1
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
2
|
Ye L, Robertson MA, Mastracci TL, Anderson RM. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev Biol 2015; 409:354-69. [PMID: 26658317 DOI: 10.1016/j.ydbio.2015.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023]
Abstract
As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation.
Collapse
Affiliation(s)
- Lihua Ye
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA
| | - Morgan A Robertson
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA
| | - Teresa L Mastracci
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Seed Ahmed M, Ahmed MS, Pelletier J, Leumann H, Gu HF, Östenson CG. Expression of Protein Kinase C Isoforms in Pancreatic Islets and Liver of Male Goto-Kakizaki Rats, a Model of Type 2 Diabetes. PLoS One 2015; 10:e0135781. [PMID: 26398746 PMCID: PMC4580567 DOI: 10.1371/journal.pone.0135781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/27/2015] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) is a family of protein kinases controlling protein phosphorylation and playing important roles in the regulation of metabolism. We have investigated expression levels of PKC isoforms in pancreatic islets and liver of diabetic Goto-Kakizaki (GK) rats with and without insulin treatment to evaluate their association with glucose homeostasis. mRNA and protein expression levels of PKC isoforms were assessed in pancreatic islets and liver of Wistar rats and GK rats with or without insulin treatment. PKCα and PKCζ mRNA expressions were down-regulated in islets of GK compared with Wistar rats. PKCα and phosphorylated PKCα (p-PKCα) protein expressions were decreased in islets of GK compared with insulin-treated GK and Wistar rats. PKCζ protein expression in islets was reduced in GK and insulin-treated GK compared with Wistar rats, but p-PKCζ was decreased only in GK rats. Islet PKCε mRNA and protein expressions were lower in GK compared with insulin-treated GK and Wistar rats. In liver, PKCδ and PKCζ mRNA expressions were decreased in both GK and insulin-treated GK compared with Wistar rats. Hepatic PKCζ protein expression was diminished in both GK rats with and without insulin treatment compared with Wistar rats. Hepatic PKCε mRNA expression was down-regulated in insulin-treated GK compared with GK and Wistar rats. PKCα, PKCε, and p-PKCζ expressions were secondary to hyperglycaemia in GK rat islets. Hepatic PKCδ and PKCζ mRNA expressions were primarily linked to hyperglycaemia. Additionally, hepatic PKCε mRNA expression could be under control of insulin.
Collapse
Affiliation(s)
- Mohammed Seed Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden; Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Julien Pelletier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hannes Leumann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Harvest F Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
4
|
Babenko NA, Kharchenko VS. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D. Int J Endocrinol 2015; 2015:794838. [PMID: 26089893 PMCID: PMC4458285 DOI: 10.1155/2015/794838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells.
Collapse
Affiliation(s)
- Nataliya A. Babenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
- *Nataliya A. Babenko:
| | - Vitalina S. Kharchenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
| |
Collapse
|
5
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2014; 66:1033-79. [PMID: 25244928 PMCID: PMC4180337 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
6
|
Green CJ, Henriksen TI, Pedersen BK, Solomon TPJ. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 2012; 7:e44284. [PMID: 22937169 PMCID: PMC3429413 DOI: 10.1371/journal.pone.0044284] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/31/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glucagon like peptide-1 (GLP-1) stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the glucose-dependency of its extra-pancreatic effects has not been examined. METHODS Skeletal muscle satellite cells isolated from young (22.5 ± 0.97 yr), lean (BMI 22.5 ± 0.6 kg/m(2)), healthy males were differentiated in media containing either 22.5 mM (high) or 5 mM (normal) glucose for 7 days in the absence or presence of insulin and/or various GLP-1 concentrations. Myocellular effects of GLP-1, insulin and glucose were assessed by western-blot, glucose uptake and glycogen synthesis. RESULTS We firstly show that the GLP-1 receptor protein is expressed in differentiated human muscle satellite cells (myocytes). Secondly, we show that in 5 mM glucose media, exposure of myocytes to GLP-1 results in a dose dependent increase in glucose uptake, GLUT4 amount and subsequently glycogen synthesis in a PI3K dependent manner, independent of the insulin signaling cascade. Importantly, we provide evidence that differentiation of human satellite cells in hyperglycemic (22.5 mM glucose) conditions increases GLUT1 expression, and renders the cells insulin resistant and interestingly GLP-1 resistant in terms of glucose uptake and glycogen synthesis. Hyperglycemic conditions did not affect the ability of insulin to phosphorylate downstream targets, PKB or GSK3. Interestingly we show that at 5 mM glucose, GLP-1 increases GLUT4 protein levels and that this effect is abolished by hyperglycemia. CONCLUSIONS GLP-1 increases glucose uptake and glycogen synthesis into fully-differentiated human satellite cells in a PI3-K dependent mechanism potentially through increased GLUT4 protein levels. The latter occurs independently of the insulin signaling pathway. Attenuation of both GLP-1 and insulin-induced glucose metabolism by hyperglycemia is likely to occur downstream of PI3K.
Collapse
Affiliation(s)
- Charlotte J Green
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases and Copenhagen Muscle Research Centre, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
7
|
Serhan MF, Kreydiyyeh SI. Insulin targets the Na(+)/K(+) ATPase in enterocytes via PI3K, PKC, and MAPKS. J Recept Signal Transduct Res 2011; 31:299-306. [PMID: 21682666 DOI: 10.3109/10799893.2011.587821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of insulin on intestinal Na(+)/K(+) ATPase is till now undetermined, and it is still unclear whether insulin exerts any modulatory effect on glucose absorption by targeting the ATPase. This work attempted to address this question and to unravel the signaling pathway involved using Caco-2 cells as a model. After an overnight starvation, cells were treated with insulin in presence and absence of specific inhibitors of some known mediators. The activity of the pump was assayed by measuring the ouabain-inhibitable inorganic phosphate (P(i)) released, whereas changes in its abundance were determined by western blot analysis. Insulin decreased the activity and abundance of the ATPase in a crude membrane homogenate. This effect disappeared completely upon inhibition of either phosphotidylinositol-3 kinase (PI3K) or protein kinase C (PKC), but was partially abolished when p38MAPK or MEK/ERK were inhibited separately. Activation of PKC with phorbol-12-myristate-13-acetate (PMA) imitated the effect of insulin and was not affected by inhibition of PI3K. The data suggest that PI3K and PKC are along the same pathway that branches into two separate ones involving each either p38MAP kinase or MEK/ERK. This hypothesis was confirmed by the data obtained from the treatment of Caco-2 cells with PMA, when p38MAPK and MEK/ERK were inhibited simultaneously. Concomitant inhibition of p38MAPK and MEK/ERK abrogated fully the effect of insulin, indicating that no other pathways are present in addition to the ones proposed above.
Collapse
Affiliation(s)
- Maya F Serhan
- Department of Biology, American University of Beirut, Lebanon
| | | |
Collapse
|
8
|
Bréchard S, Salsmann A, Tschirhart EJ. OAG induces an additional PKC-, PI3K-, and Rac2-mediated signaling pathway up-regulating NOX2 activity, independently of Ca2+ entry. J Leukoc Biol 2009; 85:638-47. [PMID: 19118104 DOI: 10.1189/jlb.0508330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The requirement of calcium ion (Ca(2)(+)) entry for neutrophil NADPH oxidase (NOX2) regulation is clearly established. However, its role in the signaling pathway leading to NOX2 activation is still elusive. 1-oleoyl-2-acetyl-sn-glycerol (OAG) causes an increase in NOX2 activity and has been shown to directly modulate Ca(2)(+) channels unrelated to the well-known store-operated Ca(2)(+) entry (SOCE) mechanism. In our study, we have investigated the potential role of OAG in Ca(2)(+) influx-mediated NOX2 activity in neutrophil-like-differentiated HL-60 cells to further characterize second signals involved in the regulation of NOX2. OAG inhibited fMLF- and thapsigargin-induced Ca(2)(+) entry, a phenomenon that was not restored by protein kinase C (PKC) or PI3K blockade. Addition of OAG resulted in a rapid decrease of maximal intracellular Ca(2)(+) concentration induced by thapsigargin. Both results suggest that OAG has an inhibitory effect, independent of PI3K and PKC, on the regulation of SOCE. In contrast to SOCE inhibition, OAG-induced NOX2 activation was mediated by PKC and PI3K. Our data establish that both kinases exert their effects through the regulation of Rac2 activity. In addition, OAG potentiated the effect of fMLF on the activation of NOX2 and led to a discernible activity of NOX2 upon thapsigargin stimulation. In conclusion, our results demonstrate that an additional PKC- and/or PI3K-dependent signal may act in synergy with Ca(2)(+) influx to trigger NOX2 activation.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Life Sciences Research Unit, University of Luxembourg, Avenue de la Faïencerie, L-1511 Luxembourg
| | | | | |
Collapse
|
9
|
Nakamura J. Protein kinase C-dependent antilipolysis by insulin in rat adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1195-201. [PMID: 17689141 DOI: 10.1016/j.bbalip.2007.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/19/2007] [Accepted: 06/27/2007] [Indexed: 01/19/2023]
Abstract
Recently, we have shown that protein kinase C (PKC) activated by phorbol 12-myristate 13-acetate (PMA) attenuates the beta1-adrenergic receptor (beta1-AR)-mediated lipolysis in rat adipocytes. Stimulation of cells by insulin, angiotensin II, and alpha1-AR agonist is known to cause activation of PKC. In this study, we found that lipolysis induced by the beta1-AR agonist dobutamine is decreased and is no longer inhibited by PMA in adipocytes that have been treated with 20 nM insulin for 30 min followed by washing out insulin. Such effects on lipolysis were not found after pretreatment with angiotensin II and alpha1-AR agonists. The rate of lipolysis in the insulin-treated cells was normalized by the PKCalpha- and beta-specific inhibitor Gö 6976 and PKCbeta-specific inhibitor LY 333531. In the insulin-treated cells, wortmannin increased lipolysis and recovered the lipolysis-attenuating effect of PMA. Western blot analysis revealed that insulin slightly increases membrane-bound PKCalpha, betaI, and delta, and wortmannin decreases PKCbetaI, betaII, and delta in the membrane fraction. These results indicate that stimulation of insulin receptor induces a sustained activation of PKC-dependent antilipolysis in rat adipocytes.
Collapse
Affiliation(s)
- Jiro Nakamura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki-ken, 305-8575, Japan.
| |
Collapse
|
10
|
Mannella P, Brinton RD. Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of estrogen action. J Neurosci 2006; 26:9439-47. [PMID: 16971528 PMCID: PMC6674594 DOI: 10.1523/jneurosci.1443-06.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
17Beta-estradiol (E2)-induced neuroprotection is dependent on mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) signaling cascades. We sought to determine whether E2 neuroprotective mechanisms are mediated by a unified signaling cascade activated by estrogen receptor (ER)-PI3K interaction within the same population of neurons or whether E2 activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt are independent signaling events in different neuronal populations. Immunoprecipitation of E2-treated cortical neurons was conducted to determine a protein-protein interaction between ER and the PI3K regulatory subunit p85. Subsequently, cortical neurons were treated with E2 alone or in presence of MAPK inhibitors or PI3K inhibitors. Results of these analyses indicated a protein-protein interaction between ER and p85 that was time-dependent and consistent with the temporal profile for generation of Akt (pAkt) and ERK1/2 phosphorylation (pERK1/2). E2-induced phosphorylation of Akt, was first apparent at 10 min and maximal at 30 min. Simultaneously, E2-induced pERK1/2 was first apparent at 5-10 min and maximal at 30 min. Inhibition of PI3K completely blocked E2 activation of pAkt at 10 and 30 min and blocked E2 activation of ERK1/2 at 10 min, which revealed a PI3K-independent activation of ERK at 30 min. Double immunocytochemical labeling for pERK1/2 and pAkt demonstrated that E2 induced both signaling pathways in the same neurons. These results indicate a unified signaling mechanism for rapid E2 action that leads to the coordinated activation of both pERK1/2 and pAkt in the same population of neurons. Implications of these results for understanding estrogen mechanism of action in neurons and therapeutic development are considered.
Collapse
Affiliation(s)
| | - Roberta Diaz Brinton
- Department of Molecular Pharmacology and Toxicology and
- Program in Neuroscience, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
11
|
Lee JS, Kim JH, Jang IH, Kim HS, Han JM, Kazlauskas A, Yagisawa H, Suh PG, Ryu SH. Phosphatidylinositol (3,4,5)-trisphosphate specifically interacts with the phox homology domain of phospholipase D1 and stimulates its activity. J Cell Sci 2005; 118:4405-13. [PMID: 16179605 DOI: 10.1242/jcs.02564] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Phospholipase D (PLD), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays key roles in cellular signal transduction by mediating extracellular stimuli including hormones, growth factors, neurotransmitters, cytokines and extracellular matrix molecules. The molecular mechanisms by which domains regulate the activity of PLD - especially the phox homology (PX) domain - have not been fully elucidated. In this study, we have examined the properties of the PX domains of PLD1 and PLD2 in terms of phosphoinositide binding and PLD activity regulation. Interestingly, the PX domain of PLD1, but not that of PLD2, was found to specifically interact with phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3). We found that mutation of the conserved arginine at position 179 of the PLD1 PX domain to lysine or to alanine (R179A or R179K, respectively) disrupts PtdIns(3,4,5)P3 binding. In NIH-3T3 cells, the EGFP-PLD1 PX wild-type domain, but not the two mutants, localized to the plasma membrane after 5-minute treatment with platelet-derived growth factor (PDGF). The enzymatic activity of PLD1 was stimulated by adding PtdIns(3,4,5)P3 in vitro. Treatment with PDGF resulted in the significant increase of PLD1 activity and phosphorylation of the downstream extracellular signal-regulated kinases (ERKs), which was blocked by pre-treatment of HEK 293 cells with phosphoinositide 3-kinase (PI3K) inhibitor after the endogenous PLD2 had been depleted by siRNA specific for PLD2. Nevertheless, both PLD1 mutants (which cannot interact with PtdIns(3,4,5)P3) did not respond to treatment with PDGF. Moreover, PLD1 was activated in HepG2 cells stably expressing the Y40/51 mutant of PDGF receptor that is required for the binding with PI3K. Our results suggest that the PLD1 PX domain enables PLD1 to mediate signal transduction via ERK1/2 by providing a direct binding site for PtdIns(3,4,5)P3 and by activating PLD1.
Collapse
Affiliation(s)
- Jun Sung Lee
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stahelin RV, Ananthanarayanan B, Blatner NR, Singh S, Bruzik KS, Murray D, Cho W. Mechanism of Membrane Binding of the Phospholipase D1 PX Domain. J Biol Chem 2004; 279:54918-26. [PMID: 15475361 DOI: 10.1074/jbc.m407798200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phospholipases D (PLD), which catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid (PA), have been implicated in various cell signaling and vesicle trafficking processes. Mammalian PLD1 contains two different membrane-targeting domains, pleckstrin homology and Phox homology (PX) domains, but the precise roles of these domains in the membrane binding and activation of PLD1 are still unclear. To elucidate the role of the PX domain in PLD1 activation, we constructed a structural model of the PX domain by homology modeling and measured the membrane binding of this domain and selected mutants by surface plasmon resonance analysis. The PLD1 PX domain was found to have high phosphoinositide specificity, i.e. phosphatidylinositol 3,4,5-trisphosphate (PtdIns-(3,4,5)P(3)) >> phosphatidylinositol 3-phosphate > phosphatidylinositol 5-phosphate >> other phosphoinositides. The PtdIns(3,4,5)P(3) binding was facilitated by the cationic residues (Lys(119), Lys(121), and Arg(179)) in the putative binding pocket. Consistent with the model structure that suggests the presence of a second lipid-binding pocket, vesicle binding studies indicated that the PLD1 PX domain could also bind with moderate affinity to PA, phosphatidylserine, and other anionic lipids, which were mediated by a cluster of cationic residues in the secondary binding site. Simultaneous occupancy of both binding pockets synergistically increases membrane affinity of the PX domain. Electrostatic potential calculations suggest that a highly positive potential near the secondary binding site may facilitate the initial adsorption of the domain to the anionic membrane, which is followed by the binding of PtdIns(3,4,5)P(3) to its binding pocket. Collectively, our results suggest that the interaction of the PLD1 PX domain with PtdIns(3,4,5)P(3) and/or PA (or phosphatidylserine) may be an important factor in the spatiotemporal regulation and activation of PLD1.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois at Chicago, Illinois 60607. USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bandyopadhyay G, Standaert ML, Sajan MP, Kanoh Y, Miura A, Braun U, Kruse F, Leitges M, Farese RV. Protein Kinase C-λ Knockout in Embryonic Stem Cells and Adipocytes Impairs Insulin-Stimulated Glucose Transport. Mol Endocrinol 2004; 18:373-83. [PMID: 14615604 DOI: 10.1210/me.2003-0087] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- James A Haley Veterans Hospital and University of South Florida College of Medicine, Tampa, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Probst I, Beuers U, Drabent B, Unthan-Fechner K, Bütikofer P. The diacylglycerol and protein kinase C pathways are not involved in insulin signalling in primary rat hepatocytes. ACTA ACUST UNITED AC 2004; 270:4635-46. [PMID: 14622250 DOI: 10.1046/j.1432-1033.2003.03853.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diacylglycerol (DAG) and protein kinase C (PKC) isoforms have been implicated in insulin signalling in muscle and fat cells. We evaluated the involvement of DAG and PKC in the action of insulin in adult rat hepatocytes cultured with dexamethasone, but in the absence of serum, for 48 h. Our results show that although insulin stimulated glycolysis and glycogen synthesis, it had no effect on DAG mass or molecular species composition. Epidermal growth factor showed the expected insulin-mimetic effect on glycolysis, whereas ATP and exogenous phospholipase C acted as antagonists and abolished the insulin signal. Similarly to insulin, epidermal growth factor had no effect on DAG mass or molecular species composition. In contrast, both ATP and phospholipase C induced a prominent increase in several DAG molecular species, including 18:0/20:4, 18:0/20:5, 18:0/22:5 and a decrease in 18:1/18:1. These changes were paralleled by an increase in phospholipase D activity, which was absent in insulin-treated cells. By immunoblotting or by measuring PKC activity, we found that neither insulin nor ATP translocated the PKCalpha, -delta, -epsilon or -zeta isoforms from the cytosol to the membrane in cells cultured for six or 48 h. Similarly, insulin had no effect on immunoprecipitable PKCzeta. Suppression of the glycogenic insulin signal by phorbol 12-myristate 13-acetate, but not by ATP, could be completely alleviated by bisindolylmaleimide. Finally, insulin showed no effect on DAG mass or translocation of PKC isoforms in the perfused liver, although it reduced the glucagon-stimulated glucose output by 75%. Together these results indicate that phospholipases C and D or multiple PKC isoforms are not involved in the hepatic insulin signal chain.
Collapse
Affiliation(s)
- Irmelin Probst
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August - Universität Göttingen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Insulin-stimulated Glut-4 translocation is regulated through a complex pathway. Increasing attention is being paid to the role undertaken in this process by Phospholipase D, a signal transduction-activated enzyme that generates the lipid second-messenger phosphatidic acid. Phospholipase D facilitates Glut-4 translocation at potentially multiple steps in its outward movement. Current investigation is centered on Phospholipase D promotion of Glut-4-containing membrane vesicle trafficking and vesicle fusion into the plasma membrane, in part through activation of atypical protein kinase C isoforms.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacology and the Center for Developmental Genetics, University Medical Center at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|
16
|
Ikeda Y, Fukuoka SI. Phosphatidic acid production, required for cholecystokinin octapeptide-stimulated amylase secretion from pancreatic acinar AR42J cells, is regulated by a wortmannin-sensitive process. Biochem Biophys Res Commun 2003; 306:943-7. [PMID: 12821133 DOI: 10.1016/s0006-291x(03)01078-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the role of phospholipids in exocytotic secretory events, we utilized rat pancreatic acinar AR42J cells that secreted amylase in response to cholecystokinin octapeptide (CCK-8). Wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), was found to inhibit the secretion in a dose-dependent manner. When changes in cell membrane phospholipids were investigated before and after CCK-8 stimulation using [32P]orthophosphoric acid-labeled AR42J cells, we observed a rapid increase in phosphatidic acid (PtdOH) levels right after stimulation, which was not observed in non-stimulated cells. The increase, however, was suppressed by wortmannin pre-treatment, which also inhibited amylase secretion. Changes in other major phospholipids were not significant. These results indicate that CCK-8 induces amylase secretion through PI3K-regulated production of PtdOH in cell membranes.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Department of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
17
|
Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK. Inhibition of apical Cl-/OH- exchange activity in Caco-2 cells by phorbol esters is mediated by PKCepsilon. Am J Physiol Cell Physiol 2002; 283:C1492-500. [PMID: 12372810 DOI: 10.1152/ajpcell.00473.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies were undertaken to examine the possible regulation of apical membrane Cl-/OH- exchanger in Caco-2 cells by protein kinase C (PKC). The effect of the phorbol ester phorbol 12-myristate 13-acetate (PMA), an in vitro PKC agonist, on OH- gradient-driven 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 36Cl uptake in Caco-2 cells was assessed. The results demonstrated that PMA decreased apical Cl-/OH- exchanger activity via phosphatidylinositol 3-kinase (PI3-kinase)-mediated activation of PKCepsilon. The data consistent with these conclusions are as follows: 1) short-term treatment of cells for 1-2 h with PMA (100 nM) significantly decreased Cl-/OH- exchange activity compared with control (4alpha-PMA); 2) pretreatment of cells with specific PKC inhibitors chelerythrine chloride, calphostin C, and GF-109203X completely blocked the inhibition of Cl-/OH- exchange activity by PMA; 3) specific inhibitors for PKCepsilon (Ro-318220) but not PKCalpha (Go-6976) significantly blocked the PMA-mediated inhibition; 4) specific PI3-kinase inhibitors wortmannin and LY-294002 significantly attenuated the inhibitory effect of PMA; and 5) PI3-kinase activators IRS-1 peptide and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] mimicked the effects of PMA. These findings provide the first evidence for PKCepsilon-mediated inhibition of Cl-/OH- exchange activity in Caco-2 cells and indicate the involvement of the PI3-kinase-mediated pathways in the regulation of Cl- absorption in intestinal epithelial cells.
Collapse
Affiliation(s)
- Seema Saksena
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago and West Side Department of Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kudoh A, Katagai H, Takazawa T. Atrial natriuretic peptide increases glucose uptake during hypoxia in cardiomyocytes. J Cardiovasc Pharmacol 2002; 40:601-10. [PMID: 12352323 DOI: 10.1097/00005344-200210000-00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The action of atrial natriuretic peptide on glucose uptake during hypoxia was investigated in neonatal cardiomyocytes. When the cultures were exposed to 100 n and 1 and 10 micro M of atrial natriuretic peptide for 60 min, hypoxia-induced glucose uptake significantly increased from 20.4 +/- 1.2 to 28.2 +/- 3.1, 31.6 +/- 2.7, and 30.1 +/- 2.8 pmol/h/mg protein, respectively, although atrial natriuretic peptide alone did not significantly affect the basal glucose uptake in normoxic condition. The atrial natriuretic peptide-stimulated glucose uptake during hypoxia was significantly decreased by 100 n of genistein and tyrphostin A-23 (a tyrosine kinase inhibitor) from 31.6 +/- 2.7 to 22.8 +/- 2.4 and 23.8 +/- 2.7 pmol/h/mg protein. U73122 100 n, which is a phospholipase C antagonist, significantly inhibited the atrial natriuretic peptide-induced glucose uptake under hypoxic conditions from 31.6 +/- 2.7 to 13.6 +/- 1.9 pmol/h/mg protein. However, the atrial natriuretic peptide-induced glucose uptake did not involve elevation of intracellular Ca and phosphatidylinositol (PI)3 kinase. It was concluded that the atrial natriuretic peptide-stimulated glucose uptake during hypoxia acts through a phospholipase C-tyrosine kinase pathway.
Collapse
Affiliation(s)
- Akira Kudoh
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki, Aomori, Japan
| | | | | |
Collapse
|
19
|
Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 2002; 283:E1-11. [PMID: 12067836 DOI: 10.1152/ajpendo.00045.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable evidence suggests that atypical protein kinase C isoforms (aPKCs), serving downstream of insulin receptor substrates and phosphatidylinositol (PI) 3-kinase, are required for insulin-stimulated glucose transport in skeletal muscle and adipocytes. More recent findings further suggest that aPKCs are activated and required for glucose transport responses while serving downstream of 1) proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D, as during the actions of high concentrations of carbohydrates (glucose, sorbitol) and agents that activate 5'-AMP-activated protein kinase (exercise, 5-amino-imidazole-4-carboxamide-1-beta-D-riboside, dinitrophenol), and 2) Cbl-dependent PI 3-kinase, as during the action of insulin-sensitizing thiazolidinediones. It therefore seems reasonable to postulate that, regardless of the initial mechanism, aPKCs may serve as terminal molecular switches for activating glucose transport responses. This postulation is of critical importance, as it now appears that insulin-stimulated aPKC activation is compromised in various states of insulin resistance.
Collapse
Affiliation(s)
- Robert V Farese
- Department of Internal Medicine, University of South Florida College of Medicine and James A. Haley Veterans Administration Medical Center, Tampa, Florida 33612, USA.
| |
Collapse
|
20
|
Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert M, Farese RV, Farese RV. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem 2002; 277:23554-62. [PMID: 11978788 DOI: 10.1074/jbc.m201152200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exercise increases glucose transport in muscle by activating 5'-AMP-activated protein kinase (AMPK), but subsequent events are unclear. Presently, we examined the possibility that AMPK increases glucose transport through atypical protein kinase Cs (aPKCs) by activating proline-rich tyrosine kinase-2 (PYK2), ERK pathway components, and phospholipase D (PLD). In mice, treadmill exercise rapidly activated ERK and aPKCs in mouse vastus lateralis muscles. In rat extensor digitorum longus (EDL) muscles, (a) AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-d-riboside (AICAR), activated PYK2, ERK and aPKCs; (b) effects of AICAR on ERK and aPKCs were blocked by tyrosine kinase inhibitor, genistein, and MEK1 inhibitor, PD98059; and (c) effects of AICAR on aPKCs and 2-deoxyglucose (2-DOG) uptake were inhibited by genistein, PD98059, and PLD-inhibitor, 1-butanol. Similarly, in L6 myotubes, (a) AICAR activated PYK2, ERK, PLD, and aPKCs; (b) effects of AICAR on ERK were inhibited by genistein, PD98059, and expression of dominant-negative PYK2; (c) effects of AICAR on PLD were inhibited by MEK1 inhibitor UO126; (d) effects of AICAR on aPKCs were inhibited by genistein, PD98059, 1-butanol, and expression of dominant-negative forms of PYK2, GRB2, SOS, RAS, RAF, and ERK; and (e) effects of AICAR on 2DOG uptake/GLUT4 translocation were inhibited by genistein, PD98059, UO126, 1-butanol, cell-permeable myristoylated PKC-zeta pseudosubstrate, and expression of kinase-inactive RAF, ERK, and PKC-zeta. AMPK activator dinitrophenol had effects on ERK, aPKCs, and 2-DOG uptake similar to those of AICAR. Our findings suggest that effects of exercise on glucose transport that are dependent on AMPK are mediated via PYK2, the ERK pathway, PLD, and aPKCs.
Collapse
Affiliation(s)
- Hubert C Chen
- James A. Haley Veterans Hospital and the Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kudoh A, Kudoh E, Katagai H, Takazawa T. Insulin potentiates bradykinin-induced inositol 1,4,5-triphosphate in neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 2002; 39:621-7. [PMID: 11973404 DOI: 10.1097/00005344-200205000-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated whether cross-talk between insulin and the bradykinin receptor exists to modulate bradykinin-induced increase in inositol 1,4,5-triphosphate (IP3) in neonatal rat cardiomyocytes. Treatment of the cultures with 1, 2, and 20 nM of insulin for 90 min before adding bradykinin increased the IP3 response to the same bradykinin dose to 372.0 +/- 17.8, 413.7 +/- 17.7, and 457.3 +/- 18.2 pmol/mg protein, respectively. Tyrphostine A23 and genistein (tyrosine kinase inhibitors) decreased the bradykinin (10 nM)-induced IP3 production potentiated by 2 nM insulin from 400.7 +/- 19.4 pmol/mg protein to 297.3 +/- 42.4 and 314.3 +/- 37.5 pmol/mg protein, respectively. Administration of 100 nM N-(6-aminohexyl)-5-chloro-naphthalenesulfonamide (W7, a calmodulin antagonist) significantly increased the bradykinin (10 nM)-induced IP3 production from 311.7 +/- 13.0 pmol/mg protein in the absence of insulin to 457.8 +/- 19.9, 578.2 +/- 25.9, and 665.2 +/- 16.0 pmol/mg protein in the presence of 1, 2, and 20 nM insulin, respectively. These results demonstrate that cross-talk between the insulin receptor and the bradykinin signaling system may exist in neonatal rat cardiomyocytes. Tyrosine kinase appears to play an important role in the cross-talking. Calmodulin controls the IP3 response to bradykinin by a negative feedback mechanism.
Collapse
Affiliation(s)
- Akira Kudoh
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki National Hospital, Aomori, Japan
| | | | | | | |
Collapse
|
22
|
Leitges M, Plomann M, Standaert ML, Bandyopadhyay G, Sajan MP, Kanoh Y, Farese RV, Letiges M. Knockout of PKC alpha enhances insulin signaling through PI3K. Mol Endocrinol 2002; 16:847-58. [PMID: 11923480 DOI: 10.1210/mend.16.4.0809] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin and yet inhibit insulin signaling to PI3K. Presently, we found that insulin signaling to insulin receptor substrate 1-dependent PI3K, PKB, and PKC lambda, and downstream processes, glucose transport and activation of ERK, were enhanced in skeletal muscles and adipocytes of mice in which the ubiquitous conventional diacylglycerol-sensitive PKC isoform, PKC alpha, was knocked out by homologous recombination. On the other hand, insulin provoked wortmannin-insensitive increases in immunoprecipitable PKC alpha activity in adipocytes and skeletal muscles of wild-type mice and rats. We conclude that 1) PKC alpha is not required for insulin-stimulated glucose transport, and 2) PKC alpha is activated by insulin at least partly independently of PI3K, and largely serves as a physiological feedback inhibitor of insulin signaling to the insulin receptor substrate 1/PI3K/PKB/PKC lambda/zeta/iota complex and dependent metabolic processes.
Collapse
Affiliation(s)
- Michael Leitges
- Max-Planck Institute for Experimental Endocrinology, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sajan MP, Bandyopadhyay G, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV. Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D. Biochem J 2002; 362:665-74. [PMID: 11879194 PMCID: PMC1222431 DOI: 10.1042/0264-6021:3620665] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sorbitol, "osmotic stress", stimulates GLUT4 glucose transporter translocation to the plasma membrane and glucose transport by a phosphatidylinositol (PI) 3-kinase-independent mechanism that reportedly involves non-receptor proline-rich tyrosine kinase-2 (PYK2) but subsequent events are obscure. In the present study, we found that extracellular signal-regulated kinase (ERK) pathway components, growth-factor-receptor-bound-2 protein, son of sevenless (SOS), RAS, RAF and mitogen-activated protein (MAP) kinase/ERK kinase, MEK(-1), operating downstream of PYK2, were required for sorbitol-stimulated GLUT4 translocation/glucose transport in rat adipocytes, L6 myotubes and 3T3/L1 adipocytes. Furthermore, sorbitol activated atypical protein kinase C (aPKC) through a similar mechanism depending on the PYK2/ERK pathway, independent of PI 3-kinase and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1). Like PYK2/ERK pathway components, aPKCs were required for sorbitol-stimulated GLUT4 translocation/glucose transport. Interestingly, sorbitol stimulated increases in phospholipase D (PLD) activity and generation of phosphatidic acid (PA), which directly activated aPKCs. As with aPKCs and glucose transport, sorbitol-stimulated PLD activity was dependent on the ERK pathway. Moreover, PLD-generated PA was required for sorbitol-induced activation of aPKCs and GLUT4 translocation/glucose transport. Our findings suggest that sorbitol sequentially activates PYK2, the ERK pathway and PLD, thereby increasing PA, which activates aPKCs and GLUT4 translocation. This mechanism contrasts with that of insulin, which primarily uses PI 3-kinase, D3-PO(4) polyphosphoinositides and PDK-1 to activate aPKCs.
Collapse
Affiliation(s)
- Mini P Sajan
- J.A. Haley Veterans' Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mamoon AM, Baker RC, Farley JM. Activation of phospholipase D in porcine tracheal smooth muscle: role of phosphatidylinositol 3-kinase and RhoA activation. Eur J Pharmacol 2001; 433:7-16. [PMID: 11755129 DOI: 10.1016/s0014-2999(01)01439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscarinic receptor agonists transiently activate phospholipase D in tracheal smooth muscle. Muscarinic activation of phospholipase D in this tissue is dependent on activation of protein kinase C and an unidentified pathway that is not protein kinase C dependent. Cholinergic agents have also been shown to activate phospholipase D by pathways linked to the small G protein, RhoA. This study explores the relationship between muscarinic activation of phophatidylinositol 3-kinase and activation of RhoA, and examines whether phospholipase D activation is dependent on either pathway in tracheal smooth muscle. Wortmannin or 2-(4-morphonyl)-8-phenyl-4H-1-benzopyran-4-one (LY-294002), putative specific inhibitors of phophatidylinositol 3-kinase, significantly inhibit acetylcholine-induced formation of phosphatidylethanol and also block acetylcholine-induced translocation of RhoA to the membrane. In previous experiments calphostin C, a protein kinase C inhibitor, partially inhibited both acetylcholine-induced and phorbol-12-myristate-13-acetate (PMA)-induced phosphatidylethanol formation. In the present study calphostin C did not block acetylcholine-induced RhoA translocation to the membrane. However, the Rho kinase inhibitor, N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632), significantly inhibited acetylcholine-induced phosphatidylethanol formation, but had no effect on activation of phospholipase D by PMA. Acetylcholine treatment also stimulated the phosphorylation of the 110-kDa subunit of phosphatidylinositol 3-kinase. Phosphorylation of phosphatidylinositol 3-kinase 110-kDa subunit could be blocked by wortmannin in a concentration-dependent manner, and acetylcholine-induced phosphatidylinositol 3-kinase activity was significantly inhibited by wortmannin. LY-294002 also inhibited acetylcholine-induced phosphorylation of 110-kDa subunit and activation of phosphatidylinositol 3-kinase. These results suggest that acetylcholine stimulation translocates RhoA to the membrane by a phosphatidylinositol 3-kinase-dependent mechanism and acetylcholine-induced phospholipase D stimulation is at least partly mediated via phosphatidylinositol 3-kinase, however, protein kinase C appears to activate phospholipase D independent of phosphatidylinositol 3-kinase or RhoA activation in porcine tracheal smooth muscle.
Collapse
Affiliation(s)
- A M Mamoon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
25
|
Ishizawa M, Ishizuka T, Kajita K, Miura A, Kanoh Y, Kimura M, Yasuda K. Dehydroepiandrosterone (DHEA) stimulates glucose uptake in rat adipocytes: activation of phospholipase D. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:359-64. [PMID: 11567898 DOI: 10.1016/s1096-4959(01)00444-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the effect of dehydroepiandrosterone (DHEA) on glucose uptake and phospholipase D (PLD) activation in rat adipocytes. DHEA (1 microM) provoked a twofold increase in [3H]2-deoxyglucose (DG) uptake for 30 min. Incorporation of [3H]glycerol into diacylglycerol was increased 150% above basal level for 20 min after stimulation with 1 microM DHEA. DHEA increased PLD activity, measured by the incorporation into [3H]phosphatidylethanol in [3H]palmitate labelled rat adipocytes, or by [3H]choline release in [methyl-(3)H]choline labeled rat adipocytes. Our results suggest that DHEA stimulates glucose uptake with activation of PLD in rat adipocytes.
Collapse
Affiliation(s)
- M Ishizawa
- The Third Department of Internal Medicine, Department of General Medicine, Gifu University School of Medicine, Tsukasamachi 40, 500-8705, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV. Glucose activates protein kinase C-zeta /lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem 2001; 276:35537-45. [PMID: 11463795 DOI: 10.1074/jbc.m106042200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and adipose tissues by a mechanism that appears to require protein kinase C (PKC)-zeta/lambda operating downstream of phosphatidylinositol 3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglycemia, uptake is maintained but by uncertain mechanisms. Presently, we found that glucose acutely activated PKC-zeta/lambda in rat adipocytes and rat skeletal muscle preparations by a mechanism that was independent of phosphatidylinositol 3-kinase but, interestingly, dependent on the apparently sequential activation of the dantrolene-sensitive, nonreceptor proline-rich tyrosine kinase-2; components of the extracellular signal-regulated kinase (ERK) pathway, including, GRB2, SOS, RAS, RAF, MEK1 and ERK1/2; and, most interestingly, phospholipase D, thus yielding increases in phosphatidic acid, a known activator of PKC-zeta/lambda. This activation of PKC-zeta/lambda, moreover, appeared to be required for glucose-induced increases in GLUT4 translocation and glucose transport in adipocytes and muscle cells. Our findings suggest the operation of a novel pathway for activating PKC-zeta/lambda and glucose transport.
Collapse
Affiliation(s)
- G Bandyopadhyay
- J. A. Haley Veterans' Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Farese RV. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med (Maywood) 2001; 226:283-95. [PMID: 11368419 DOI: 10.1177/153537020122600404] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insulin provokes rapid changes in phospholipid metabolism and thereby generates biologically active lipids that serve as intracellular signaling factors that regulate glucose transport and glycogen synthesis. These changes include: (i) activation of phosphatidylinositol 3-kinase (PI3K) and production of PIP3; (ii) PIP3-dependent activation of atypical protein kinase Cs (PKCs); (iii) PIP3-dependent activation of PKB; (iv) PI3K-dependent activation of phospholipase D and hydrolysis of phosphatidylcholine with subsequent increases in phosphatidic acid (PA) and diacylglycerol (DAG); (v) PI3K-independent activation of glycerol-3-phosphate acylytansferase and increases in de novo synthesis of PA and DAG; and (vi) activation of DAG-sensitive PKCs. Recent findings suggest that atypical PKCs and PKB serve as important positive regulators of insulin-stimulated glucose metabolism, whereas mechanisms that result in the activation of DAG-sensitive PKCs serve mainly as negative regulators of insulin signaling through PI3K. Atypical PKCs and PKB are rapidly activated by insulin in adipocytes, liver, skeletal muscles, and other cell types by a mechanism requiring PI3K and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), which, in conjunction with PIP3, phosphorylates critical threonine residues in the activation loops of atypical PKCs and PKB. PIP3 also promotes increases in autophosphorylation and allosteric activation of atypical PKCs. Atypical PKCs and perhaps PKB appear to be required for insulin-induced translocation of the GLUT 4 glucose transporter to the plasma membrane and subsequent glucose transport. PKB also appears to be the major regulator of glycogen synthase. Together, atypical PKCs and PKB serve as a potent, integrated PI3K/PDK-1-directed signaling system that is used by insulin to regulate glucose metabolism.
Collapse
Affiliation(s)
- R V Farese
- JA Haley Veterans' Hospital Research Service and Department of Internal Medicine, University of South Florida College of Medicine, Tampa 33612, USA.
| |
Collapse
|
28
|
Liu H, Kublaoui B, Pilch PF, Lee J. Insulin activation of mitogen-activated protein (MAP) kinase and Akt is phosphatidylinositol 3-kinase-dependent in rat adipocytes. Biochem Biophys Res Commun 2000; 274:845-51. [PMID: 10924365 DOI: 10.1006/bbrc.2000.3208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To explore the mechanism of MAP kinase activation in adipocytes, we examined the possible involvement of several candidate signaling proteins. MAP kinase activity was markedly increased 2-4 min after treatment with insulin and declined to basal levels after 20 min. The insulin-dependent tyrosine phosphorylation of IRS-1 in the internal membrane and its association with phosphatidylinositol 3 (PI3) kinase preceded MAP kinase activation. There was little or no tyrosine phosphorylation of Shc or association of Grb2 with Shc or IRS-1. Specific PI3 kinase inhibitors blocked the insulin-mediated activation of MAP kinase. They also decreased the activation of MAP kinase by PMA and EGF but to a much lesser extent. Insulin induced phosphorylation of AKT on serine/threonine residues, and its effect could be blocked by PI3 kinase inhibitors. These results suggest that the insulin-dependent activation of MAP kinase in adipocytes is mediated by the IRS-1/PI3 kinase pathway but not by the Shc/Grb2/SOS pathway.
Collapse
Affiliation(s)
- H Liu
- Department of Biochemistry, Boston University School of Medicine, 80 East Concord Street, Boston, Massachusetts, 02118, USA
| | | | | | | |
Collapse
|
29
|
Emoto M, Klarlund JK, Waters SB, Hu V, Buxton JM, Chawla A, Czech MP. A role for phospholipase D in GLUT4 glucose transporter translocation. J Biol Chem 2000; 275:7144-51. [PMID: 10702282 DOI: 10.1074/jbc.275.10.7144] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on recent studies showing that phospholipase D (PLD)1 is associated with intracellular membranes and promotes membrane budding from the trans-Golgi, we tested its possible role in the membrane trafficking of GLUT4 glucose transporters. Using immunofluorescence confocal microscopy, expressed Myc epitope-tagged PLD1 was found to associate with intracellular vesicular structures by a mechanism that requires its N-terminal pleckstrin homology domain. Partial co-localization with expressed GLUT4 fused to green fluorescent protein in both 3T3-L1 adipocytes and Chinese hamster ovary cells was evident. Furthermore, microinjection of purified PLD into cultured adipocytes markedly potentiated the effect of a submaximal concentration of insulin to stimulate GLUT4 translocation to cell surface membranes. Insulin stimulated PLD activity in cells expressing high levels of insulin receptors but no such insulin effect was detected in 3T3-L1 adipocytes. Taken together, these results are consistent with the hypothesis that PLD1 associated with GLUT4-containing membranes acts in a constitutive manner to promote the mechanism of GLUT4 translocation by insulin.
Collapse
Affiliation(s)
- M Emoto
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sauvage M, Mazière P, Fathallah H, Giraud F. Insulin stimulates NHE1 activity by sequential activation of phosphatidylinositol 3-kinase and protein kinase C zeta in human erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:955-62. [PMID: 10672002 DOI: 10.1046/j.1432-1327.2000.01084.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The signaling cascade linking insulin receptor stimulation to the activation of Na/H exchanger (NHE) was investigated in human erythrocytes, a simple cell model expressing the NHE1 isoform and protein kinase C (PKC) alpha and zeta isoforms only. Our results demonstrate the presence of phosphatidylinositol (PtdIns) 3-kinase in these cells and its activation by insulin. With a similar time-course, insulin also promoted both the translocation and activation of PKC zeta, but had no effect on PKC alpha. Inhibition of PtdIns 3-kinase with wortmannin prevented the activation of PKC zeta by insulin. Stimulation of NHE1 was observed after 10 min of insulin treatment and persisted for at least 60 min. This effect was totally abolished by wortmannin or GF 109203X, an inhibitor of all PKC isoforms, but not by Gö 6976, a specific inhibitor of conventional and novel PKCs (e.g. PKC alpha). These data indicate that PKC zeta activation is mediated by a PtdIns 3-kinase-dependent mechanism and that NHE1 stimulation involves the sequential activation of PtdIns 3-kinase and PKC zeta. In addition, insulin stimulation of NHE1 occurred without altering the phosphorylation state of the exchanger, suggesting that the phosphorylation of an ancillary protein by PKC zeta would be responsible for activation of the transporter.
Collapse
Affiliation(s)
- M Sauvage
- Laboratoire des Biomembranes et Messagers Cellulaires, Université Paris XI, Orsay, France
| | | | | | | |
Collapse
|
31
|
Voss M, Weernink PA, Haupenthal S, Möller U, Cool RH, Bauer B, Camonis JH, Jakobs KH, Schmidt M. Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J Biol Chem 1999; 274:34691-8. [PMID: 10574935 DOI: 10.1074/jbc.274.49.34691] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of phospholipase D (PLD) in HEK-293 cells expressing the M(3) muscarinic receptor by phorbol ester-activated protein kinase C (PKC) apparently involves Ral GTPases. We report here that PKC, but not muscarinic receptor-induced PLD stimulation in these cells, is strongly and specifically reduced by expression of dominant-negative RalA, G26A RalA, as well as dominant-negative Ras, S17N Ras. In contrast, overexpression of the Ras-activated Ral-specific guanine nucleotide exchange factor, Ral-GDS, specifically enhanced PKC-induced PLD stimulation. Moreover, recombinant Ral-GDS potentiated Ral-dependent PKC-induced PLD stimulation in membranes. Epidermal growth factor, platelet-derived growth factor, and insulin, ligands for receptor tyrosine kinases (RTKs) endogenously expressed in HEK-293 cells, apparently use the PKC- and Ras/Ral-dependent pathway for PLD stimulation. First, PLD stimulation by the RTK agonists was prevented by PKC inhibition and PKC down-regulation. Second, expression of dominant-negative RalA and Ras mutants strongly reduced RTK-induced PLD stimulation. Third, overexpression of Ral-GDS largely potentiated PLD stimulation by the RTK agonists. Finally, using the Ral binding domain of the Ral effector RLIP as an activation-specific probe for Ral proteins, it is demonstrated that endogenous RalA is activated by phorbol ester and RTK agonists. Taken together, strong evidence is provided that RTK-induced PLD stimulation in HEK-293 cells is mediated by PKC and a Ras/Ral signaling cascade.
Collapse
Affiliation(s)
- M Voss
- Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A, Farese RV. Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 1999; 274:25308-16. [PMID: 10464256 DOI: 10.1074/jbc.274.36.25308] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In rat adipocytes, insulin provoked rapid increases in (a) endogenous immunoprecipitable combined protein kinase C (PKC)-zeta/lambda activity in plasma membranes and microsomes and (b) immunoreactive PKC-zeta and PKC-lambda in GLUT4 vesicles. Activity and autophosphorylation of immunoprecipitable epitope-tagged PKC-zeta and PKC-lambda were also increased by insulin in situ and phosphatidylinositol 3,4,5-(PO(4))(3) (PIP(3)) in vitro. Because phosphoinositide-dependent kinase-1 (PDK-1) is required for phosphorylation of activation loops of PKC-zeta and protein kinase B, we compared their activation. Both RO 31-8220 and myristoylated PKC-zeta pseudosubstrate blocked insulin-induced activation and autophosphorylation of PKC-zeta/lambda but did not inhibit PDK-1-dependent (a) protein kinase B phosphorylation/activation or (b) threonine 410 phosphorylation in the activation loop of PKC-zeta. Also, insulin in situ and PIP(3) in vitro activated and stimulated autophosphorylation of a PKC-zeta mutant, in which threonine 410 is replaced by glutamate (but not by an inactivating alanine) and cannot be activated by PDK-1. Surprisingly, insulin activated a truncated PKC-zeta that lacks the regulatory (presumably PIP(3)-binding) domain; this may reflect PIP(3) effects on PDK-1 or transphosphorylation by endogenous full-length PKC-zeta. Our findings suggest that insulin activates both PKC-zeta and PKC-lambda in plasma membranes, microsomes, and GLUT4 vesicles by a mechanism requiring increases in PIP(3), PDK-1-dependent phosphorylation of activation loop sites in PKC-zeta and lambda, and subsequent autophosphorylation and/or transphosphorylation.
Collapse
Affiliation(s)
- M L Standaert
- J. A. Haley Veterans' Hospital Research Service and the Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang CZ, Mueckler M. ADP-ribosylation factor 6 (ARF6) defines two insulin-regulated secretory pathways in adipocytes. J Biol Chem 1999; 274:25297-300. [PMID: 10464254 DOI: 10.1074/jbc.274.36.25297] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor 6 (ARF6) appears to play an essential role in the endocytic/recycling pathway in several cell types. To determine whether ARF6 is involved in insulin-regulated exocytosis, 3T3-L1 adipocytes were infected with recombinant adenovirus expressing wild-type ARF6 or an ARF6 dominant negative mutant (D125N) that encodes a protein with nucleotide specificity modified from guanine to xanthine. Overexpression of these ARF6 proteins affected neither basal nor insulin-regulated glucose uptake in 3T3-L1 adipocytes, nor did it affect the subcellular distribution of Glut1 or Glut4. In contrast, the secretion of adipsin, a serine protease specifically expressed in adipocytes, was increased by the expression of wild-type ARF6 and was inhibited by the expression of D125N. These results indicate a requirement for ARF6 in basal and insulin-regulated adipsin secretion but not in glucose transport. Our results suggest the existence of at least two distinct pathways that undergo insulin-stimulated exocytosis in 3T3-L1 adipocytes, one for adipsin release and one for glucose transporter translocation.
Collapse
Affiliation(s)
- C Z Yang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
34
|
Standaert ML, Bandyopadhyay G, Antwi EK, Farese RV. RO 31-8220 activates c-Jun N-terminal kinase and glycogen synthase in rat adipocytes and L6 myotubes. Comparison to actions of insulin. Endocrinology 1999; 140:2145-51. [PMID: 10218965 DOI: 10.1210/endo.140.5.6699] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of c-Jun N-terminal kinase (JNK) by insulin and anisomycin has been reported to result in increases in glycogen synthase (GS) activity in rat skeletal muscle (Moxham et al., J Biol Chem, 1996, 271:30765-30773). In addition, the protein kinase C (PKC) inhibitor, RO 31-8220, has been reported to activate JNK in rat-1 fibroblasts (Beltman et al., J Biol Chem, 1996, 271:27018-27024). Presently, we found that the RO 31-8220, as well as insulin, activated JNK and GS and stimulated glucose incorporation into glycogen in rat adipocytes and L6 myotubes. In contrast to activation of JNK, RO 31-8220 inhibited extracellular response kinases 1 and 2 (ERK1/2) and had no significant effects on protein kinase B (PKB). Stimulatory effects of RO 31-8220 on JNK and glycogen metabolism were not explained by PKC inhibition, as other PKC inhibitors were without effect on glucose incorporation into glycogen and have no effect on JNK (Beltman et al., J Biol Chem, 1996, 271:27018). Insulin, on the other hand, activated JNK, as well as PKB and ERK1/2. However, stimulatory effects of insulin on GS and glucose incorporation into glycogen appeared to be fully intact and additive to those of RO 31-8220, despite the fact that insulin did not provoke additive increases in JNK activity above those observed with RO 31-8220 alone. Our findings suggest that JNK serves to activate GS during the action of RO 31-8220 in rat adipocytes and L6 myotubes; insulin, on the other hand, appears to activate GS largely independently of JNK.
Collapse
Affiliation(s)
- M L Standaert
- J. A. Haley Veteran's Hospital Research Service, and Department of Internal Medicine, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | |
Collapse
|
35
|
Procyk KJ, Kovarik P, von Gabain A, Baccarini M. Salmonella typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates. Infect Immun 1999; 67:1011-7. [PMID: 10024537 PMCID: PMC96423 DOI: 10.1128/iai.67.3.1011-1017.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Accepted: 12/01/1998] [Indexed: 01/09/2023] Open
Abstract
Activation of the extracellularly regulated kinase (ERK) pathway is part of the early biochemical events that follow lipopolysaccharide (LPS) treatment of macrophages or their infection by virulent and attenuated Salmonella strains. Phagocytosis as well as the secretion of invasion-associated proteins is dispensable for ERK activation by the pathogen. Furthermore, the pathways used by Salmonella and LPS to stimulate ERK are identical, suggesting that kinase activation might be solely mediated by LPS. Both stimuli activate ERK by a mechanism involving herbimycin-dependent tyrosine kinase(s) and phosphatidylinositol 3-kinase. Phospholipase D activation and stimulation of protein kinase C appear to be intermediates in this novel pathway of MEK/ERK activation.
Collapse
Affiliation(s)
- K J Procyk
- Department of Cell and Microbiology, Institute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
36
|
Hitomi T, Yanagi S, Inatome R, Yamamura H. Cross-linking of the B cell receptor induces activation of phospholipase D through Syk, Btk and phospholipase C-gamma2. FEBS Lett 1999; 445:371-4. [PMID: 10094492 DOI: 10.1016/s0014-5793(99)00153-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholipase D (PLD) has been proposed to play a key role in the signal transduction of cellular responses to various extracellular signals. Herein we provide biochemical and genetic evidence that cross-linking of the B cell receptor (BCR) induces rapid activation of PLD through a Syk-, Btk- and phospholipase C (PLC)-gamma2-dependent pathway in DT40 cells. Activation of PLD upon BCR engagement is completely blocked in Syk- or Btk-deficient cells, but unaffected in Lyn-deficient cells. Furthermore, in PLC-gamma2-deficient cells, BCR engagement failed to activate PLD. These results demonstrate that Syk, Btk and PLC-gamma2 are essential for BCR-induced PLD activation.
Collapse
Affiliation(s)
- T Hitomi
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
37
|
Bandyopadhyay G, Standaert ML, Kikkawa U, Ono Y, Moscat J, Farese RV. Effects of transiently expressed atypical (zeta, lambda), conventional (alpha, beta) and novel (delta, epsilon) protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes: specific interchangeable effects of protein kinases C-zeta and C-lambda. Biochem J 1999; 337 ( Pt 3):461-70. [PMID: 9895289 PMCID: PMC1219997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Atypical protein kinase (PK)C isoforms, zeta and lambda, have been reported to be activated by insulin via phosphoinositide 3-kinase, and have been suggested to be required for insulin-stimulated glucose transport. Here, we have examined the effects of transiently expressed wild-type (WT), constitutively active (Constit) and kinase-inactive (KI) forms of atypical PKCs, zeta and lambda, on haemagglutinin antigen (HAA)-tagged glucose transporter 4 (GLUT4) translocation in rat adipocytes, and compared these effects with each other and with those of comparable forms of conventional (alpha, beta) and novel (delta, epsilon) PKCs, which have also been proposed to be required for insulin-stimulated glucose transport. KI-PKC-zeta evoked consistent, sizeable (overall mean of 65%) inhibitory effects on insulin-stimulated, but not basal or guanosine-5'-[gamma-thio]triphosphate-stimulated, HAA-GLUT4 translocation; moreover, inhibitory effects of KI-PKC-zeta were largely reversed by co-transfection of WT-PKC-zeta. Like KI-PKC-zeta, KI-PKC-lambda inhibited insulin-stimulated HAA-GLUT4 translocation by approx. 40-60%, and the combination of KI-PKC-zeta and KI-PKC-lambda caused nearly complete (85%) inhibition. Of particular interest is the fact that inhibitory effects of KI forms of PKC-zeta and PKC-lambda were largely reversed by the opposite WT forms, i.e. PKC-lambda and PKC-zeta respectively. In contrast with KI forms of atypical PKCs, KI forms of PKC-alpha, PKC-beta2, PKC-delta and PKC-epsilon had little or no effect on insulin-stimulated HAA-GLUT4 translocation. Concerning the question of sufficiency, overexpression of WT-PKC-zeta enhanced insulin effects on HAA-GLUT4 translocation, whereas WT forms of PKC-alpha, PKC-beta2, PKC-delta and PKC-epsilon did not affect GLUT4 translocation; furthermore, Constit PKC-zeta evoked increases in HAA-GLUT4 translocation approaching those of insulin, but Constit forms of PKC-alpha and PKC-beta2 were without effect. Our findings suggest that, among PKCs, the atypical PKCs, zeta and lambda, appear to be specifically, but interchangeably, required for insulin effects on HAA-GLUT4 translocation.
Collapse
Affiliation(s)
- G Bandyopadhyay
- J.A. Haley Veterans' Hospital Research Service and Departments of Internal Medicine and Biochemistry/Molecular Biology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Millar CA, Jess TJ, Saqib KM, Wakelam MJ, Gould GW. 3T3-L1 adipocytes express two isoforms of phospholipase D in distinct subcellular compartments. Biochem Biophys Res Commun 1999; 254:734-8. [PMID: 9920810 DOI: 10.1006/bbrc.1998.0110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D has been implicated as an important enzyme in a range of cellular responses, including regulated secretion and the formation of secretory vesicles, cell proliferation and control of cell morphology. As insulin treatment of adipocytes has been shown to stimulate a phosphatidylcholine-specific phospholipase D and also modulates membrane trafficking, we wished to determine which isoform(s) of phospholipase D were present within adipocytes, to identify their subcellular distribution, and examine how this distribution may change in response to insulin. Using RT-PCR, 3T3-L1 adipocytes were found to express two isoforms of phospholipase D, specifically PLD1b and PLD2a. Using isoform-specific antibodies, PLD1 and PLD2 were found to be present predominantly in intracellular membranes, unlike the situation reported in other cells. Detailed analysis of the intracellular localisation of PLD1 and PLD2 revealed that these isoforms are differentially localised within adipocytes, implying functionally distinct roles for PLD activity in distinct subcellular compartments.
Collapse
Affiliation(s)
- C A Millar
- Division of Biochemistry and Molecular Biology, Davidson Building, Glasgow, G12 8QQ, Scotland
| | | | | | | | | |
Collapse
|
39
|
Abstract
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits (alpha and beta) each expressed in several isoforms. Many hormones regulate Na+/K+-ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.
Collapse
Affiliation(s)
- G Sweeney
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Ishizuka T, Kajita K, Miura A, Ishizawa M, Kanoh Y, Itaya S, Kimura M, Muto N, Mune T, Morita H, Yasuda K. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E196-204. [PMID: 9886967 DOI: 10.1152/ajpendo.1999.276.1.e196] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the effect of adrenal androgen, dehydroepiandrosterone (DHEA), on glucose uptake, phosphatidylinositol (PI) 3-kinase, and protein kinase C (PKC) activity in rat adipocytes. DHEA (1 microM) provoked a twofold increase in 2-[3H]deoxyglucose (DG) uptake for 30 min. Pretreatment with DHEA increased insulin-induced 2-[3H]DG uptake without alterations of insulin specific binding and autophosphorylation of insulin receptor. DHEA also stimulated PI 3-kinase activity. [3H]DHEA bound to purified PKC containing PKC-alpha, -beta, and -gamma. DHEA provoked the translocation of PKC-beta and -zeta from the cytosol to the membrane in rat adipocytes. These results suggest that DHEA stimulates both PI 3-kinase and PKCs and subsequently stimulates glucose uptake. Moreover, to clarify the in vivo effect of DHEA on Goto-Kakizaki (GK) and Otsuka Long-Evans fatty (OLETF) rats, animal models of non-insulin-dependent diabetes mellitus (NIDDM) were treated with 0.4% DHEA for 2 wk. Insulin- and 12-O-tetradecanoyl phorbol-13-acetate-induced 2-[3H]DG uptakes of adipocytes were significantly increased, but there was no significant increase in the soleus muscles in DHEA-treated GK/Wistar or OLETF/Long-Evans Tokushima (LETO) rats when compared with untreated GK/Wistar or OLETF/LETO rats. These results indicate that in vivo DHEA treatment can result in increased insulin-induced glucose uptake in two different NIDDM rat models.
Collapse
Affiliation(s)
- T Ishizuka
- The Third Department of Internal Medicine, Gifu University School of Medicine, Gifu 500, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Antoine PJ, Bertrand F, Auclair M, Magré J, Capeau J, Cherqui G. Insulin induction of protein kinase C alpha expression is independent of insulin receptor Tyr1162/1163 residues and involves mitogen-activated protein kinase kinase 1 and sustained activation of nuclear p44MAPK. Endocrinology 1998; 139:3133-42. [PMID: 9645686 DOI: 10.1210/endo.139.7.6094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effect of insulin on protein kinase C alpha (PKCalpha) expression and the implication of the mitogen-activated protein kinase kinase 1 mitogen-activated protein kinase (MAPK) pathway in this effect. PKCalpha expression was measured by quantitative RT-PCR and Western blotting using Chinese hamster ovary (CHO) cells overexpressing human insulin receptors of the wild type (CHO-R) or insulin receptors mutated at Tyr1162/1163 autophosphorylation sites (CHO-Y2). In CHO-R cells, insulin caused a time- and concentration-dependent increase in PKCalpha messenger RNA, with a maximum at 6 h and 10-(8)M insulin. This increase involved a transcriptional mechanism, as it was not due to stabilization of PKCalpha messenger RNA and was associated with a similar increase in the immunoreactive PKCalpha level. Insulin induction of PKCalpha expression involved the MEK1MAPK pathway, as it was 1) almost completely suppressed by the potent MEK1 inhibitor PD98059, 2) mimicked by the dominant-active MEK1 (S218D/S222D) mutant, and 3) associated with sustained MAPK activation. In CHO-Y2 cells in which the early phase of MAPK activation by insulin was lost and only the late and sustained phase of activation was observed, insulin signaling of PKCalpha expression was preserved and again involved the MEK1-MAPK pathway. Moreover, we show that in both CHO-R and CHO-Y2 cells, insulin stimulation of PKCalpha gene expression was associated with prolonged activation of nuclear p44MAPK. These results indicate that induction of PKCalpha gene expression by insulin is independent of Tyr1162/1163 autophosphorylation sites and correlates with sustained activation of p44MAPK at the nuclear level.
Collapse
Affiliation(s)
- P J Antoine
- INSERM U-402, Institut Federatif de Recherche 65, Laboratoire de Biologie Cellulaire, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
42
|
Kayali AG, Eichhorn J, Haruta T, Morris AJ, Nelson JG, Vollenweider P, Olefsky JM, Webster NJ. Association of the insulin receptor with phospholipase C-gamma (PLCgamma) in 3T3-L1 adipocytes suggests a role for PLCgamma in metabolic signaling by insulin. J Biol Chem 1998; 273:13808-18. [PMID: 9593725 DOI: 10.1074/jbc.273.22.13808] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-gamma (PLCgamma) is the isozyme of PLC phosphorylated by multiple tyrosine kinases including epidermal growth factor, platelet-derived growth factor, nerve growth factor receptors, and nonreceptor tyrosine kinases. In this paper, we present evidence for the association of the insulin receptor (IR) with PLCgamma. Precipitation of the IR with glutathione S-transferase fusion proteins derived from PLCgamma and coimmunoprecipitation of the IR and PLCgamma were observed in 3T3-L1 adipocytes. To determine the functional significance of the interaction of PLCgamma and the IR, we used a specific inhibitor of PLC, U73122, or microinjection of SH2 domain glutathione S-transferase fusion proteins derived from PLCgamma to block insulin-stimulated GLUT4 translocation. We demonstrate inhibition of 2-deoxyglucose uptake in isolated primary rat adipocytes and 3T3-L1 adipocytes pretreated with U73122. Antilipolytic effect of insulin in 3T3-L1 adipocytes is unaffected by U73122. U73122 selectively inhibits mitogen-activated protein kinase, leaving the Akt and p70 S6 kinase pathways unperturbed. We conclude that PLCgamma is an active participant in metabolic and perhaps mitogenic signaling by the insulin receptor in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- A G Kayali
- UCSD/Whittier Diabetes Program, University of California San Diego, La Jolla, California 92093 and the Medical Research Service, Department of Veterans Affairs, Medical Center, San Diego, California 92161, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sweeney G, Klip A. Regulation of the Na+/K+-ATPase by insulin: why and how? Mol Cell Biochem 1998; 182:121-33. [PMID: 9609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits (alpha and beta) each expressed in several isoforms. Many hormones regulate Na+/K+-ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.
Collapse
Affiliation(s)
- G Sweeney
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
44
|
Standaert M, Bandyopadhyay G, Galloway L, Ono Y, Mukai H, Farese R. Comparative effects of GTPgammaS and insulin on the activation of Rho, phosphatidylinositol 3-kinase, and protein kinase N in rat adipocytes. Relationship to glucose transport. J Biol Chem 1998; 273:7470-7. [PMID: 9516446 DOI: 10.1074/jbc.273.13.7470] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Electroporation of rat adipocytes with guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) elicited sizable insulin-like increases in glucose transport and GLUT4 translocation. Like insulin, GTPgammaS activated membrane phosphatidylinositol (PI) 3-kinase in rat adipocytes, but, unlike insulin, this activation was blocked by Clostridium botulinum C3 transferase, suggesting a requirement for the small G-protein, RhoA. Also suggesting that Rho may operate upstream of PI 3-kinase during GTPgammaS action, the stable overexpression of Rho in 3T3/L1 adipocytes provoked increases in membrane PI 3-kinase activity. As with insulin treatment, GTPgammaS stimulation of glucose transport in rat adipocytes was blocked by C3 transferase, wortmannin, LY294002, and RO 31-8220; accordingly, the activation of glucose transport by GTPgammaS, as well as insulin, appeared to require Rho, PI 3-kinase, and another downstream kinase, e.g. protein kinase C-zeta (PKC-zeta) and/or protein kinase N (PKN). Whereas insulin activated both PKN and PKC-zeta, GTPgammaS activated PKN but not PKC-zeta. In transfection studies in 3T3/L1 cells, stable expression of wild-type Rho and PKN activated glucose transport, and dominant-negative forms of Rho and PKN inhibited insulin-stimulated glucose transport. In transfection studies in rat adipocytes, transient expression of wild-type and constitutive Rho and wild-type PKN provoked increases in the translocation of hemagglutinin (HA)-tagged GLUT4 to the plasma membrane; in contrast, transient expression of dominant-negative forms of Rho and PKN inhibited the effects of both insulin and GTPgammaS on HA-GLUT4 translocation. Our findings suggest that (a) GTPgammaS and insulin activate Rho, PI 3-kinase, and PKN, albeit by different mechanisms; (b) each of these signaling substances appears to be required for, and may contribute to, increases in glucose transport; and (c) PKC-zeta may contribute to increases in glucose transport during insulin, but not GTPgammaS, action.
Collapse
Affiliation(s)
- M Standaert
- J. A. Haley Veterans Hospital Research Service, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
45
|
Arthur G, Bittman R. The inhibition of cell signaling pathways by antitumor ether lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:85-102. [PMID: 9487143 DOI: 10.1016/s0005-2760(97)00163-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- G Arthur
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | |
Collapse
|
46
|
Laping NJ, Olson BA, DeWolf RE, Albrightson CR, Fredrickson T, King C, Chirivella M, Ziyadeh FN, Nambi P. Activation of glomerular mesangial cells by hepatocyte growth factor through tyrosine kinase and protein kinase C. Biochem Pharmacol 1998; 55:227-34. [PMID: 9448746 DOI: 10.1016/s0006-2952(97)00461-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatocyte growth factor (HGF) induces mitogenesis, chemotaxis, and tubule formation in renal epithelial cells. This study examined the effects of wortmannin and protein kinase C (PKC) inhibitors on HGF-mediated changes in metabolic activity in glomerular mesangial cells and renal epithelial carcinoma A498 cells. The extracellular acidification rate of transformed mouse glomerular mesangial cells and A498 cells was measured as an index of metabolic activity with a microphysiometer. HGF increased the acidification rate of mesangial cells and A498 cells in a concentration-dependent fashion that was inhibited completely by the tyrosine kinase inhibitor tyrophostin-23 (100 microM). The PKC inhibitors RO-32-0432 and SKF-57048 also inhibited HGF-induced acidification. The IC50 values for SKF-57048 were 59 +/- 2 and 20 +/- 10 nM in mesangial cells and A498 cells, respectively (P < 0.05). 12-O-Tetradecanoylphorbol 13-acetate (TPA), a phorbol ester that activates PKC, increased acidification in mesangial and epithelial cells similar to HGF. Wortmannin, an inhibitor of phosphatidylinositol (PI) 3-kinase (IC50 value 1-10 nM), inhibited HGF-induced acidification with an IC50 of 93 +/- 31 and 9 +/- 1 nM in mesangial and A498 cells, respectively (P < 0.05). In contrast, there was no significant difference in the IC50 value of wortmannin for epidermal growth factor (EGF)-induced acidification between mesangial and A498 cells (23 +/- 9 vs 14 +/- 1 nM, respectively). Because the IC50 value for wortmannin in inhibiting HGF but not EGF-induced acidification was an order of magnitude higher in mesangial cells than in epithelial A498 cells, a wortmannin-sensitive PI 3-kinase pathway may not be involved in HGF-mediated acidification in mesangial cells.
Collapse
Affiliation(s)
- N J Laping
- Department of Renal Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem 1997; 272:30075-82. [PMID: 9374484 DOI: 10.1074/jbc.272.48.30075] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin provoked rapid increases in enzyme activity of immunoprecipitable protein kinase C-zeta (PKC-zeta) in rat adipocytes. Concomitantly, insulin provoked increases in 32P labeling of PKC-zeta both in intact adipocytes and during in vitro assay of immunoprecipitated PKC-zeta; the latter probably reflected autophosphorylation, as it was inhibited by the PKC-zeta pseudosubstrate. Insulin-induced activation of immunoprecipitable PKC-zeta was inhibited by LY294002 and wortmannin; this suggested dependence upon phosphatidylinositol (PI) 3-kinase. Accordingly, activation of PI 3-kinase by a pYXXM-containing peptide in vitro resulted in a wortmannin-inhibitable increase in immunoprecipitable PKC-zeta enzyme activity. Also, PI-3,4-(PO4)2, PI-3,4,5-(PO4)3, and PI-4,5-(PO4)2 directly stimulated enzyme activity and autophosphoralytion in control PKC-zeta immunoprecipitates to levels observed in insulin-treated PKC-zeta immunoprecipitates. In studies of glucose transport, inhibition of immunoprecipitated PKC-zeta enzyme activity in vitro by both the PKC-zeta pseudosubstrate and RO 31-8220 correlated well with inhibition of insulin-stimulated glucose transport in intact adipocytes. Also, in adipocytes transiently expressing hemagglutinin antigen-tagged GLUT4, co-transfection of wild-type or constitutive PKC-zeta stimulated hemagglutinin antigen-GLUT4 translocation, whereas dominant-negative PKC-zeta partially inhibited it. Our findings suggest that insulin activates PKC-zeta through PI 3-kinase, and PKC-zeta may act as a downstream effector of PI 3-kinase and contribute to the activation of GLUT4 translocation.
Collapse
Affiliation(s)
- M L Standaert
- J. A. Haley Veterans' Hospital Research Service and Departments of Internal Medicine and Biochemistry/Molecular Biology, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
48
|
Morreale A, Mallon B, Beale G, Watson J, Rumsby M. Ro31-8220 inhibits protein kinase C to block the phorbol ester-stimulated release of choline- and ethanolamine-metabolites from C6 glioma cells: p70 S6 kinase and MAPKAP kinase-1beta do not function downstream of PKC in activating PLD. FEBS Lett 1997; 417:38-42. [PMID: 9395070 DOI: 10.1016/s0014-5793(97)01252-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of bisindolylmaleimide derivatives of staurosporine as selective inhibitors of protein kinase C (PKC) is in doubt following the report by Alessi [FEBS Lett. 402 (1997) 121-123] that Ro31-8220 and GF109203X are potent in vitro inhibitors of p70 S6 kinase and mitogen-activated protein kinase-activated protein kinase-1beta, as well as of PKC. Here we show that the phorbol ester-stimulated release of choline- and ethanolamine-metabolites from C6 glioma cells due to phospholipid hydrolysis by phospholipase D (PLD) is not inhibited by rapamycin or PD98059, specific inhibitors respectively of p70 S6 kinase and MAPKK (MEK) and thus of MAPKAP kinase-1beta but is still completely blocked by Ro31-8220. We conclude therefore that p70S6k and MAPKAP kinase-1beta as well as MAPK are not involved in signalling pathways downstream of PKC that regulate phorbol ester-stimulated phospholipid turnover and that the inhibitory action of Ro31-8220 occurs by blocking PKC which regulates at least one pathway to PLD activation. The PI-3 kinase inhibitor, wortmannin, inhibits the phorbol ester-stimulated release of ethanolamine- but not choline-metabolites from C6 cells suggesting that different PLD isoforms regulate the turnover of PtdEth and PtdCho in C6 cells. Both PLD isoforms are activated via PKC but the PtdEth-PLD is also regulated via a wortmannin-sensitive pathway.
Collapse
Affiliation(s)
- A Morreale
- Department of Biology, University of York, UK
| | | | | | | | | |
Collapse
|
49
|
Bandyopadhyay G, Standaert ML, Galloway L, Moscat J, Farese RV. Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology 1997; 138:4721-31. [PMID: 9348199 DOI: 10.1210/endo.138.11.5473] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the question of whether insulin activates protein kinase C (PKC)-zeta in L6 myotubes, and the dependence of this activation on phosphatidylinositol (PI) 3-kinase. We also evaluated a number of issues that are relevant to the question of whether diacylglycerol (DAG)-dependent PKCs or DAG-insensitive PKCs, such as PKC-zeta, are more likely to play a role in insulin-stimulated glucose transport in L6 myotubes and other insulin-sensitive cell types. We found that insulin increased the enzyme activity of immunoprecipitable PKC-zeta in L6 myotubes, and this effect was blocked by PI 3-kinase inhibitors, wortmannin and LY294002; this suggested that PKC-zeta operates downstream of PI 3-kinase during insulin action. We also found that treatment of L6 myotubes with 5 microM tetradecanoyl phorbol-13-acetate (TPA) for 24 h led to 80-100% losses of all DAG-dependent PKCs (alpha, beta1, beta2, delta, epsilon) and TPA-stimulated glucose transport (2-deoxyglucose uptake); in contrast, there was full retention of PKC-zeta, as well as insulin-stimulated glucose transport and translocation of GLUT4 and GLUT1 to the plasma membrane. Unlike what has been reported in BC3H-1 myocytes, TPA treatment did not elicit increases in PKCbeta2 messenger RNA or protein in L6 myotubes, and selective retention of this PKC isoform could not explain the retention of insulin effects on glucose transport after prolonged TPA treatment. Of further interest, TPA acutely activated membrane-associated PI 3-kinase in L6 myotubes, and acute effects of TPA on glucose transport were inhibited, not only by the PKC inhibitor, LY379196, but also by both wortmannin and LY294002; this suggested that DAG-sensitive PKCs activate glucose transport through cross-talk with phosphatidylinositol (PI) 3-kinase, rather than directly through PKC. Also, the cell-permeable, myristoylated PKC-zeta pseudosubstrate inhibited insulin-stimulated glucose transport both in non-down-regulated and PKC-depleted (TPA-treated) L6 myotubes; thus, the PKC-zeta pseudosubstrate appeared to inhibit a protein kinase that is required for insulin-stimulated glucose transport but is distinct from DAG-sensitive PKCs. In keeping with the latter dissociation of DAG-sensitive PKCs and insulin-stimulated glucose transport, LY379196, which inhibits PKC-beta (preferentially) and other DAG-sensitive PKCs at relatively low concentrations, inhibited insulin-stimulated glucose transport only at much higher concentrations, not only in L6 myotubes, but also in rat adipocytes, BC3H-1 myocytes, 3T3/L1 adipocytes and rat soleus muscles. Finally, stable and transient expression of a kinase-inactive PKC-zeta inhibited basal and insulin-stimulated glucose transport in L6 myotubes. Collectively, our findings suggest that, whereas PKC-zeta is a reasonable candidate to participate in insulin stimulation of glucose transport, DAG-sensitive PKCs are unlikely participants.
Collapse
Affiliation(s)
- G Bandyopadhyay
- J. A. Haley Veterans Hospital and the Department of Internal Medicine, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | |
Collapse
|
50
|
Cutler NS, Heitman J, Cardenas ME. STT4 is an essential phosphatidylinositol 4-kinase that is a target of wortmannin in Saccharomyces cerevisiae. J Biol Chem 1997; 272:27671-7. [PMID: 9346907 DOI: 10.1074/jbc.272.44.27671] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wortmannin is a natural product that inhibits signal transduction. One target of wortmannin in mammalian cells is the 110-kDa catalytic subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We show that wortmannin is toxic to the yeast Saccharomyces cerevisiae and present genetic and biochemical evidence that a phosphatidylinositol 4-kinase (PI 4-kinase), STT4, is a target of wortmannin in yeast. In a strain background in which stt4 mutants are rescued by osmotic support with sorbitol, the toxic effects of wortmannin are similarly prevented by sorbitol. In contrast, in a different strain background, STT4 is essential under all conditions and wortmannin toxicity is not mitigated by sorbitol. Overexpression of STT4 confers wortmannin resistance, but overexpression of PIK1, a related PI 4-kinase, does not. In vitro, the PI 4-kinase activity of STT4, but not of PIK1, was potently inhibited by wortmannin. Overexpression of the phosphatidylinositol 4-phosphate 5-kinase homolog MSS4 conferred wortmannin resistance, as did deletion of phospholipase C-1. These observations support a model for a phosphatidylinositol metabolic cascade involving STT4, MSS4, and phospholipase C-1 and provide evidence that an essential product of this pathway is the lipid phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- N S Cutler
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|