-7, but its physiological role still needs to be elucidated. To gain more knowledge of GLUT12 function in the intestine, we investigated GLUT12 subcellular localization in the small intestine and its regulation by sugars, hormones, and intracellular mediators in Caco-2 cells and mice. Immunohistochemical methods were used to determine GLUT12 subcellular localization in human and murine small intestine. Brush border membrane vesicles were isolated for western blot analyses. Functional studies were performed in Caco-2 cells by measuring α-methyl-d-glucose (αMG) uptake in the absence of sodium. GLUT12 is located in the apical cytoplasm, below the brush border membrane, and in the perinuclear region of murine and human enterocytes. In Caco-2 cells, GLUT12 translocation to the apical membrane and α-methyl- d-glucose uptake by the transporter are stimulated by protons, glucose, insulin, tumor necrosis factor-α (TNF-α), protein kinase C, and AMP-activated protein kinase. In contrast, hypoxia decreases GLUT12 expression in the apical membrane. Upregulation of TNF-α and hypoxia-inducible factor-1α ( HIF-1α) genes is found in the jejunal mucosa of diet-induced obese mice. In these animals, GLUT12 expression in the brush border membrane is slightly decreased compared with lean animals. Moreover, an intraperitoneal injection of insulin does not induce GLUT12 translocation to the membrane, as it occurs in lean animals. GLUT12 rapid translocation to the enterocytes' apical membrane in response to glucose and insulin could be related to GLUT12 participation in sugar absorption during postprandial periods. In obesity, in which insulin sensitivity is reduced, the contribution of GLUT12 to sugar absorption is affected.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Nutrition Research Centre, University of Navarra, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Nutrition Research Centre, University of Navarra, Pamplona, Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Ana Cristina Villaro
- Department of Histology and Pathological Anatomy, University of Navarra, Pamplona, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,Nutrition Research Centre, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
27
|
Simmen S, Cosin-Roger J, Melhem H, Maliachovas N, Maane M, Baebler K, Weder B, Maeyashiki C, Spanaus K, Scharl M, de Vallière C, Zeitz J, Vavricka SR, Hausmann M, Rogler G, Ruiz PA. Iron Prevents Hypoxia-Associated Inflammation Through the Regulation of Nuclear Factor-κB in the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2018; 7:339-355. [PMID: 30704983 PMCID: PMC6357696 DOI: 10.1016/j.jcmgh.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hypoxia-associated pathways influence the development of inflammatory bowel disease. Adaptive responses to hypoxia are mediated through hypoxia-inducible factors, which are regulated by iron-dependent hydroxylases. Signals reflecting oxygen tension and iron levels in enterocytes regulate iron metabolism. Conversely, iron availability modulates responses to hypoxia. In the present study we sought to elucidate how iron influences the responses to hypoxia in the intestinal epithelium. METHODS Human subjects were exposed to hypoxia, and colonic biopsy specimens and serum samples were collected. HT-29, Caco-2, and T84 cells were subjected to normoxia or hypoxia in the presence of iron or the iron chelator deferoxamine. Changes in inflammatory gene expression and signaling were assessed by quantitative polymerase chain reaction and Western blot. Chromatin immunoprecipitation was performed using antibodies against nuclear factor (NF)-κB and primers for the promoter of tumor necrosis factor (TNF) and interleukin (IL)1β. RESULTS Human subjects presented reduced levels of ferritin in the intestinal epithelium after hypoxia. Hypoxia reduced iron deprivation-associated TNF and IL1β expression in HT-29 cells through the induction of autophagy. Contrarily, hypoxia triggered TNF and IL1β expression, and NF-κB activation in Caco-2 and T84 cells. Iron blocked autophagy in Caco-2 cells, while reducing hypoxia-associated TNF and IL1β expression through the inhibition of NF-κB binding to the promoter of TNF and IL1β. CONCLUSIONS Hypoxia promotes iron mobilization from the intestinal epithelium. Hypoxia-associated autophagy reduces inflammatory processes in HT-29 cells. In Caco-2 cells, iron uptake is essential to counteract hypoxia-induced inflammation. Iron mobilization into enterocytes may be a vital protective mechanism in the hypoxic inflamed mucosa.
Collapse
Affiliation(s)
- Simona Simmen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nikolaos Maliachovas
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Max Maane
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jonas Zeitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland,Center of Gastroenterology, Clinic Hirslanden, Zurich, Switzerland
| | - Stephan R. Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro A. Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland,Correspondence Address correspondence to: Pedro A. Ruiz-Castro, PhD, Department of Gastroenterology and Hepatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
28
|
Taira N, Atsumi E, Nakachi S, Takamatsu R, Yohena T, Kawasaki H, Kawabata T, Yoshimi N. Comparison of GLUT-1, SGLT-1, and SGLT-2 expression in false-negative and true-positive lymph nodes during the 18F-FDG PET/CT mediastinal nodal staging of non-small cell lung cancer. Lung Cancer 2018; 123:30-35. [PMID: 30089592 DOI: 10.1016/j.lungcan.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Although positron emission tomography (PET) with 2-deoxy-2-[fluorine-18]fluoro-d-glucose integrated with computed tomography (CT), (18F-FDG PET/CT), has recently improved the mediastinal nodal staging of non-small cell lung cancer (NSCLC), this method can show false negativity. We immunohistochemically investigated the expression of glucose transporters (GLUT-1, SGLT-1, and SGLT-2) in false negative and true positive mediastinal nodes via 18F-FDG PET/CT. METHODS We investigated patients with clinically-diagnosed N0/pathological N2 diseases and patients with clinically-diagnosed N2/pathological N2 disease. The patients who were included in this study were evaluated using 18F-FDG PET/CT followed by surgical resection between January 2004 and December 2015. The expression of GLUT-1, SGLT-1, and SGLT-2 in the metastatic mediastinal lymph nodes, and clinicopathological variables such as primary tumor size, lymph node size, histological type, and SUVmax of the primary lesion, were compared between false negative nodes and true positive nodes. RESULTS The total number of PET false negative metastatic mediastinal lymph nodes was 22 in the 17 patients who were clinical N0/pathological N2, and the number of PET true positives was 15 in the 11 patients who were clinical N2/pathological N2. GLUT-1 expression was positive in five false negative nodes and 10 true positive nodes. SGLT-2 expression was positive in 12 false negative nodes and one true positive node, whereas both false negative and true positive nodes showed no SGLT-1 staining. Univariate analysis showed that the reduced expression of GLUT-1 (P = 0.015), and overexpression of SGLT-2 (P = 0.004) were the significant causative factors for false negative nodes. Multivariate analysis also showed that the reduced expression of GLUT-1 (P = 0.012) and overexpression of SGLT-2 (P = 0.006) were the significant causative factors for false negative nodes. CONCLUSION It suggests that the reduced expression of GLUT-1 and overexpression of SGLT-2 are associated with false-negative lymph node metastases in NSCLC.
Collapse
Affiliation(s)
- Naohiro Taira
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan; Department of Surgery, National Hospital Organization, Okinawa National Hospital, Okinawa, Japan.
| | - Eriko Atsumi
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan; Department of Pathology, National Hospital Organization, Okinawa National Hospital, Okinawa, Japan
| | - Saori Nakachi
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Reika Takamatsu
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Tomofumi Yohena
- Department of Surgery, National Hospital Organization, Okinawa National Hospital, Okinawa, Japan
| | - Hidenori Kawasaki
- Department of Surgery, National Hospital Organization, Okinawa National Hospital, Okinawa, Japan
| | - Tsutomu Kawabata
- Department of Surgery, National Hospital Organization, Okinawa National Hospital, Okinawa, Japan
| | - Naoki Yoshimi
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
29
|
Müller U, Stübl F, Schwarzinger B, Sandner G, Iken M, Himmelsbach M, Schwarzinger C, Ollinger N, Stadlbauer V, Höglinger O, Kühne T, Lanzerstorfer P, Weghuber J. In Vitro and In Vivo Inhibition of Intestinal Glucose Transport by Guava (Psidium Guajava) Extracts. Mol Nutr Food Res 2018; 62:e1701012. [PMID: 29688623 PMCID: PMC6001447 DOI: 10.1002/mnfr.201701012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/15/2018] [Indexed: 12/21/2022]
Abstract
SCOPE Known pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases. METHODS AND RESULTS This study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose- and time-dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco-2 cells. Using sodium-containing (both glucose transporters, sodium-dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium-free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time-dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC-MS. CONCLUSION The data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.
Collapse
Affiliation(s)
- Ulrike Müller
- University of Applied Sciences Upper Austria4600WelsAustria
| | - Flora Stübl
- University of Applied Sciences Upper Austria4600WelsAustria
| | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| | - Georg Sandner
- University of Applied Sciences Upper Austria4600WelsAustria
| | | | - Markus Himmelsbach
- Johannes Kepler UniversityInstitute for Analytical Chemistry4040LinzAustria
| | - Clemens Schwarzinger
- Johannes Kepler UniversityInstitute for Chemical Technology of Organic Materials4040LinzAustria
| | - Nicole Ollinger
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| | - Verena Stadlbauer
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| | | | | | | | - Julian Weghuber
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| |
Collapse
|
30
|
Investigation of the influence of high glucose on molecular and genetic responses: an in vitro study using a human intestine model. GENES AND NUTRITION 2018; 13:11. [PMID: 29736189 PMCID: PMC5928582 DOI: 10.1186/s12263-018-0602-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
Background Dietary glucose consumption has increased worldwide. Long-term high glucose intake contributes to the development of obesity and type 2 diabetes mellitus (T2DM). Obese people tend to eat glucose-containing foods, which can lead to an addiction to glucose, increased glucose levels in the blood and intestine lumen, and exposure of intestinal enterocytes to high dietary glucose. Recent studies have documented a role for enterocytes in glucose sensing. However, the molecular and genetic relationship between high glucose levels and intestinal enterocytes has not been determined. We aimed to identify relevant target genes and molecular pathways regulated by high glucose in a well-established in vitro epithelial cell culture model of the human intestinal system (Caco-2 cells). Methods Cells were grown in a medium containing 5.5 and 25 mM glucose in a bicameral culture system for 21 days to mimic the human intestine. Transepithelial electrical resistance was used to control monolayer formation and polarization of the cells. Total RNA was isolated, and genome-wide mRNA expression profiles were determined. Molecular pathways were analyzed using the DAVID bioinformatics program. Gene expression levels were confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results Microarray gene expression data demonstrated that 679 genes (297 upregulated, 382 downregulated) were affected by high glucose treatment. Bioinformatics analysis indicated that intracellular protein export (p = 0.0069) and ubiquitin-mediated proteolysis (p = 0.024) pathways were induced, whereas glycolysis/gluconeogenesis (p < 0.0001), pentose phosphate (p = 0.0043), and fructose-mannose metabolism (p = 0.013) pathways were downregulated, in response to high glucose. Microarray analysis of gene expression showed that high glucose significantly induced mRNA expression levels of thioredoxin-interacting protein (TXNIP, p = 0.0001) and lipocalin 15 (LCN15, p = 0.0016) and reduced those of ATP-binding cassette, sub-family A member 1 (ABCA1, p = 0.0004), and iroquois homeobox 3 (IRX3, p = 0.0001). Conclusions To our knowledge, this is the first investigation of high glucose-regulated molecular responses in an intestinal enterocyte model. Our findings identify new target genes that may be important in the intestinal glucose absorption and metabolism during high glucose consumption.
Collapse
|
31
|
Chegeni M, Amiri M, Nichols BL, Nairn HY, Hamaker BR. Dietary starch breakdown product sensing mobilizes and apically activates α‐glucosidases in small intestinal enterocytes. FASEB J 2018; 32:3903-3911. [DOI: 10.1096/fj.201701029r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad Chegeni
- Department of Food ScienceWhistler Center for Carbohydrate ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Mahdi Amiri
- Department of Physiological ChemistryUniversity of Veterinary Medicine HannoverHannoverGermany
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Buford L. Nichols
- Department of PediatricsU.S. Department of Agriculture/Agricultural Research ServiceChildren's Nutrition Research CenterBaylor College of MedicineHoustonTexasUSA
| | - Hassan Y. Nairn
- Department of Physiological ChemistryUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Bruce R. Hamaker
- Department of Food ScienceWhistler Center for Carbohydrate ResearchPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
32
|
Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A. Green and Chamomile Teas, but not Acarbose, Attenuate Glucose and Fructose Transport via Inhibition of GLUT2 and GLUT5. Mol Nutr Food Res 2017; 61. [PMID: 28868668 DOI: 10.1002/mnfr.201700566] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Indexed: 01/03/2023]
Abstract
SCOPE High glycaemic sugars result in blood-glucose spikes, while large doses of post-prandial fructose inundate the liver, causing an imbalance in energy metabolism, both leading to increased risk of metabolic malfunction and type 2 diabetes. Acarbose, used for diabetes management, reduces post-prandial hyperglycaemia by delaying carbohydrate digestion. METHODS AND RESULTS Chamomile and green teas both inhibited digestive enzymes (α-amylase and maltase) related to intestinal sugar release, as already established for acarbose. However, acarbose had no effect on uptake of sugars using both differentiated human Caco-2 cell monolayers and Xenopus oocytes expressing human glucose transporter-2 (GLUT2) and GLUT5. Both teas effectively inhibited transport of fructose and glucose through GLUT2 inhibition, while chamomile tea also inhibited GLUT5. Long term incubation of Caco-2/TC7 cells with chamomile tea for 16 h or 4 days did not enhance the observed effects, indicating that inhibition is acute. Sucrase activity was directly inhibited by green tea and acarbose, but not chamomile. CONCLUSION These findings show that chamomile and green teas are potential tools to manage absorption and metabolism of sugars with efficacy against high sugar bolus stress inflicted, for example, by high fructose syrups, where the drug acarbose would be ineffective.
Collapse
Affiliation(s)
| | - Ebru Aydin
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Julia S Gauer
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Alison Pyner
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
33
|
Shimada H, Urabe Y, Okamoto Y, Li Z, Kawase A, Morikawa T, Tu P, Muraoka O, Iwaki M. Major constituents of Cistanche tubulosa , echinacoside and acteoside, inhibit sodium-dependent glucose cotransporter 1-mediated glucose uptake by intestinal epithelial cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Feng M, Betti M. Both PepT1 and GLUT Intestinal Transporters Are Utilized by a Novel Glycopeptide Pro-Hyp-CONH-GlcN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3295-3304. [PMID: 28391691 DOI: 10.1021/acs.jafc.7b00815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pro-Hyp (PO) accounts for many beneficial biological effects of collagen hydrolysates for skin and bone health. The objective of this study was to conjugate PO with glucosamine (GlcN) to create a novel glycopeptide Pro-Hyp-CONH-GlcN (POGlcN) and then to investigate the potential involvement of multiple transepithelial transport pathways for this glycopeptide. Nuclear magnetic resonance results revealed the amide nature of this glycopeptide with α and β configurations derived from GlcN. This glycopeptide was very resistant to simulated gastrointestinal digestion. Also, it showed a rate of transepithelial transport [permeability coefficient (Papp) of (2.82 ± 0.15) × 10-6 cm/s] across the Caco-2 cell monolayer superior to those of parental dipeptide PO and GlcN [Papp values of (1.45 ± 0.17) × 10-6 and (1.87 ± 0.15) × 10-6 cm/s, respectively]. A transport mechanism experiment indicated that the improved transport efficiency of POGlcN is attributed to the introduction of glucose transporters.
Collapse
Affiliation(s)
- Mengmeng Feng
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
35
|
O’Brien P, Corpe CP. Acute Effects of Sugars and Artificial Sweeteners on Small Intestinal Sugar Transport: A Study Using CaCo-2 Cells As an In Vitro Model of the Human Enterocyte. PLoS One 2016; 11:e0167785. [PMID: 27992462 PMCID: PMC5161324 DOI: 10.1371/journal.pone.0167785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 12/03/2022] Open
Abstract
Background The gastrointestinal tract is responsible for the assimilation of nutrients and plays a key role in the regulation of nutrient metabolism and energy balance. The molecular mechanisms by which intestinal sugar transport are regulated are controversial. Based on rodent studies, two models currently exist that involve activation of the sweet-taste receptor, T1R2/3: an indirect model, whereby luminal carbohydrates activate T1R2/3 expressed on enteroendocrine cells, resulting in the release of gut peptides which in turn regulate enterocyte sugar transport capacity; and a direct model, whereby T1R2/3 expressed on the enterocyte regulates enterocyte function. Aims To study the direct model of intestinal sugar transport using CaCo-2 cells, a well-established in vitro model of the human enterocyte. Methods Uptake of 10mM 14C D-Glucose and D-Fructose into confluent CaCo-2/TC7 cells was assessed following 3hr preincubation with sugars and artificial sweeteners in the presence and absence of the sweet taste receptor inhibitor, lactisole. Expression of the intestinal sugar transporters and sweet-taste receptors were also determined by RT-PCR. Results In response to short term changes in extracellular glucose and glucose/fructose concentrations (2.5mM to 75mM) carrier-mediated sugar uptake mediated by SGLT1 and/or the facilitative hexose transporters (GLUT1,2,3 and 5) was increased. Lactisole and artificial sweeteners had no effect on sugar transport regulated by glucose alone; however, lactisole increased glucose transport in cells exposed to glucose/fructose. RT-PCR revealed Tas1r3 and SGLT3 gene expression in CaCo-2/TC7 cells, but not Tas1r2. Conclusions In the short term, enterocyte sugar transport activities respond directly to extracellular glucose levels, but not fructose or artificial sweeteners. We found no evidence of a functional heterodimeric sweet taste receptor, T1R2/3 in CaCo-2 cells. However, when glucose/fructose is administered together there is an inhibitory effect on glucose transport possibly mediated by T1R3.
Collapse
Affiliation(s)
- Patrick O’Brien
- Diet and Cardiovascular Health Group, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom
| | - Christopher Peter Corpe
- Diet and Cardiovascular Health Group, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Slizyte R, Rommi K, Mozuraityte R, Eck P, Five K, Rustad T. Bioactivities of fish protein hydrolysates from defatted salmon backbones. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 11:99-109. [PMID: 28352546 PMCID: PMC5042338 DOI: 10.1016/j.btre.2016.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 11/07/2022]
Abstract
Bioactivities of bulk fish protein hydrolysates (FPH) from defatted salmon backbones obtained with eight different commercial enzymes and their combinations were tested. All FPH showed antioxidative activity in vitro. DPPH scavenging activity increased, while iron chelating ability decreased with increasing time of hydrolysis. All FPH showed ACE inhibiting effect which depended on type of enzyme and increased with time of hydrolysis. The highest effect was found for FPH produced with Trypsin. Bromelain + Papain hydrolysates reduced the uptake of radiolabelled glucose into CaCo-2 cells, a model of human enterocytes, indicating a potential antidiabetic effect of FPH. FPH obtained by Trypsin, Bromelain + Papain and Protamex showed the highest ACE inhibitory, cellular glucose transporter (GLUT/SGLT) inhibitory and in vitro antioxidative activities, respectively. Correlation was observed between the measured bioactivities, degree of hydrolysis and molecular weight profiles, supporting prolonged hydrolysis to obtain high bioactivities.
Collapse
Affiliation(s)
| | | | | | - Peter Eck
- Department of Human Nutritional Sciences, University of Manitoba, Canada
| | - Kathrine Five
- Norwegian University of Science and Technology, Norway
| | - Turid Rustad
- Norwegian University of Science and Technology, Norway
| |
Collapse
|
37
|
Inhibition of Intestinal α-Glucosidase and Glucose Absorption by Feruloylated Arabinoxylan Mono- and Oligosaccharides from Corn Bran and Wheat Aleurone. J Nutr Metab 2016; 2016:1932532. [PMID: 27073693 PMCID: PMC4814672 DOI: 10.1155/2016/1932532] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
The effect of feruloylated arabinoxylan mono- and oligosaccharides (FAXmo) on mammalian α-glucosidase and glucose transporters was investigated using human Caco-2 cells, rat intestinal acetone powder, and Xenopus laevis oocytes. The isolated FAXmo from wheat aleurone and corn bran were identified to have degree of polymerization (DP) of 4 and 1, respectively, by HPLC-MS. Both FAXmo extracts were effective inhibitors of sucrase and maltase functions of the α-glucosidase. The IC50 for FAXmo extracts on Caco-2 cells and rat intestinal α-glucosidase was 1.03–1.65 mg/mL and 2.6–6.5 mg/mL, respectively. Similarly, glucose uptake in Caco-2 cells was inhibited up to 40%. The inhibitory effect of FAXmo was dependent on their ferulic acid (FA) content (R = 0.95). Sodium independent glucose transporter 2 (GLUT2) activity was completely inhibited by FAXmo in oocytes injected to express GLUT2. Our results suggest that ferulic acid and feruloylated arabinoxylan mono-/oligosaccharides have potential for use in diabetes management.
Collapse
|
38
|
Tanino T, Nagai N, Funakami Y. Phloridzin-sensitive transport of echinacoside and acteoside and altered intestinal absorption route after application of Cistanche tubulosa extract. J Pharm Pharmacol 2015; 67:1457-65. [DOI: 10.1111/jphp.12450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/04/2015] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The objective of this study was to address the beneficial effects of Cistanche tubulosa extract on improving the low intestinal permeability of echinacoside (ECH) and acteoside (ACT).
Methods
Absorption of ECH and ACT in C. tubulosa extract was characterized using human intestinal Caco-2 cell monolayers with intact compounds. Glucose transporter-dependent absorption of ECH and ACT was confirmed by an in-situ intestinal perfusion technique.
Key findings
The apparent permeability (Papp) was not significantly different between intact ECH and intact ACT. In the presence of phloridzin, the Papp of the ECH and ACT at a high dose was reduced to 20% of the respective non-treatment, but was not altered by phloretin and verapamil. C. tubulosa extract at low and high doses enhanced the Papp of ECH and ACT (both by threefold), resulting in their large participation in sodium-dependent glucose transporter-independent absorption. At a low concentration, concomitant ECH and ACT levels in portal blood were significantly suppressed by phloridzin.
Conclusion
The dietary and medicinal C. tubulosa extract enhancing the intestinal absorption of ECH and ACT may serve to better manage human health, although the involvement of phloridzin-sensitive transport should be reduced.
Collapse
Affiliation(s)
- Tadatoshi Tanino
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | | |
Collapse
|
39
|
Wang CW, Chang WL, Huang YC, Chou FC, Chan FN, Su SC, Huang SF, Ko HH, Ko YL, Lin HC, Chang TC. An essential role of cAMP response element-binding protein in epidermal growth factor-mediated induction of sodium/glucose cotransporter 1 gene expression and intestinal glucose uptake. Int J Biochem Cell Biol 2015; 64:239-51. [PMID: 25936754 DOI: 10.1016/j.biocel.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/26/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023]
Abstract
The sodium/glucose cotransporter 1 (SGLT1) is responsible for glucose uptake in intestinal epithelial cells. Its expression is decreased in individuals with intestinal inflammatory disorders and is correlated with the pathogenesis of disease. The aim of this study was to understand the regulatory mechanism of the SGLT1 gene. Using the trinitrobenzene sulfonic acid-induced mouse models of intestinal inflammation, we observed decreased SGLT1 expression in the inflamed intestine was positively correlated with the mucosal level of epidermal growth factor (EGF) and activated CREB. Overexpression of EGF demonstrated that the effect of EGF on intestinal glucose uptake was primarily due to the increased level of SGLT1. We identified an essential cAMP binding element (CRE) confers EGF inducibility in the human SGLT1 gene promoter. ChIP assay further demonstrated the increased binding of CREB and CBP to the SGLT1 gene promoter in EGF-treated cells. In addition, the EGFR- and PI3K-dependent CREB phosphorylations are involved in the EGF-mediated SGLT1 expression. This is the first report to demonstrate that CREB is involved in EGF-mediated transcription regulation of SGLT1 gene in the normal and inflamed intestine, which can provide potential therapeutic applications for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Chun-Wen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wen-Liang Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yu-Chuan Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Chi Chou
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Na Chan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Chieh Su
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shu-Fen Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hui-Hsuan Ko
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Ling Ko
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hang-Chin Lin
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsu-Chung Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
40
|
Yamabe N, Kang KS, Lee W, Kim SN, Zhu BT. Estriol blunts postprandial blood glucose rise in male rats through regulating intestinal glucose transporters. Am J Physiol Endocrinol Metab 2015; 308:E370-9. [PMID: 25516546 PMCID: PMC4346740 DOI: 10.1152/ajpendo.00209.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite increased total food intake in healthy, late-stage pregnant women, their peak postprandial blood sugar levels are normally much lower than the levels seen in healthy nonpregnant women. In this study, we sought to determine whether estriol (E3), an endogenous estrogen predominantly produced during human pregnancy, contributes to the regulation of the postprandial blood glucose level in healthy normal rats. In vivo studies using rats showed that E3 blunted the speed and magnitude of the blood glucose rise following oral glucose administration, but it did not appear to affect the total amount of glucose absorbed. E3 also did not affect insulin secretion, but it significantly reduced the rate of intestinal glucose transport compared with vehicle-treated animals. Consistent with this finding, expression of the sodium-dependent glucose transporter 1 and 2 was significantly downregulated by E3 treatment in the brush-border membrane and basolateral membrane, respectively, of enterocytes. Most of the observed in vivo effects were noticeably stronger with E3 than with 17β-estradiol. Using differentiated human Caco-2 enterocyte monolayer culture as an in vitro model, we confirmed that E3 at physiologically relevant concentrations could directly inhibit glucose uptake via suppression of glucose transporter 2 expression, whereas 17β-estradiol did not have a similar effect. Collectively, these data showed that E3 can blunt the postprandial glycemic surge in rats through modulating the level of intestinal glucose transporters.
Collapse
Affiliation(s)
- Noriko Yamabe
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas; College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Ki Sung Kang
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas; College of Korean Medicine, Gachon University, Seongnam, Korea; Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Korea; and
| | - Woojung Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Korea; and
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Korea; and
| | - Bao Ting Zhu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas; Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Moradi SV, Varamini P, Toth I. The transport and efflux of glycosylated luteinising hormone-releasing hormone analogues in caco-2 cell model: contributions of glucose transporters and efflux systems. J Pharm Sci 2014; 103:3217-24. [PMID: 25174499 DOI: 10.1002/jps.24120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Luteinising hormone-releasing hormone (LHRH) analogues have wide therapeutic applications in the treatment of prostate cancers and endocrine disorders. The structure of LHRH was modified using a glycosylation strategy to increase the permeability of the peptide across biological membranes. Lactose, galactose and glucose units were coupled to LHRH peptide, and the impact of glucose transporters, GLUT2 and SGLT1, was investigated in the transport of the analogues. Results showed the contribution of both transporters in the transport of all LHRH analogues. In the presence of glucose transporter inhibitors, reduction in the apparent permeability (Papp ) was greatest for compound 6, which contains a glucose unit in the middle of the sequence (Papp = 58.54 ± 4.72 cm/s decreased to Papp = 1.6 ± 0.345 cm/s). The basolateral to apical flux of the glycosylated derivatives and the impact of two efflux pumps was also examined in Caco-2 cell monolayers. The efflux ratios (ERs) of all LHRH analogues in Caco-2 cells were in the range of 0.06-0.2 except for compound 4 (galactose modified, ER = 8.03). We demonstrated that the transport of the glycosylated peptides was facilitated through glucose transporters. The proportion of glucose and lactose derivatives pumped out by efflux pumps did not affect the Papp values of the analogues.
Collapse
Affiliation(s)
- Shayli Varasteh Moradi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
42
|
Wu P, He P, Zhao S, Huang T, Lu Y, Zhang K. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats. Molecules 2014; 19:12559-76. [PMID: 25153871 PMCID: PMC6270814 DOI: 10.3390/molecules190812559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, the effect and mechanism of a series of ursolic acid (UA) derivatives on glucose uptake were investigated in a Caco-2 cells model. Their effect on hyperglycemia, hyperlipidemia and oxidative stress were also demonstrated in streptozocin (STZ)-induced diabetic rats. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-glucose (2-NBDG) was used as a fluorescein in Caco-2 cells model to screen UA derivatives by glucose uptake and expression of glucose transporter protein (SGLT-1, GLUT-2). Moreover, STZ-induced diabetic rats were administered with these derivatives for 4 weeks of treatment. The fasting blood glucose (FBG), insulin levels, biochemical parameters, lipid levels, and oxidative stress markers were finally evaluated. The results of this study indicated that compounds 10 and 11 significantly inhibited 2-NBDG uptake under both Na+-dependent and Na+-independent conditions by decreasing SGLT-1 and GLUT-2 expression in the Caco-2 cells model. Further in vivo studies revealed that compound 10 significantly reduced hyperglycemia by increasing levels of serum insulin, total protein, and albumin, while the fasting blood glucose, body weight and food intake were restored much closer to those of normal rats. Compounds 10 and 11 showed hypolipidemic activity by decreasing the total amounts of cholesterol (TC) and triglycerides (TG). Furthermore, compound 10 showed antioxidant potential which was confirmed by elevation of glutathione (GSH) and superoxide dismutase (SOD) and reduction of malondialdehyde (MDA) levels in the liver and kidney of diabetic rats. It was concluded that compound 10 caused an apparent inhibition of intestinal glucose uptake in Caco-2 cells and hypoglycemia, hypolipidemia and augmented oxidative stress in STZ-induced diabetic rats. Thus, compound 10 could be developed as a potentially complementary therapeutic or prophylactic agent for diabetics mellitus and its complications.
Collapse
Affiliation(s)
- Panpan Wu
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping He
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tianming Huang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujing Lu
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
43
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
44
|
Bolado-Carrancio A, Riancho JA, Sainz J, Rodríguez-Rey JC. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells. Biochem Biophys Res Commun 2014; 446:614-9. [PMID: 24632207 DOI: 10.1016/j.bbrc.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022]
Abstract
NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.
Collapse
Affiliation(s)
- A Bolado-Carrancio
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - J A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander, Spain
| | - J Sainz
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander, Spain
| | - J C Rodríguez-Rey
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain.
| |
Collapse
|
45
|
Cheng MW, Chegeni M, Kim KH, Zhang G, Benmoussa M, Quezada-Calvillo R, Nichols BL, Hamaker BR. Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. J Clin Biochem Nutr 2013; 54:55-60. [PMID: 24426192 PMCID: PMC3882486 DOI: 10.3164/jcbn.13-59] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/22/2013] [Indexed: 01/07/2023] Open
Abstract
Using the small intestine enterocyte Caco-2 cell model, sucrase-isomaltase (SI, the mucosal α-glucosidase complex) expression and modification were examined relative to exposure to different mono- and disaccharide glycemic carbohydrates. Caco-2/TC7 cells were grown on porous supports to post-confluence for complete differentiation, and dietary carbohydrate molecules of glucose, sucrose (disaccharide of glucose and fructose), maltose (disaccharide of two glucoses α-1,4 linked), and isomaltose (disaccharide of two glucoses α-1,6 linked) were used to treat the cells. qRT-PCR results showed that all the carbohydrate molecules induced the expression of the SI gene, though maltose (and isomaltose) showed an incremental increase in mRNA levels over time that glucose did not. Western blot analysis of the SI protein revealed that only maltose treatment induced a higher molecular weight band (Mw ~245 kDa), also at higher expression level, suggesting post-translational processing of SI, and more importantly a sensing of maltose. Further work is warranted regarding this putative sensing response as a potential control point for starch digestion and glucose generation in the small intestine.
Collapse
Affiliation(s)
- Min-Wen Cheng
- Whistler Center for Carbohydrate Research, 745 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907-2009, USA ; Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA
| | - Mohammad Chegeni
- Whistler Center for Carbohydrate Research, 745 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907-2009, USA ; Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA
| | - Genyi Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
| | - Mustapha Benmoussa
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
| | - Roberto Quezada-Calvillo
- USDA/ARS Children's Nutrition Research Center and the Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA ; Department of Chemistry, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Buford L Nichols
- USDA/ARS Children's Nutrition Research Center and the Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, 745 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907-2009, USA ; Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA
| |
Collapse
|
46
|
Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One 2013; 8:e78932. [PMID: 24236070 PMCID: PMC3827299 DOI: 10.1371/journal.pone.0078932] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Polyphenols contained within plant tissues are consumed in significant amounts in the human diet and are known to influence a number of biological processes. This study investigated the effects of an anthocyanin-rich berry-extract on glucose uptake by human intestinal Caco-2 cells. Acute exposure (15 min) to berry extract (0.125%, w/v) significantly decreased both sodium-dependent (Total uptake) and sodium-independent (facilitated uptake) ³H-D-glucose uptake. In longer-term studies, SGLT1 mRNA and GLUT2 mRNA expression were reduced significantly. Polyphenols are known to interact directly with glucose transporters to regulate the rate of glucose absorption. Our in vitro data support this mechanism and also suggest that berry flavonoids may modulate post-prandial glycaemia by decreasing glucose transporter expression. Further studies are warranted to investigate the longer term effects of berry flavonoids on the management of glycaemia in human volunteers.
Collapse
|
47
|
Martins AD, Alves MG, Simões VL, Dias TR, Rato L, Moreira PI, Socorro S, Cavaco JE, Oliveira PF. Control of Sertoli cell metabolism by sex steroid hormones is mediated through modulation in glycolysis-related transporters and enzymes. Cell Tissue Res 2013; 354:861-8. [PMID: 24057877 DOI: 10.1007/s00441-013-1722-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022]
|
48
|
Batchelor DJ, German AJ, Shirazi-Beechey SP. Relevance of sodium/glucose cotransporter-1 (SGLT1) to diabetes mellitus and obesity in dogs. Domest Anim Endocrinol 2013; 44:139-44. [PMID: 23375266 DOI: 10.1016/j.domaniend.2012.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/18/2012] [Accepted: 12/29/2012] [Indexed: 11/17/2022]
Abstract
Glucose transport across the enterocyte brush border membrane by sodium/glucose cotransporter-1 (SGLT1, coded by Slc5a1) is the rate-limiting step for intestinal glucose transport. The relevance of SGLT1 expression in predisposition to diabetes mellitus and to obesity was investigated in dogs. Cultured Caco-2/TC7 cells were shown to express SGLT1 in vitro. A 2-kbp fragment of the Slc5a1 5' flanking region was cloned from canine genomic DNA, ligated into reporter gene plasmids, and shown to drive reporter gene expression in these cells above control (P < 0.001). To determine the effect of the 3 known SNPs in this region on promoter function, new promoter/reporter constructs (all permutations of these 3 SNPs) were created by site-directed mutagenesis. No significant differences in promoter function were seen, suggesting that these SNPs do not have a significant effect on the constitutive transcription of SGLT1 mRNA in dogs. A search for novel SNPs in this region in dogs was made in 2 breeds predisposed to diabetes mellitus (Samoyed and cairn terrier), 2 breeds that rarely develop diabetes (boxer and German shepherd), and 2 breeds predisposed to obesity (Labrador retriever and cocker spaniel). The Slc5a1 5' flanking region was amplified from 10 healthy individuals of each of these breeds by high-fidelity PCR with the use of breed-labeled primers and sequenced by pyrosequencing. The sequence of the Slc5a1 5' flanking region in all individuals of all breeds tested was identical. On this evidence, variations in Slc5a1 promoter sequence between dogs do not influence the pathogenesis of diabetes mellitus or obesity in these breeds.
Collapse
Affiliation(s)
- D J Batchelor
- Epithelial Function and Development Group, Department of Functional and Comparative Genomics, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | | | |
Collapse
|
49
|
Abstract
Excessive post-prandial glucose excursions are a risk factor for developing diabetes, associated with impaired glucose tolerance. One way to limit the excursion is to inhibit the activity of digestive enzymes for glucose production and of the transporters responsible for glucose absorption. Flavonols, theaflavins, gallate esters, 5-caffeoylqunic acid and proanthocyanidins inhibit α-amylase activity. Anthocyanidins and catechin oxidation products, such as theaflavins and theasinsensins, inhibit maltase; sucrase is less strongly inhibited but anthocyanidins seem somewhat effective. Lactase is inhibited by green tea catechins. Once produced in the gut by digestion, glucose is absorbed by SGLT1 and GLUT2 transporters, inhibited by flavonols and flavonol glycosides, phlorizin and green tea catechins. These in vitro data are supported by oral glucose tolerance tests on animals, and by a limited number of human intervention studies on polyphenol-rich foods. Acarbose is a drug whose mechanism of action is only through inhibition of α-amylases and α-glucosidases, and in intervention studies gives a 6% reduction in diabetes risk over 3 years. A lifetime intake of dietary polyphenols, assuming the same mechanism, has therefore a comparable potential to reduce diabetes risk, but more in vivo studies are required to fully test the effect of modulating post-prandial blood glucose in humans.
Collapse
Affiliation(s)
- Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
50
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Caco2 cell culture as an intestinal epithelium model to study hexose transport. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|