1
|
Gherardi G, Corbioli G, Ruzza F, Rizzuto R. CoQ 10 and Resveratrol Effects to Ameliorate Aged-Related Mitochondrial Dysfunctions. Nutrients 2022; 14:4326. [PMID: 36297010 PMCID: PMC9611139 DOI: 10.3390/nu14204326] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria participate in the maintenance of cellular homeostasis. Firstly, mitochondria regulate energy metabolism through oxidative phosphorylation. In addition, they are involved in cell fate decisions by activating the apoptotic intrinsic pathway. Finally, they work as intracellular signaling hubs as a result of their tight regulation of ion and metabolite concentrations and other critical signaling molecules such as ROS. Aging is a multifactorial process triggered by impairments in different cellular components. Among the various molecular pathways involved, mitochondria are key regulators of longevity. Indeed, mitochondrial deterioration is a critical signature of the aging process. In this scenario, we will focus specifically on the age-related decrease in CoQ levels, an essential component of the electron transport chain (ETC) and an antioxidant, and how CoQ supplementation could benefit the aging process. Generally, any treatment that improves and sustains mitochondrial functionality is a good candidate to counteract age-related mitochondrial dysfunctions. In recent years, heightened attention has been given to natural compounds that modulate mitochondrial function. One of the most famous is resveratrol due to its ability to increase mitochondrial biogenesis and work as an antioxidant agent. This review will discuss recent clinical trials and meta-analyses based on resveratrol and CoQ supplementation, focusing on how these compounds could improve mitochondrial functionality during aging.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Giovanni Corbioli
- Solgar Italia Multinutrient Spa, Via Prima Strada 23/3, 35129 Padova, Italy
| | - Filippo Ruzza
- Solgar Italia Multinutrient Spa, Via Prima Strada 23/3, 35129 Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
3
|
Suenobu T, Shibata S, Fukuzumi S. Catalytic Formation of Hydrogen Peroxide from Coenzyme NADH and Dioxygen with a Water-Soluble Iridium Complex and a Ubiquinone Coenzyme Analogue. Inorg Chem 2016; 55:7747-54. [PMID: 27403568 DOI: 10.1021/acs.inorgchem.6b01220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A ubiquinone coenzyme analogue (Q0: 2,3-dimethoxy-5-methyl-1,4-benzoquinone) was reduced by coenzyme NADH to yield the corresponding reduced form of Q0 (Q0H2) in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex (1: [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H2O)]2SO4) in water at ambient temperature as observed in the respiratory chain complex I (Complex I). In the catalytic cycle, the reduction of 1 by NADH produces the corresponding iridium hydride complex that in turn reduces Q0 to produce Q0H2. Q0H2 reduced dioxygen to yield hydrogen peroxide (H2O2) under slightly basic conditions. Catalytic generation of H2O2 was made possible in the reaction of O2 with NADH as the functional expression of NADH oxidase in white blood cells utilizing the redox cycle of Q0 as well as 1 for the first time in a nonenzymatic homogeneous reaction system.
Collapse
Affiliation(s)
- Tomoyoshi Suenobu
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology , Suita, Osaka 565-0871, Japan
| | - Satoshi Shibata
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology , Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology , Suita, Osaka 565-0871, Japan.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea.,Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency , Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
4
|
Prangthip P, Kettawan A, Posuwan J, Okuno M, Okamoto T. An Improvement of Oxidative Stress in Diabetic Rats by Ubiquinone-10 and Ubiquinol-10 and Bioavailability after Short- and Long-Term Coenzyme Q10Supplementation. J Diet Suppl 2016; 13:647-59. [DOI: 10.3109/19390211.2016.1164788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and Its Role in the Dietary Therapy against Aging. Molecules 2016; 21:373. [PMID: 26999099 PMCID: PMC6273282 DOI: 10.3390/molecules21030373] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| |
Collapse
|
6
|
Lutz A, Raina JB, Motti CA, Miller DJ, van Oppen MJH. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora. PLoS One 2015; 10:e0139290. [PMID: 26426118 PMCID: PMC4591267 DOI: 10.1371/journal.pone.0139290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.
Collapse
Affiliation(s)
- Adrian Lutz
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Jean-Baptiste Raina
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David J. Miller
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:93-136. [PMID: 22399420 DOI: 10.1007/978-94-007-2869-1_5] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress is among the major causes of toxicity due to interaction of Reactive Oxygen Species (ROS) with cellular macromolecules and structures and interference with signal transduction pathways. The mitochondrial respiratory chain, specially from Complexes I and III, is considered the main origin of ROS particularly under conditions of high membrane potential, but several other sources may be important for ROS generation, such as mitochondrial p66(Shc), monoamine oxidase, α-ketoglutarate dehydogenase, besides redox cycling of redox-active molecules. ROS are able to oxidatively modify lipids, proteins, carbohydrates and nucleic acids in mitochondria and to activate/inactivate signalling pathways by oxidative modification of redox-active factors. Cells are endowed with several defence mechanisms including repair or removal of damaged molecules, and antioxidant systems, either enzymatic or non-enzymatic. Oxidative stress is at the basis of ageing and many pathological disorders, such as ischemic diseases, neurodegenerative diseases, diabetes, and cancer, although the underlying mechanisms are not always completely understood.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors 2011; 37:330-54. [PMID: 21989973 DOI: 10.1002/biof.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/12/2022]
Abstract
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.
Collapse
|
9
|
Kettawan A, Kunthida C, Takahashi T, Kishi T, Chikazawa J, Sakata Y, Yano E, Watabe K, Yamamoto Y, Okamoto T. The quality control assessment of commercially available coenzyme q(10)-containing dietary and health supplements in Japan. J Clin Biochem Nutr 2011; 41:124-31. [PMID: 18193106 PMCID: PMC2170950 DOI: 10.3164/jcbn.2007017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 01/19/2007] [Indexed: 12/05/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has been widely commercially available in Japan as a dietary and health supplement since 2001 and is used for the prevention of lifestyle-related diseases induced by free radicals and aging. We evaluated CoQ10 supplements to ensure that these supplements can be used effectively and safely. Commercially available products were selected and assessed by the quality control tests specified in the Japanese Pharmacopoeia XV. When the disintegration time of CoQ10 supplements was measured, a few tested supplements did not completely disintegrate even after incubation in water for an hour at 37°C. In the content test, many samples were well controlled. However, a few supplements showed low recovery rates of CoQ10 as compared to manufacturer’s indicated contents. Among soft capsule and liquid supplements, the reduced form of CoQ10 (H2CoQ10), as well as the oxidized form, was detected by HPLC with electrochemical detector. The results for experimental formulated CoQ10 supplements demonstrated that H2CoQ10 was produced by the interaction of CoQ10 with vitamins E and/or C. From these results, we concluded that quality varied considerably among the many supplement brands containing CoQ10. Additionally, we also demonstrated that H2CoQ10 can be detected in some foods as well as in CoQ10 supplements.
Collapse
Affiliation(s)
- Aikkarach Kettawan
- Laboratory of Biochemistry, Department of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kettawan A, Takahashi T, Kongkachuichai R, Charoenkiatkul S, Kishi T, Okamoto T. Protective effects of coenzyme q(10) on decreased oxidative stress resistance induced by simvastatin. J Clin Biochem Nutr 2011; 40:194-202. [PMID: 18398496 PMCID: PMC2275764 DOI: 10.3164/jcbn.40.194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/25/2006] [Indexed: 11/29/2022] Open
Abstract
The effects of simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase), on oxidative stress resistance and the protective effects of coenzyme Q (CoQ) were investigated. When simvastatin was administered orally to mice, the levels of oxidized and reduced CoQ9 and CoQ10 in serum, liver, and heart, decreased significantly when compared to those of control. The levels of thiobarbituric acid reactive substances induced by Fe2+-ascorbate in liver and heart mitochondria also increased significantly with simvastatin. Furthermore, cultured cardiac myocytes treated with simvastatin exhibited less resistance to oxidative stress, decreased time to the cessation of spontaneous beating in response to H2O2 addition, and decreased responsiveness to electrical field stimulation. These results suggested that oral administration of simvastatin suppresses the biosynthesis of CoQ, which shares the same biosynthesis pathway as cholesterol up to farnesyl pyrophosphate, thus compromising the physiological function of reduced CoQ, which possesses antioxidant activity. However, these undesirable effects induced by simvastatin were alleviated by coadministering CoQ10 with simvastatin to mice. Simvastatin also reduced the activity of NADPH-CoQ reductase, a biological enzyme that converts oxidized CoQ to the corresponding reduced CoQ, while CoQ10 administration improved it. These findings may also support the efficacy of coadministering CoQ10 with statins.
Collapse
Affiliation(s)
- Aikkarach Kettawan
- Laboratory of Biochemistry, Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | | | | | | | | | | |
Collapse
|
11
|
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131:225-35. [PMID: 20193705 DOI: 10.1016/j.mad.2010.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/19/2010] [Accepted: 02/20/2010] [Indexed: 01/28/2023]
Abstract
Coenzyme Q (Q) is a key component for bioenergetics and antioxidant protection in the cell. During the last years, research on diseases linked to Q-deficiency has highlighted the essential role of this lipid in cell physiology. Q levels are also affected during aging and neurodegenerative diseases. Therefore, therapies based on dietary supplementation with Q must be considered in cases of Q deficiency such as in aging. However, the low bioavailability of dietary Q for muscle and brain obligates to design new mechanisms to increase the uptake of this compound in these tissues. In the present review we show a complete picture of the different functions of Q in cell physiology and their relationship to age and age-related diseases. Furthermore, we describe the problems associated with dietary Q uptake and the mechanisms currently used to increase its uptake or even its biosynthesis in cells. Strategies to increase Q levels in tissues are indicated.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, CIBERER-Instituto de Salud Carlos III, Carretera de Utrera, Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|
12
|
Gille L, Rosenau T, Kozlov A, Gregor W. Ubiquinone and tocopherol: Dissimilar siblings. Biochem Pharmacol 2008; 76:289-302. [DOI: 10.1016/j.bcp.2008.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/06/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022]
|
13
|
Takahashi T, Okuno M, Okamoto T, Kishi T. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells. Biofactors 2008; 32:59-70. [PMID: 19096101 DOI: 10.1002/biof.5520320108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We purified an NADPH-dependent coenzyme Q reductase (NADPH-CoQ reductase) in rat liver cytosol and compared its enzymatic properties with those of the other CoQ10 reductases such as NADPH: quinone acceptor oxidoreductase 1 (NQO1), lipoamide dehydrogenase, thioredoxine reductase and glutathione reductase. NADPH-CoQ reductase was the only enzyme that preferred NADPH to NADH as an electron donor and was also different from the other CoQ10 reductases in the sensitivities to its inhibitors and stimulators. Especially, Zn2+ was the most powerful inhibitor for NADPH-CoQ reductase, but CoQ10 reduction by the other CoQ10 reductases could not be inhibited by Zn2+. Furthermore, the reduction of the CoQ9 incorporated into HeLa cells was also inhibited by Zn2+ in the presence of pyrithione, a zinc ionophore. Moreover, NQO1 gene silencing in HeLa cells by transfection of a small interfering RNA resulted in lowering of both the NQO1 protein level and the NQO1 activity by about 75%. However, this transfection did not affect the NADPH-CoQ reductase activity and the reduction of CoQ9 incorporated into the cells. These results suggest that the NADPH-CoQ reductase located in cytosol may be the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Biochemistry, Department of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.
| | | | | | | |
Collapse
|
14
|
Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion 2007; 7 Suppl:S41-50. [PMID: 17482888 DOI: 10.1016/j.mito.2007.02.006] [Citation(s) in RCA: 354] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/01/2007] [Accepted: 02/18/2007] [Indexed: 01/23/2023]
Abstract
A number of functions for coenzyme Q (CoQ) have been established during the years but its role as an effective antioxidant of the cellular membranes remains of dominating interest. This compound is our only endogenously synthesized lipid soluble antioxidant, present in all membranes and exceeding both in amount and efficiency that of other antioxidants. The protective effect is extended to lipids, proteins and DNA mainly because of its close localization to the oxidative events and the effective regeneration by continuous reduction at all locations. Its biosynthesis is influenced by nuclear receptors which may give the possibility, in the future, by using agonists or antagonists, of reestablishing the normal level in deficiencies caused by genetic mutations, aging or cardiomyopathy. An increase in CoQ concentration in specific cellular compartments in the presence of various types of oxidative stress appears to be of considerable interest.
Collapse
Affiliation(s)
- Magnus Bentinger
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Navas P, Villalba JM, Lenaz G. Coenzyme Q-dependent functions of plasma membrane in the aging process. AGE (DORDRECHT, NETHERLANDS) 2005; 27:139-146. [PMID: 23598620 PMCID: PMC3458499 DOI: 10.1007/s11357-005-1632-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 06/13/2005] [Indexed: 06/02/2023]
Abstract
Coenzyme Q (Q) is reduced in plasma membrane and mitochondria by NAD(P)H-dependent reductases providing reducing equivalents to maintain both respiratory chain and antioxidant protection. Reactive oxygen species (ROS) are accumulated in the aging process originating mainly in mitochondria but also in other membranes, such as plasma membrane partially by the loss of electrons from the semiquinone. The reduction of Q by NAD(P)H-dependent reductases in plasma membrane is responsible for providing its antioxidant capacity, preventing both the lipid peroxidation chain and the activation of the ceramide-dependent apoptosis pathway. Both Q content and its reductases are decreased in plasma membrane of aging mammals. Calorie restriction, which extends mammal life span, increases the content of Q in the plasma membrane and also activates Q reductases in this membrane. Both lipid peroxidation and ceramide production are decreased in the plasma membrane in calorie-restricted animals. Plasma membrane is, then, an important cellular component to control the aging process through its concentration and redox state of Q.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Giorgio Lenaz
- Departimento di Biochimica ‘G. Moruzzi’, Università di Bologna, 40126 Bologna, Italy
| |
Collapse
|
16
|
Björnstedt M, Nordman T, Olsson JM. Extramitochondrial reduction of ubiquinone by flavoenzymes. Methods Enzymol 2004; 378:131-8. [PMID: 15038962 DOI: 10.1016/s0076-6879(04)78008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Mikael Björnstedt
- Department of Laboratory Medicine, Karolinska Institutet, Hudinge University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
GENOVA MARIALUISA, PICH MILENAMERLO, BERNACCHIA ANDREA, BIANCHI CRISTINA, BIONDI ANNALISA, BOVINA CARLA, FALASCA ANNAIDA, FORMIGGINI GABRIELLA, CASTELLI GIOVANNAPARENTI, LENAZ GIORGIO. The Mitochondrial Production of Reactive Oxygen Species in Relation to Aging and Pathology. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Genova ML, Pich MM, Bernacchia A, Bianchi C, Biondi A, Bovina C, Falasca AI, Formiggini G, Castelli GP, Lenaz G. The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann N Y Acad Sci 2004; 1011:86-100. [PMID: 15126287 DOI: 10.1007/978-3-662-41088-2_10] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are known to be strong producers of reactive oxygen species (ROS) and, at the same time, particularly susceptible to the oxidative damage produced by their action on lipids, proteins, and DNA. In particular, damage to mtDNA induces alterations to the polypeptides encoded by mtDNA in the respiratory complexes, with consequent decrease of electron transfer, leading to further production of ROS and thus establishing a vicious circle of oxidative stress and energetic decline. This deficiency in mitochondrial energetic capacity is considered the cause of aging and age-related degenerative diseases. Complex I would be the enzyme most affected by ROS, since it contains seven of the 13 subunits encoded by mtDNA. Accordingly, we found that complex I activity is significantly affected by aging in rat brain and liver mitochondria as well as in human platelets. Moreover, due to its rate control over aerobic respiration, such alterations are reflected on the entire oxidative phosphorylation system. We also investigated the role of mitochondrial complex I in superoxide production and found that the one-electron donor to oxygen is most probably the Fe-S cluster N2. Short chain coenzyme Q (CoQ) analogues enhance ROS formation, presumably by mediating electron transfer from N2 to oxygen, both in bovine heart SMP and in cultured HL60 cells. Nevertheless, we have accumulated much evidence of the antioxidant role of reduced CoQ(10) in several cellular systems and demonstrated the importance of DT-diaphorase and other internal cellular reductases to reduce exogenous CoQ(10) after incorporation.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Biochimica "G. Moruzzi," University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:171-99. [PMID: 14757233 DOI: 10.1016/j.bbamem.2003.11.012] [Citation(s) in RCA: 730] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coenzyme Q (CoQ) is present in all cells and membranes and in addition to be a member of the mitochondrial respiratory chain it has also several other functions of great importance for the cellular metabolism. This review summarizes the findings available to day concerning CoQ distribution, biosynthesis, regulatory modifications and its participation in cellular metabolism. There are a number of indications that this lipid is not always functioning by its direct presence at the site of action but also using e.g. receptor expression modifications, signal transduction mechanisms and action through its metabolites. The biosynthesis of CoQ is studied in great detail in bacteria and yeast but only to a limited extent in animal tissues and therefore the informations available is restricted. However, it is known that the CoQ is compartmentalized in the cell with multiple sites of biosynthesis, breakdown and regulation which is the basis of functional specialization. Some regulatory mechanisms concerning amount and biosynthesis are established and nuclear transcription factors are partly identified in this process. Using appropriate ligands of nuclear receptors the biosynthetic rate can be increased in experimental system which raises the possibility of drug-induced upregulation of the lipid in deficiency. During aging and pathophysiological conditions the tissue concentration of CoQ is modified which influences cellular functions. In this case the extent of disturbances is dependent on the localization and the modified distribution of the lipid at cellular and membrane levels.
Collapse
Affiliation(s)
- Mikael Turunen
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
20
|
Genova ML, Pich MM, Biondi A, Bernacchia A, Falasca A, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G. Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp Biol Med (Maywood) 2003; 228:506-13. [PMID: 12709577 DOI: 10.1177/15353702-0322805-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), which is considered as the pathogenic agent of many diseases and of aging. We have investigated the role of complex I in superoxide radical production and found by the combined use of specific inhibitors of complex I that the one-electron donor to oxygen in the complex is a redox center located prior to the sites where three different types of Coenzyme Q (CoQ) competitors bind, to be identified with an Fe-S cluster, most probably N2, or possibly an ubisemiquinone intermediate insensitive to all the above inhibitors. Short-chain Coenzyme Q analogs enhance superoxide formation, presumably by mediating electron transfer from N2 to oxygen. The clinically used CoQ analog, idebenone, is particularly effective, raising doubts on its safety as a drug. Cells counteract oxidative stress by antioxidants. CoQ is the only lipophilic antioxidant to be biosynthesized. Exogenous CoQ, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases. The plasma membrane oxidoreductase and DT-diaphorase are two such systems, likewise, they are overexpressed under oxidative stress conditions.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Biochimica "G Moruzzi", University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nordman T, Xia L, Björkhem-Bergman L, Damdimopoulos A, Nalvarte I, Arnér ESJ, Spyrou G, Eriksson LC, Björnstedt M, Olsson JM. Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. Biofactors 2003; 18:45-50. [PMID: 14695919 DOI: 10.1002/biof.5520180206] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ubiquinol is a powerful antioxidant, which is oxidized in action and needs to be replaced or regenerated to be capable of a sustained effort. This article summarises current knowledge of extramitochondrial reduction of ubiquinone by three flavoenzymes, i.e. lipoamide dehydrogenase, glutathione reductase and thioredoxin reductase, belonging to the same pyridine nucleotide-disulfide oxidoreductase family. These three enzymes are the most efficient extramitochondrial ubiquinone reductases so far described. The reduction of ubiquinone by lipoamide dehydrogenase and glutathione reductase is potently stimulated by zinc and the highest rate of reduction is achieved at acidic pH and the rates are equal with either NADPH or NADH as co-factors. The most efficient ubiquinone reductases are mammalian cytosolic thioredoxin reductases, which are selenoenzymes with a number of biological functions. Reduction of ubiquinone by thioredoxin reductase is in contrast to the other two enzymes investigated, inhibited by zinc and shows a sharp physiological pH optimum at pH 7.5. Furthermore, the reaction is selenium dependent as revealed from experiments using truncated and mutant forms of the enzyme and also in a cellular context by selenium treatment of transfected thioredoxin reductase overexpressing stable cell lines. The reduction of ubiquinone by the three enzymes offers a multifunctional system for extramitochondrial regeneration of an important antioxidant.
Collapse
Affiliation(s)
- Tomas Nordman
- Department of Laboratory Medicine, F 46, Karolinska Institutet, Huddinge University Hospital, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chan TS, O'Brien PJ. Hepatocyte metabolism of coenzyme Q1 (ubiquinone-5) to its sulfate conjugate decreases its antioxidant activity. Biofactors 2003; 18:207-18. [PMID: 14695936 DOI: 10.1002/biof.5520180223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous studies on the metabolism of coenyzme Q (CoQ) have focused on products found in the urine, bile or feces. However, the metabolites found in these samples were end products from a multitude of catabolic processes which did not necessarily reflect CoQ intracellular metabolism (e.g. in the liver, the major site of CoQ synthesis or metabolism). Using isolated rat hepatocytes, we have found that the sulfation of coenzyme Q1 (CoQ1) was the initial and dominant step following its reduction to the hydroquinone. This metabolic process is important as conjugation may occur on the hydroquinone metabolites of any coenzyme10 scission product retaining the quinone ring. By using rat liver cytosol, we were able to identify the monosulfated metabolite of CoQ1. The CoQ1 sulfate conjugate was identified by mass spectrometry followed by tandem mass spectrometry. The rate of formation of the CoQ1 sulfate conjugate was markedly increased by the addition of NADH and was prevented by dicumarol, a DT-diaphorase (NQO1) inhibitor. CoQ1 sulfate conjugate formation catalysed by cytosol was inhibited by the sulfotransferase 1A (SULT1A) inhibitor, pentachlorophenol (PCP) suggesting that sulfation was carried out by the SULT 1A isoform. CoQ1 sulfation in isolated hepatocytes and inversely CoQ1 hydroquinone formation were dependent on the concentration of inorganic sulfate in the media. Intracellular sulfation also decreased CoQ1 antioxidant and cytoprotective activity towards cumene hydroperoxide (CHP) induced cell death. Sulfotransferases may therefore play a significant role in endogenous CoQ metabolism following its degradation to short chain products.
Collapse
Affiliation(s)
- Tom S Chan
- University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Lenaz G, Bovina C, D'Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Merlo Pich M, Paolucci U, Parenti Castelli G, Ventura B. Role of mitochondria in oxidative stress and aging. Ann N Y Acad Sci 2002; 959:199-213. [PMID: 11976197 DOI: 10.1111/j.1749-6632.2002.tb02094.x] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and of aging. We have investigated the role of Complex I in superoxide radical production and found by combined use of specific inhibitors of Complex I that the one-electron donor in the Complex to oxygen is a redox center located prior to the sites where three different types of coenzyme Q (CoQ) competitors bind, to be identified with an Fe-S cluster, most probably N2, or possibly an ubisemiquinone intermediate insensitive to all the above inhibitors. Short-chain coenzyme Q analogues enhance superoxide formation, presumably by mediating electron transfer from N2 to oxygen. The clinically used CoQ analogue idebenone is particularly effective, raising doubts about its safety as a drug. The mitochondrial theory of aging considers somatic mutations of mitochondrial DNA induced by ROS as the primary cause of energy decline; in rat liver mitochondria, Complex I appears to be most affected by aging and to become strongly rate limiting for electron transfer. Mitochondrial energetics is also deranged in human platelets upon aging, as demonstrated by the decreased Pasteur effect (enhancement of lactate production by respiratory inhibitors). Cells counteract oxidative stress by antioxidants: CoQ is the only lipophilic antioxidant to be biosynthesized. Exogenous CoQ, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases. The plasma membrane oxidoreductase and DT-diaphorase are two such systems: likewise, they are overexpressed under oxidative stress conditions.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miyadera H, Kano K, Miyoshi H, Ishii N, Hekimi S, Kita K. Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. FEBS Lett 2002; 512:33-7. [PMID: 11852047 DOI: 10.1016/s0014-5793(02)02282-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquinone (UQ) (coenzyme Q) is a lipophilic redox-active molecule that functions as an electron carrier in the mitochondrial electron transport chain. Electron transfer via UQ involves the formation of semiubiquinone radicals, which causes the generation of superoxide radicals upon reaction with oxygen. In the reduced form, UQ functions as a lipid-soluble antioxidant, and protects cells from lipid peroxidation. Thus, UQ is also important as a lipophilic regulator of oxidative stress. Recently, a study on long-lived clk-1 mutants of Caenorhabditis elegans demonstrated that biosynthesis of UQ is dramatically altered in mutant mitochondria. Demethoxy ubiquinone (DMQ), that accumulates in clk-1 mutants in place of UQ, may contribute to the extension of life span. Here we elucidate the possible mechanisms of life span extension in clk-1 mutants, with particular emphasis on the electrochemical property of DMQ. Recent findings on the biochemical function of CLK-1 are also discussed.
Collapse
Affiliation(s)
- Hiroko Miyadera
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Lenaz G, D'Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G. Mitochondrial bioenergetics in aging. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:397-404. [PMID: 11004456 DOI: 10.1016/s0005-2728(00)00177-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitochondria are strongly involved in the production of reactive oxygen species, considered as the pathogenic agent of many diseases and of aging. The mitochondrial theory of aging considers somatic mutations of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, complex I appears to be mostly affected and to become strongly rate limiting for electron transfer. Mitochondrial bioenergetics is also deranged in human platelets upon aging, as shown by the decreased Pasteur effect (enhancement of lactate production by respiratory chain inhibition). Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants, coenzyme Q is the only one of endogenous biosynthesis. Exogenous coenzyme Q, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases.
Collapse
Affiliation(s)
- G Lenaz
- Dipartimento di Biochimica 'G. Moruzzi', Università di Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This report summarizes new evidence for a plasma-membrane-associated hydroquinone oxidase designated as CNOX (constitutive plasma membrane NADH oxidase) that functions as a terminal oxidase for a plasma membrane oxidoreductase (PMOR) electron transport chain to link the accumulation of lesions in mitochondrial DNA to cell-surface accumulations of reactive oxygen species. Previous considerations of plasma membrane redox changes during aging have lacked evidence for a specific terminal oxidase to catalyze a flow of electrons from cytosolic NADH to molecular oxygen (or to protein disulfides). Cells with functionally deficient mitochondria become characterized by an anaerobic metabolism. As a result, NADH accumulates from the glycolytic production of ATP. Elevated PMOR activity has been shown to be necessary to maintain the NAD(+)/NADH homeostasis essential for survival. Our findings demonstrate that the hyperactivity of the PMOR system results in an NADH oxidase (NOX) activity capable of generating reactive oxygen species at the cell surface. This would serve to propagate the aging cascade both to adjacent cells and to circulating blood components. The generation of superoxide by NOX forms associated with aging is inhibited by coenzyme Q and provides a rational basis for the anti-aging activity of circulating coenzyme Q.
Collapse
Affiliation(s)
- D M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
27
|
Jordan CG, Brown K, Beedham C, Brown JE. Effect of inhibitors on the biotransformation of tamoxifen by female rat and mouse liver slices and homogenates. DRUG METABOLISM AND DRUG INTERACTIONS 2000; 15:239-58. [PMID: 10716039 DOI: 10.1515/dmdi.1999.15.4.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The metabolism of tamoxifen was studied in female Sprague-Dawley rat and mouse liver slices and homogenates, and the three principal tamoxifen metabolites, 4-hydroxytamoxifen, N-desmethyl-tamoxifen and tamoxifen N-oxide, were identified by HPLC using authentic standards. It was not possible to identify any of the minor metabolites such as the epoxides using this technique. The N-oxide metabolite only appeared when NADPH was added to the system; this is because the production of tamoxifen N-oxide is primarily mediated by microsomal flavin monooxygenase (FMO) which is NADPH dependent. However, this metabolite did appear in incubations with mouse liver slices only, because they are rich in flavin monooxygenases (FMOs). It did not appear in female rat or mouse liver homogenates, because the NADPH present is destroyed during homogenisation, therefore it was necessary to add NADPH to the system to produce the N-oxide metabolite. The purpose of this study was to investigate the effect of inhibitors on the biotransformation of tamoxifen by female rat and mouse liver slices and homogenates. Female rat liver slices and homogenates were incubated with the following inhibitors (1 mM): cimetidine, ascorbate, sodium azide and reduced glutathione. Cimetidine, a general P-450 inhibitor, inhibited the production of the N-desmethyl metabolite by about 80%; this is in agreement with the action of the other inhibitors. Reduced glutathione, ascorbate and sodium azide are mainly peroxidase inhibitors, so therefore from these novel and interesting results it was possible to suggest that peroxidases play a role in the metabolism of tamoxifen. This observation was also strengthened when the production of the N-desmethyl metabolite increased when horseradish peroxidase was added to the incubate. The production of 4-hydroxytamoxifen was reduced and the N-oxide metabolite was completely inhibited in the presence of peroxidase inhibitors. When rat liver homogenates was incubated with superoxide dismutase (SOD) and catalase, it was observed that the N-desmethyl metabolite disappeared completely at 60 min and the N-oxide and 4-hydroxy metabolites were completely inhibited. However, this phenomenon was only observed when SOD and catalase were preincubated for 30 min with the rat liver homogenate at 37 degrees C; without preincubation the production of these metabolites was unaffected. Finally, the effect of long incubation periods (300 min) on the production of metabolites was examined. It was found that there was a reduction in the concentration of metabolite produced after 60 min which was due to enzyme and co-factor degradation.
Collapse
Affiliation(s)
- C G Jordan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Bradford, West Yorkshire, UK
| | | | | | | |
Collapse
|
28
|
Bridge A, Barr R, Morré DJ. The plasma membrane NADH oxidase of soybean has vitamin K(1) hydroquinone oxidase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:448-58. [PMID: 10675521 DOI: 10.1016/s0005-2736(99)00239-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isolated plasma membrane vesicles and the plasma membrane NADH oxidase partially purified from soybean plasma membrane vesicles exhibited a cyanide-insensitive vitamin K(1) hydroquinone oxidase activity with isolated plasma membrane vesicles. Reduced vitamin K(1) (phylloquinol) was oxidized at a rate of about 10 nmol/min/mg protein as determined by reduced vitamin K(1) reduction or oxygen consumption. The K(m) for reduced K(1) was 350 microM. With the partially purified enzyme, reduced vitamin K(1) was oxidized at a rate of about 600 nmol/min/mg protein and the K(m) was 400 microM. When assayed in the presence of 1 mM KCN, activities of both plasma membrane vesicles and of the purified protein were stimulated (0.1 microM) or inhibited (0.1 mM) by the synthetic auxin growth factor 2, 4-dichlorophenoxyacetic acid. The findings suggest the potential participation of the plasma membrane NADH oxidase as a terminal oxidase of plasma membrane electron transport from cytosolic NAD(P)H via reduced vitamin K(1) to acceptors (molecular oxygen or protein disulfides) at the cell surface.
Collapse
Affiliation(s)
- A Bridge
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
29
|
Aleynik SI, Leo MA, Aleynik MK, Lieber CS. Polyenylphosphatidylcholine Protects Against Alcohol but Not Iron-Induced Oxidative Stress in the Liver. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04591.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Upston JM, Terentis AC, Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J 1999; 13:977-94. [PMID: 10336881 DOI: 10.1096/fasebj.13.9.977] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although little direct evidence for a causative role of 'oxidized LDL' in atherogenesis exists, several studies show that, in vitro, oxidized LDL exhibits potentially proatherogenic activities and lipoproteins isolated from atherosclerotic lesions are oxidized. As a consequence, the molecular mechanisms of LDL oxidation and the actions of alpha-tocopherol (alpha-TOH, vitamin E), the major lipid-soluble lipoprotein antioxidant, have been studied in detail. Based on the known antioxidant action of alpha-TOH and epidemiological evidence, vitamin E is generally considered to be beneficial in coronary artery disease. However, intervention studies overall show a null effect of vitamin E on atherosclerosis. This confounding outcome can be rationalized by the recently discovered diverse role for alpha-TOH in lipoprotein oxidation; that is, alpha-TOH displays neutral, anti-, or, indeed, pro-oxidant activity under various conditions. This review describes the latter, novel action of alpha-TOH, termed tocopherol-mediated peroxidation, and discusses the benefits of vitamin E supplementation alone or together with other antioxidants that work in concert with alpha-TOH in ameliorating lipoprotein lipid peroxidation in the artery wall and, hence, atherosclerosis.
Collapse
Affiliation(s)
- J M Upston
- Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | | | |
Collapse
|
31
|
Kishi T, Morré DM, Morré DJ. The plasma membrane NADH oxidase of HeLa cells has hydroquinone oxidase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:66-77. [PMID: 10354495 DOI: 10.1016/s0005-2728(99)00049-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The plasma membrane NADH oxidase activity partially purified from the surface of HeLa cells exhibited hydroquinone oxidase activity. The preparations completely lacked NADH:ubiquinone reductase activity. However, in the absence of NADH, reduced coenzyme Q10 (Q10H2=ubiquinol) was oxidized at a rate of 15+/-6 nmol min-1 mg protein-1 depending on degree of purification. The apparent Km for Q10H2 oxidation was 33 microM. Activities were inhibited competitively by the cancer cell-specific NADH oxidase inhibitors, capsaicin and the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea (LY181984). With coenzyme Q0, where the preparations were unable to carry out either NADH:quinone reduction or reduced quinone oxidation, quinol oxidation was observed with an equal mixture of the Q0 and Q0H2 forms. With the mixture, a rate of Q0H2 oxidation of 8-17 nmol min-1 mg protein-1 was observed with an apparent Km of 0.22 mM. The rate of Q10H2 oxidation was not stimulated by addition of equal amounts of Q10 and Q10H2. However, addition of Q0 to the Q10H2 did stimulate. The oxidation of Q10H2 proceeded with what appeared to be a two-electron transfer. The oxidation of Q0H2 may involve Q0, but the mechanism was not clear. The findings suggest the potential participation of the plasma membrane NADH oxidase as a terminal oxidase of plasma membrane electron transport from cytosolic NAD(P)H via naturally occurring hydroquinones to acceptors at the cell surface.
Collapse
Affiliation(s)
- T Kishi
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
32
|
Poderoso JJ, Carreras MC, Schöpfer F, Lisdero CL, Riobó NA, Giulivi C, Boveris AD, Boveris A, Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med 1999; 26:925-35. [PMID: 10232836 DOI: 10.1016/s0891-5849(98)00277-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane.
Collapse
Affiliation(s)
- J J Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aleynik SI, Leo MA, Aleynik MK, Lieber CS. Alcohol-induced pancreatic oxidative stress: protection by phospholipid repletion. Free Radic Biol Med 1999; 26:609-19. [PMID: 10218649 DOI: 10.1016/s0891-5849(98)00246-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress is considered to be a forerunner of pancreatitis. Since we had found polyenylphosphatidylcholine, a mixture of polyunsaturated phosphatidylcholines extracted from soybeans, to protect against hepatic oxidative stress, we now tested its effects on the pancreas. Sprague-Dawley rats were pair-fed for two months nutritionally adequate liquid diet containing ethanol (36% of energy) or isocaloric carbohydrate, with either polyenylphosphatidylcholine (3 g/1000 kcal) or safflower oil, with or without 5 g/1000 kcal carbonyl iron. Parameters of oxidative stress (F2-isoprostanes, 4-hydroxynonenal, reduced glutathione), ubiquinol-10, ubiquinol-9 and vitamin E, as well as phosphatidylcholine species, were assessed by GC/MS and/or HPLC. Alcohol feeding increased pancreatic 4-hydroxynonenal three-fold, F2-isoprostanes and ubiquinol-9 by more than 70%, whereas it decreased total phospholipids, several phosphatidylcholine species, ubiquinol-10 and glutathione, especially in iron fed rats. Polyenylphosphatidylcholine prevented the rise in 4-hydroxynonenal and F2-isoprostanes, the decrease in dilinoleoylphosphatidylcholine and oleoyllinoleoylphosphatidylcholine and opposed the alcohol-induced decrease of glutathione; alpha-tocopherol remained unchanged. Iron had no significant effect except for decreasing ubiquinol-10 in the pancreas and increasing aminotransferases in the plasma. Thus, the alcohol-induced oxidative stress in the pancreas was shown to be prevented by polyenylphosphatidylcholine which may act, in part, by correcting the depletion of several phosphatidylcholine species.
Collapse
Affiliation(s)
- S I Aleynik
- Section of Liver Disease & Nutrition and Alcohol Research Center, Bronx VA Medical Center and Mt. Sinai School of Medicine, New York, NY 10468, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Ubiquinone (UQ) reductase responsible for reduction of non-mitochondrial UQ was investigated in rats toward demonstrating an antioxidant role of UQ. In the liver, most of cellular UQ-10 reductase activity was attributable to a novel NADPH-UQ reductase in cytosol. The enzyme was not inhibited by dicumarol and rotenone, and had a Km of 19 microM for NADPH and 307 microM for NADH at the optimum pH 7.4. The enzyme was purified 300-fold to apparent homogeneity from the liver cytosol by an affinity chromatographic method. The purified enzyme reduced UQ-10 in lecithin liposomes, and protected the liposomes from lipid peroxidation. Furthermore, supplementation of rats with UQ-10 was observed to increase the enzyme level in their livers without affecting levels of other antioxidant factors. The observations suggested that cytosolic NADPH-UQ reductase is responsible for cellular UQ redox cycle as an endogenous antioxidant.
Collapse
Affiliation(s)
- T Kishi
- Faculty of Pharmaceutical Science, Kobe Gakuin University, Japan.
| | | | | | | |
Collapse
|
35
|
Abstract
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia
| | | | | |
Collapse
|
36
|
Kishi T, Takahashi T, Usui A, Hashizume N, Okamoto T. Cytosolic NADPH-UQ reductase, the enzyme responsible for cellular ubiquinone redox cycle as an endogenous antioxidant in the rat liver. Biofactors 1999; 9:189-97. [PMID: 10416031 DOI: 10.1002/biof.5520090214] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular ubiquinone (UQ) is expected to act as an endogenous antioxidant against oxidative stress. To confirm this, UQ-reductases which are necessary to regenerate ubiquinol (UQH2) were investigated in rat tissue, and a novel NADPH-dependent UQ (NADPH-UQ) reductase was found in cytosol. The cytosolic NADPH-UQ reductase activity accounted for more than 80% of UQ-10 reduction by the rat liver homogenate in the presence of NADPH. Furthermore, the NADPH-UQ reductase activities in various tissues were correlated to the redox states of UQ in the corresponding tissues. Rat liver cytosol with NADPH protected lecithin liposomes containing UQ-10, as well as UQH2-10 from AMVN (2,2'-azobis(2,4-dimethylvaleronitrile))-induced lipid peroxidation. The enzyme purified from rat liver cytosol, reduced UQ-10 in lecithin liposomes at approximately the same rate as did cytosol. These results supported that cytosolic NADPH-UQ reductase is the enzyme responsible for nonmitochondrial UQ reduction acting as an endogenous antioxidant against oxidative stress. The antioxidant role of the UQ redox cycle and NADPH-UQ reductase was discussed in relation to other cellular NADPH-dependent antioxidant enzymes.
Collapse
Affiliation(s)
- T Kishi
- Faculty of Pharmaceutical Science, Kobe Gakuin University, Japan
| | | | | | | | | |
Collapse
|
37
|
Navarro F, Navas P, Burgess JR, Bello RI, De Cabo R, Arroyo A, Villalba JM. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane. FASEB J 1998; 12:1665-73. [PMID: 9837856 DOI: 10.1096/fasebj.12.15.1665] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have used a model of dietary deficiency that leads to a chronic oxidative stress to evaluate responses that are adaptations invoked to boost cellular defense systems. Long-Evans hooded rats were fed with a diet lacking vitamin E (E) and selenium (Se) for 7 wk from weaning leading to animals deficient in both nutrients (-E -Se). In the absence of an electron donor, liver plasma membranes from these rats were more sensitive to lipid peroxidation, although they contained 40% greater amounts of ubiquinone than the plasma membranes from rats consuming diets with sufficient vitamin E and Se (+E +Se). The incubation of plasma membranes with NAD(P)H resulted in protection against peroxidation, and this effect was more pronounced in -E -Se membranes. Deficiency was accompanied by a twofold increase in redox activities associated with trans plasma membrane electron transport such as ubiquinone reductase and ascorbate free radical reductase. Staining with a polyclonal antibody against pig liver cytochrome b5 reductase, which acts as one ubiquinone reductase in the plasma membrane, showed an increased expression of the enzyme in membranes from -E -Se rats. Little DT-diaphorase activity was measured in +E +Se plasma membranes, but this activity was dramatically increased in -E -Se plasma membranes. No such increase was found in liver cytosols, which contained elevated activity of calcium-independent phospholipase A2. Thus, ubiquinone-dependent antioxidant protection in +E +Se plasma membranes is based primarily on NADH-cytochrome b5 reductase, whereas additional protection needed in -E -Se plasma membranes is supported by the increase of ubiquinone levels, increased expression of the cytochrome b5 reductase, and translocation of soluble DT-diaphorase to the plasma membrane. Our results indicate that, in the absence of vitamin E and Se, enhancement of ubiquinone-dependent reductase systems can fulfill the membrane antioxidant protection.
Collapse
Affiliation(s)
- F Navarro
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Kishi T, Takahashi T, Okamoto T. Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in rat. Mol Aspects Med 1997; 18 Suppl:S71-7. [PMID: 9266508 DOI: 10.1016/s0098-2997(97)00030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To confirm whether or not cytosolic NADPH-UQ reductase is involved in the recycling of cellular ubiquinol (UQH2) consumed during lipid peroxidation, the effect of a UQ-10 supplement on the NADPH-UQ reductase and cellular defense against oxidative damage in rat livers was investigated. Supplements of UQ-10 for 14 days enhanced the levels of UQH2-10 and NADPH-UQ reductase in rat livers without any appreciable changes in other antioxidant contents and related enzyme activities. However, the injection of carbon tetrachloride (CCl4) into the rats induced lipid peroxidation and decreased the cellular UQH2-10 contents (and increased equivalent amounts of UQ-10), as well as decreasing the ascorbic acid, reduced glutathione (GSH) and alpha-tocopherol contents of the rat livers. Administration of the UQ-10 supplement prior to the CCl4 treatment spared alpha-tocopherol (but not GSH or ascorbic acid), inhibited lipid peroxidation, and thus improved CCl4-induced hepatitis. These findings support the notion that NADPH-UQ reductase in cytosol is the enzyme responsible for the regeneration of UQH2 from UQ formed by lipid peroxidation in cells.
Collapse
Affiliation(s)
- T Kishi
- Faculty of Pharmaceutical Science, Kobe Gakuin University, Japan
| | | | | |
Collapse
|
39
|
Schultz JR, Ellerby LM, Gralla EB, Valentine JS, Clarke CF. Autoxidation of ubiquinol-6 is independent of superoxide dismutase. Biochemistry 1996; 35:6595-603. [PMID: 8639607 DOI: 10.1021/bi960245h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ubiquinone (Q) is an essential, lipid soluble, redox component of the mitochondrial respiratory chain. Much evidence suggests that ubiquinol (QH2) functions as an effective antioxidant in a number of membrane and biological systems by preventing peroxidative damage to lipids. It has been proposed that superoxide dismutase (SOD) may protect QH2 form autoxidation by acting either directly as a superoxide-semiquinone oxidoreductase or indirectly by scavenging superoxide. In this study, such an interaction between QH2 and SOD was tested by monitoring the fluorescence of cis-parinaric acid (cPN) incorporated phosphatidylcholine (PC) liposomes. Q6H2 was found to prevent both fluorescence decay and generation of lipid peroxides (LOOH) when peroxidation was initiated by the lipid-soluble azo initiator DAMP, dimethyl 2,2'-azobis (2-methylpropionate), while Q6 or SOD alone had no inhibitory effect. Addition of either SOD or catalase to Q6H2-containing liposomes had little effect on the rate of peroxidation even when incubated in 100% O2. Hence, the autoxidation of QH2 is a competing reaction that reduces the effectiveness of QH2 as an antioxidant and was not slowed by either SOD or catalase. The in vivo interaction of SOD and QH2 was also tested by employing yeast mutant strains harboring deletions in either CuZnSOD and/or MnSOD. The sod mutant yeast strains contained the same percent Q6H2 per cell as wild-type cells. These results indicate that the autoxidation of QH2 is independent of SOD.
Collapse
Affiliation(s)
- J R Schultz
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | |
Collapse
|