1
|
The Phosphatase Inhibitor Calyculin-A Impairs Clot Retraction, Platelet Activation, and Thrombin Generation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9795271. [PMID: 28680886 PMCID: PMC5478853 DOI: 10.1155/2017/9795271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA), on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP) samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1) activator, thrombin receptor activating peptide (TRAP). Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS-) expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+ assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+ response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.
Collapse
|
2
|
Abstract
MLCP (myosin light chain phosphatase) regulates platelet function through its ability to control myosin IIa phosphorylation. Recent evidence suggests that MLCP is a de facto target for signalling events stimulated by cAMP. In the present mini-review, we discuss the mechanisms by which cAMP signalling maintains MLCP in an active state to control platelet contractile machinery.
Collapse
|
3
|
Reddi BA, Iannella SM, O'Connor SN, Deane AM, Willoughby SR, Wilson DP. Attenuated platelet aggregation in patients with septic shock is independent from the activity state of myosin light chain phosphorylation or a reduction in Rho kinase-dependent inhibition of myosin light chain phosphatase. Intensive Care Med Exp 2015. [PMID: 26215804 PMCID: PMC4512995 DOI: 10.1186/s40635-014-0037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Impaired coagulation contributes to the morbidity and mortality associated with septic shock. Whether abnormal platelet contraction adds to the bleeding tendency is unknown. Platelets contract when Ca2+-dependent myosin light chain kinase (MLCK) phosphorylates Ser19 of myosin light chain (MLC20), promoting actin-myosin cross-bridge cycling. Contraction is opposed when myosin light chain phosphatase (MLCP) dephosphorylates MLC20. It is thought that Rho kinase (ROK) inhibits MLCP by phosphorylating Thr855 of the regulatory subunit MYPT, favouring platelet contraction. This study tested the hypotheses that in septic shock, (i) platelet function is inversely correlated with illness severity and (ii) ROK-dependent MLCP inhibition and myosin light chain phosphorylation are reduced. Methods Blood was sampled from non-septic shock patients and patients in the first 24 h of septic shock. Platelet function was assessed using whole blood impedance aggregation induced by 1) ADP (1.6 and 6.5 μM), 2) thrombin receptor-activating protein (TRAP; 32 μM), 3) arachidonic acid (500 μM) and 4) collagen (3.2 μg/ml). Arachidonic acid-induced aggregation was measured in the presence of the ROK inhibitor Y27632. Illness severity was evaluated using sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation (APACHE) II scores. Western blot analysis of [Ser19]MLC20 and [Thr855]MYPT phosphorylation quantified activation and inhibition of platelet MLC20 and MLCP, respectively. Data were analysed using Spearman's rank correlation coefficient, Student's t-test and Mann-Whitney test; p < 0.05 was considered significant. Results Agonist-induced aggregation was attenuated in septic shock patients (n = 22 to 34; p < 0.05). Aggregation correlated inversely with SOFA and APACHE II scores (n = 34; p < 0.05). Thr855 phosphorylation of MYPT from unstimulated platelets was not decreased in patients with septic shock (n = 22 to 24). Both septic shock and ROK inhibition attenuated arachidonic acid-induced platelet aggregation independent of changes in [Ser19]MLC20 and [Thr855]MYPT phosphorylation (n = 14). Conclusions Impairment of whole blood aggregation in patients within the first 24 h of septic shock was correlated with SOFA and APACHE II scores. Attenuated aggregation was independent of molecular evidence of diminished platelet contraction or reduced ROK inhibition of MLCP. Efforts to restore platelet function in septic shock should therefore focus on platelet adhesion and degranulation.
Collapse
Affiliation(s)
- Benjamin Aj Reddi
- Intensive Care Unit, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia,
| | | | | | | | | | | |
Collapse
|
4
|
Haneji T, Teramachi J, Hirashima K, Kimura K, Morimoto H. Interaction of protein phosphatase 1δ with nucleophosmin in human osteoblastic cells. Acta Histochem Cytochem 2012; 45:1-7. [PMID: 22489099 PMCID: PMC3317493 DOI: 10.1267/ahc.11041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation and dephosphorylation has been recognized as an essential mechanism in the regulation of cellular metabolism and function in various tissues. Serine and threonine protein phosphatases (PP) are divided into four categories: PP1, PP2A, PP2B, and PP2C. At least four isoforms of PP1 catalytic subunit in rat, PP1α, PP1γ1, PP1γ2, and PP1δ, were isolated. In the present study, we examined the localization and expression of PP1δ in human osteoblastic Saos-2 cells. Anti-PP1δ antibody recognized a protein present in the nucleolar regions in Saos-2 cells. Cellular fractionation revealed that PP1δ is a 37 kDa protein localized in the nucleolus. Nucleophosmin is a nucleolar phosphoprotein and located mainly in the nucleolus. Staining pattern of nucleophosmin in Saos-2 cells was similar to that of PP1δ. PP1δ and nucleophosmin were specifically stained as dots in the nucleus. Dual fluorescence images revealed that PP1δ and nucleophosmin were localized in the same regions in the nucleolus. Similar distribution patterns of PP1δ and nucleophosmin were observed in osteoblastic MG63 cells. The interaction of PP1δ and nucleophosmin was also shown by immunoprecipitation and Western analysis. These results indicated that PP1δ associate with nucleophosmin directly in the nucleolus and suggested that nucleophosmin is one of the candidate substrate for PP1δ.
Collapse
Affiliation(s)
- Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Kanji Hirashima
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Koji Kimura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | - Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health
| |
Collapse
|
5
|
Simon Z, Kiss A, Erdödi F, Setiadi H, Beke Debreceni I, Nagy B, Kappelmayer J. Protein phosphatase inhibitor calyculin – A modulates activation markers in TRAP-stimulated human platelets. Platelets 2010; 21:555-62. [DOI: 10.3109/09537104.2010.499156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Kiss A, Lontay B, Bécsi B, Márkász L, Oláh E, Gergely P, Erdodi F. Myosin phosphatase interacts with and dephosphorylates the retinoblastoma protein in THP-1 leukemic cells: its inhibition is involved in the attenuation of daunorubicin-induced cell death by calyculin-A. Cell Signal 2008; 20:2059-70. [PMID: 18755268 DOI: 10.1016/j.cellsig.2008.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Reversible phosphorylation of the retinoblastoma protein (pRb) is an important regulatory mechanism in cell cycle progression. The role of protein phosphatases is less understood in this process, especially concerning the regulatory/targeting subunits involved. It is shown that pretreatment of THP-1 leukemic cells with calyculin-A (CL-A), a cell-permeable phosphatase inhibitor, attenuated daunorubicin (DNR)-induced cell death and resulted in increased pRb phosphorylation and protection against proteolytic degradation. Protein phosphatase-1 catalytic subunits (PP1c) dephosphorylated the phosphorylated C-terminal fragment of pRb (pRb-C) slightly, whereas when PP1c was complexed to myosin phosphatase target subunit-1 (MYPT1) in myosin phosphatase (MP) holoenzyme dephosphorylation was stimulated. The pRb-C phosphatase activity of MP was partially inhibited by anti-MYPT1(1-296) implicating MYPT1 in targeting PP1c to pRb. MYPT1 became phosphorylated on both inhibitory sites (Thr695 and Thr850) upon CL-A treatment of THP-1 cells resulting in the inhibition of MP activity. MYPT1 and pRb coprecipitated from cell lysates by immunoprecipitation with either anti-MYPT1 or anti-pRb antibodies implying that pRb-MYPT1 interaction occurred at cellular levels. Surface plasmon resonance-based experiments confirmed binding of pRb-C to both PP1c and MYPT1. In control and DNR-treated cells, MYPT1 and pRb were predominantly localized in the nucleus exhibiting partial colocalization as revealed by immunofluorescence using confocal microscopy. Upon CL-A treatment, nucleo-cytoplasmic shuttling of both MYPT1 and pRb, but not PP1c, was observed. The above data imply that MP, with the targeting role of MYPT1, may regulate the phosphorylation level of pRb, thereby it may be involved in the control of cell cycle progression and in the mediation of chemoresistance of leukemic cells.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, University of Debrecen Medical and Health Science Center, Debrecen, Nagyerdei krt. 98, Hungary
| | | | | | | | | | | | | |
Collapse
|
7
|
Márkász L, Hajas G, Kiss A, Lontay B, Rajnavölgyi É, Erdődi F, Oláh É. Granulocyte Colony Stimulating Factor Increases Drug Resistance of Leukaemic Blast Cells to Daunorubicin. Pathol Oncol Res 2008; 14:285-92. [DOI: 10.1007/s12253-008-9057-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 11/28/2022]
|
8
|
Lerea KM, Venjara AY, Olson SC, Kelly MR. Threonine phosphorylation of integrin beta3 in calyculin A-treated platelets is selectively sensitive to 5'-iodotubercidin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:185-91. [PMID: 17052767 DOI: 10.1016/j.bbamcr.2006.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/23/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Exposure of platelets to toxins (calyculin A or okadaic acid) that inhibit protein serine/threonine phosphatases types 1 and 2A, at concentrations that block aggregatory and secretory responses, results in the phosphorylation of several platelet proteins including integrin beta(3). Since protein phosphorylation represents a balance between kinase and phosphatase activities, this increase in phosphorylation reflects either the removal of phosphatases that oppose constitutively active kinases known to reside in the platelet (e.g., casein kinase 2) or the activation of endogenous kinases. In this study, we demonstrate that the addition of calyculin A promotes the activation of several endogenous platelet protein kinases, including p42/44(mapk), p38(mapk), Akt/PKB, and LKB1. Using a pharmacologic approach, we assessed whether inhibition of these and other enzymes block phosphorylation of beta(3). Inhibitors of p38(mapk), casein kinase, AMP kinase, protein kinase C, and calcium-calmodulin-dependent kinases did not block phosphorylation of beta(3) on thr(753). In contrast, 5'-iodotubercidin, at 50 muM, blocks beta(3) phosphorylation without affecting the efficacy of calyculin A to inhibit platelet aggregation and spreading. These data dissociate threonine phosphorylation of beta(3) molecules and inhibition of platelet responses by protein phosphatase inhibitors.
Collapse
Affiliation(s)
- Kenneth M Lerea
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
9
|
Haystead TAJ. ZIP kinase, a key regulator of myosin protein phosphatase 1. Cell Signal 2005; 17:1313-22. [PMID: 16005610 DOI: 10.1016/j.cellsig.2005.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Two major physiological roles have been defined for zipper interacting protein kinase (ZIPK), regulation of apoptosis in non-muscle cells and regulation of Ca(2+) sensitization in smooth muscle. Although much attention has focused on the role of ZIPK in the regulation of apoptotic events, its roles in smooth muscle are likely to have equal if not greater physiological relevance. We first identified ZIPK as a major protein kinase controlling the phosphorylation of myosin phosphatase (SMPP-1M) and the inhibitor protein CPI17 in smooth muscle. Phosphorylation of SMPP-1M and CPI17 by ZIPK inhibits phosphatase activity towards myosin and causes profound Ca(2+) sensitization and contraction in smooth muscle. ZIPK will also directly phosphorylate both muscle and non-muscle myosin. The highly selective actions of ZIPK in the control of myosin phosphorylation potentially make the enzyme an ideal candidate for the development of novel therapeutics to treat smooth muscle related disorders such as hypertension or asthma.
Collapse
Affiliation(s)
- Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Dakshinamurti S. Regulation of myosin light chain phosphatase and pulmonary arterial relaxation. Can J Physiol Pharmacol 2005; 83:893-8. [PMID: 16333361 DOI: 10.1139/y05-087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal circulatory transition is dependent upon tightly regulated pulmonary circuit relaxation. Persistent pulmonary hypertension (PPHN), a rapidly progressive disease of pulmonary arterial vasospasm and remodelling, may be characterized by pulmonary arterial myocyte relaxation failure. A key regulator of vascular tone is myocyte calcium sensitivity, determined by the relative stoichiometry of myosin light chain phosphorylation and dephosphorylation. We have recently reported downregulation of myosin light chain phosphatase activity in a hypoxic model of neonatal pulmonary hypertension. This review examines the recognized pathways of regulation governing myosin light chain phosphatase activity, including targeting subunit isoform switching, targeting unit phosphorylation and catalytic site inhibition. In light of the reviewed literature, further speculation is proposed on the potential contributions of these mechanisms to the pathophysiology of the perinatal pulmonary arterial relaxation defect in PPHN.Key words: smooth muscle, pulmonary hypertension, myosin light chain phosphatase, CPI-17, MYPT, review.
Collapse
|
11
|
Lontay B, Kiss A, Gergely P, Hartshorne DJ, Erdodi F. Okadaic acid induces phosphorylation and translocation of myosin phosphatase target subunit 1 influencing myosin phosphorylation, stress fiber assembly and cell migration in HepG2 cells. Cell Signal 2005; 17:1265-75. [PMID: 16038801 DOI: 10.1016/j.cellsig.2005.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
It was determined that the myosin phosphatase (MP) activity and content of myosin phosphatase target subunit 1 (MYPT1) were correlated in subcellular fractions of human hepatocarcinoma (HepG2) cells. In control cells MYPT1 was localized in the cytoplasm and in the nucleus, as determined by confocal microscopy. Treatment of HepG2 cells with 50 nM okadaic acid (OA), a cell-permeable phosphatase inhibitor, induced several changes: 1) a marked redistribution of MYPT1 to the plasma membrane associated with an increased level of phosphorylation of MYPT1 at Thr695. Both effects showed only a slight influence with the Rho-kinase inhibitor, Y-27632; 2) an increase in phosphorylation of MYPT1 at Thr850 associated with its accumulation in the perinuclear region and nucleus. These effects were markedly reduced by Y-27632; 3) an increased phosphorylation of the 20 kDa myosin II light chain at Ser19 associated with an increased location of myosin II at the cell center. These effects were partially counteracted by Y-27632; 4) an increase in stress fiber formation and a decrease in cell migration, both OA-induced effects were blocked by Y-27632. In HepG2 lysates, OA (5-100 nM) did not affect MP activity but inhibited PP2A activity. These results indicate that OA induces differential phosphorylation and translocation of MYPT1, dependent on PP2A and, to varying extents, on ROK. These changes are associated with an increased level of myosin II phosphorylation and attenuation of hepatic cell migration.
Collapse
Affiliation(s)
- Beáta Lontay
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4026 Debrecen, Bem tér 18/B, Hungary
| | | | | | | | | |
Collapse
|
12
|
Lontay B, Serfozo Z, Gergely P, Ito M, Hartshorne DJ, Erdodi F. Localization of myosin phosphatase target subunit 1 in rat brain and in primary cultures of neuronal cells. J Comp Neurol 2004; 478:72-87. [PMID: 15334650 DOI: 10.1002/cne.20273] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myosin phosphatase (PP1M) is composed of the delta isoform of the PP1 catalytic subunit (PP1cdelta), the myosin phosphatase target subunit (MYPT), and a 20 kDa subunit. Western blots detected higher amounts of the MYPT1 isoform compared to MYPT2 in whole brain extracts. The localization of MYPT1 was studied in rat brain and in primary cell cultures of neurons using specific antibodies. Analysis of lysates of brain regions for MYPT1 and PP1M by Western blots using anti-MYPT1 antibodies and by phosphatase assays with myosin as substrate suggested a ubiquitous distribution. Immunohistochemistry of tissue sections revealed that MYPT1 was distributed in all areas of the brain, with staining observed in many different cell types. Depending on the method used for fixation, the MYPT1 appeared with varying intensity in nuclei, in nucleoli, and in the cytoplasm. In primary hippocampal cultures, MYPT1 was identified by confocal microscopy in the cytoplasm and in the nucleus, whereas a predominantly cytoplasmic localization was found in cochlear nucleus cells. In cultured cells, MYPT1 and PP1cdelta colocalized with synaptophysin. PP1M activity was high in synaptosomes isolated from the cerebral cortex, but was relatively low in the postsynaptic densities. The interaction of MYPT1 with synaptophysin and with known partners (Rho-kinase, PP1cdelta) in brain extracts was shown by immunoprecipitation with anti-MYPT1. Pull-down assays from synaptosomes, using GST-MYPT1, also confirmed these interactions. In conclusion, the widespread cellular and subcellular localization of MYPT1 implies that PP1M may play an important role in the dephosphorylation of key regulatory proteins in neuronal cells.
Collapse
Affiliation(s)
- Beáta Lontay
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Bem tér 18/B, Hungary
| | | | | | | | | | | |
Collapse
|
13
|
Morimoto H, Okamura H, Haneji T. Interaction of protein phosphatase 1 delta with nucleolin in human osteoblastic cells. J Histochem Cytochem 2002; 50:1187-93. [PMID: 12185196 DOI: 10.1177/002215540205000905] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the expression and cytolocalization of the protein phosphatase type 1 delta (PP1delta) isoform and nucleolin in human osteoblastic MG63 and Saos-2 cells. Cellular fractionation of MG63 cells was done and protein was prepared from each fraction. Anti-nucleolin antibody interacted with the 100- and 95-kD proteins present in the whole-cell lysate. The 100-kD protein was detected in nuclear and nucleolar fractions. The 95-kD protein was detected in cytosolic and nucleoplasmic fractions. PP1delta and nucleolin were co-localized in the nucleolus in MG63 and Saos-2 cells revealed by an immunofluorescence method. PP1delta and nucleolin were also co-immunoprecipitated with anti-nucleolin and anti-PP1delta antibodies. In the actinomycin D-treated cells, the subcellular localization of PP1delta and nucleolin was changed. Expression of PP1delta was upregulated with actinomycin D treatment. The level of 100-kD protein did not change in the actinomycin D-treated cells. However, the level of the 95-kD band increased with actinomycin D treatment. These results indicate that PP1delta was associated with nucleolin in the nucleolus of MG63 and Saos-2 cells and that nucleolin is a possible candidate substrate for PP1delta.
Collapse
Affiliation(s)
- Hiroyuki Morimoto
- Department of Histology and Oral Histology, School of Dentistry, The University of Tokushima, Tokushima, Japan
| | | | | |
Collapse
|
14
|
Kiss E, Murányi A, Csortos C, Gergely P, Ito M, Hartshorne DJ, Erdodi F. Integrin-linked kinase phosphorylates the myosin phosphatase target subunit at the inhibitory site in platelet cytoskeleton. Biochem J 2002; 365:79-87. [PMID: 11931630 PMCID: PMC1222641 DOI: 10.1042/bj20011295] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 02/26/2002] [Accepted: 04/02/2002] [Indexed: 11/17/2022]
Abstract
The myosin phosphatase (MP) composed of the catalytic subunit of type 1 protein phosphatase and myosin phosphatase target subunit isoform 1 (MYPT1) was identified as the major serine/threonine phosphatase component in the platelet-cytoskeleton fraction. MYPT1 was phosphorylated by cytoskeletal kinase(s), but the identity of the kinase(s) and the effect of phosphorylation were not established. Incubation of platelet-cytoskeletal fraction with MgATP or MgATP[S] (magnesium adenosine 5'-[gamma-thio]triphosphate) caused a decrease in the 20 kDa light-chain of smooth-muscle myosin (MLC20) phosphatase and phosphorylase phosphatase activities. MYPT1 contains a phosphorylation site, Thr-695, involved in the inhibition of MP in a RhoA/Rho kinase-dependent manner. The cytoskeletal kinase(s) phosphorylated Thr-695 of glutathione S-transferase (GST)-MYPT1, as determined with an antibody specific for phosphorylated Thr-695. The level of Rho kinase was low in the cytoskeletal fraction and was detected primarily in the membrane and cytosolic fractions. The phosphorylation of Thr-695 by the cytoskeletal kinase(s) was not affected by Rho kinase inhibitor, Y-27632, suggesting that kinase(s) other than Rho kinase were involved. In-gel kinase assay identified a kinase at 54-59 kDa that phosphorylated the C-terminal fragment of MYPT1 (GST-MYPT1(667-1004)). Western blots detected both zipper-interacting protein kinase (ZIPK) and integrin-linked kinase (ILK) at 54-59 kDa in the cytoskeleton and membrane fractions. Cytoskeletal ZIPK and ILK were separated and partially purified by chromatography on SP-Sepharose and on MonoQ. ZIPK preferentially phosphorylated MLC20 and had low activity on MYPT1. ILK phosphorylated both MLC20 and MYPT1 and phosphorylation of MYPT1 occured on Thr-695. The above results raise the potential for regulation of MP activity in platelet cytoskeleton by ILK and suggest an alternative to the Rho-linked pathway.
Collapse
Affiliation(s)
- Eniko Kiss
- Department of Medical Chemistry, University of Debrecen, Medical and Health Science Center, H-4026 Debrecen, Bem tér 18/B, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Zákány R, Szucs K, Bakó E, Felszeghy S, Czifra G, Bíró T, Módis L, Gergely P. Protein phosphatase 2A is involved in the regulation of protein kinase A signaling pathway during in vitro chondrogenesis. Exp Cell Res 2002; 275:1-8. [PMID: 11925100 DOI: 10.1006/excr.2002.5487] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have evaluated the importance of the Ser/Thr protein phosphorylation and dephosphorylation for chondrogenesis in high-density chicken limb bud mesenchymal cell cultures (HDCs) by using H89, a cell-permeable protein kinase inhibitor, and okadaic acid (OA), a phosphoprotein phosphatase (PP)-specific inhibitor molecule. When 20 nM OA was applied to the HDCs on Days 2 and 3 of culturing, it significantly inhibited protein phosphatase 2A (PP2A), enhanced cartilage formation, and elevated the activity of cAMP-dependent protein kinase (PKA). Application of 20 microM H89 significantly decreased the activity of PKA and blocked the chondrogenesis in HDCs. Furthermore, OA enhanced cartilage formation and elevated the suppressed activity of PKA even in the H89-pretreated HDCs. cGMP-dependent protein kinase was not detected in HDCs, while protein kinase Cmu (PKCmu), which is also inhibited by nanomolar concentrations of H89, was present throughout the culturing period. Neither OA nor H89 influenced the expression of the catalytic subunit of PKA or the cAMP response element binding protein, CREB. However, a significantly elevated amount of Ser-133-phosphorylated-CREB (P-CREB) was detected following addition of OA, while H89 treatment resulted in a decrease of the amount of P-CREB. Our results demonstrate that PP2A plays a role in the regulation of the PKA signaling pathway and that the phosphorylation level of CREB is influenced by the activity of both enzymes during in vitro chondrogenesis.
Collapse
Affiliation(s)
- Róza Zákány
- Department of Anatomy, Histology, and Embryology, Medical and Health Science Centre, University of Debrecen, Debrecen, H-4026, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shin HM, Je HD, Gallant C, Tao TC, Hartshorne DJ, Ito M, Morgan KG. Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle. Circ Res 2002; 90:546-53. [PMID: 11909818 DOI: 10.1161/01.res.0000012822.23273.ec] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been known for some time that agonist-induced contractions of vascular smooth muscle are often associated with a sensitization of the contractile apparatus to intracellular Ca2+. One mechanism that has been suggested to explain Ca2+ sensitization is inhibition of myosin phosphatase activity. In the present study, we tested the hypothesis that differential localization of the phosphatase might be associated with its inhibition. Quantitative confocal microscopy of freshly dissociated, fully contractile smooth muscle cells was used in parallel with measurements of myosin light chain and myosin phosphatase phosphorylation. The results indicate that, in the smooth muscle cells, the catalytic and targeting subunits of the phosphatase are dissociated from each other in an agonist-specific manner and that the dissociation is accompanied by a slower rate of myosin phosphorylation. Targeting of myosin phosphatase to the cell membrane precedes the dissociation of subunits and is associated with phosphorylation of the targeting subunit at a Rho-associated kinase (ROK) phosphorylation site. The phosphorylation and membrane translocation of the targeting subunit are inhibited by a ROK inhibitor. This dissociation of subunits may provide a mechanism for the decreased phosphatase activity of phosphorylated myosin phosphatase.
Collapse
Affiliation(s)
- Heung-Mook Shin
- Boston Biomedical Research Institute, Watertown, Mass 02472, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Maródi L, Goda K, Palicz A, Szabó G. Cytokine receptor signalling in neonatal macrophages: defective STAT-1 phosphorylation in response to stimulation with IFN-gamma. Clin Exp Immunol 2001; 126:456-60. [PMID: 11737062 PMCID: PMC1906234 DOI: 10.1046/j.1365-2249.2001.01693.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2001] [Indexed: 11/20/2022] Open
Abstract
We reported earlier that neonatal monocyte-derived macrophages (MDM) could not be fully activated with IFN-gamma, a finding that could not be attributed to lower expression of IFN-gamma receptors on the neonatal cells. In this study we explored elements of IFN-gamma R-mediated signalling in cord monocytes and MDM. Intracellular expression of STAT-1 was analysed by flow cytometry. We have assessed phosphorylation of STAT-1 by using MoAbs that distinguish native and phosphorylated forms of STAT-1 on a discrete cell basis. Using MoAbs against the native form of STAT-1 revealed comparable expression of this protein in cord and adult cells (both monocytes and MDM). However, STAT-1 phosphorylation in response to IFN-gamma was significantly decreased in neonatal monocytes (P < 0.05) and MDM (P < 0.01) compared to adult cells (n > 5 for each). These data suggest deficient cytokine-receptor signalling in neonatal mononuclear phagocytes exposed to IFN-gamma. We propose that decreased STAT-1 phosphorylation and activation may represent developmental immaturity and may contribute to the unique susceptibility of neonates to infections by intracellular pathogens.
Collapse
Affiliation(s)
- L Maródi
- Department of Infectology and Paediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
18
|
Tóth A, Kiss E, Gergely P, Walsh MP, Hartshorne DJ, Erdödi F. Phosphorylation of MYPT1 by protein kinase C attenuates interaction with PP1 catalytic subunit and the 20 kDa light chain of myosin. FEBS Lett 2000; 484:113-7. [PMID: 11068043 DOI: 10.1016/s0014-5793(00)02138-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of phosphorylation in the N-terminal region of myosin phosphatase target subunit 1 (MYPT1) on the interactions with protein phosphatase 1 catalytic subunit (PP1c) and with phosphorylated 20 kDa myosin light chain (P-MLC20) was studied. Protein kinase C (PKC) phosphorylated threonine-34 (1 mol/mol), the residue preceding the consensus PP1c-binding motif ((35)KVKF(38)) in MYPT1(1-38), but this did not affect binding of the peptide to PP1c. PKC incorporated 2 mol P(i) into MYPT1(1-296) suggesting a second site of phosphorylation within the ankyrin repeats (residues 40-296). This phosphorylation diminished the stimulatory effect of MYPT1(1-296) on the P-MLC20 phosphatase activity of PP1c. Binding of PP1c or P-MLC20 to phosphorylated MYPT1(1-296) was also attenuated. It is concluded that phosphorylation of MYPT1 by PKC may therefore result in altered dephosphorylation of myosin.
Collapse
Affiliation(s)
- A Tóth
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Verin AD, Wang P, Garcia JG. Immunochemical characterization of myosin-specific phosphatase 1 regulatory subunits in bovine endothelium. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000301)76:3<489::aid-jcb15>3.0.co;2-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Tóth A, Kiss E, Herberg FW, Gergely P, Hartshorne DJ, Erdödi F. Study of the subunit interactions in myosin phosphatase by surface plasmon resonance. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1687-97. [PMID: 10712600 DOI: 10.1046/j.1432-1327.2000.01158.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions of the catalytic subunit of type 1 protein phosphatase (PP1c) and the N-terminal half (residues 1-511) of myosin phosphatase target subunit 1 (MYPT1) were studied. Biotinylated MYPT1 derivatives were immobilized on streptavidin-biosensor chips, and binding parameters with PP1c were determined by surface plasmon resonance (SPR). The affinity of binding of PP1c was: MYPT11-296 > MYPT11-38 > MYPT123-38. No binding was detected with MYPT11-34, suggesting a critical role for residues 35-38, i.e. the PP1c binding motif. Binding of residues 1-22 was inferred from: a higher affinity binding to PP1c for MYPT11-38 compared to MYPT123-38, as deduced from SPR kinetic data and ligand competition assays; and an activation of the myosin light chain phosphatase activity of PP1c by MYPT11-38, but not by MYPT123-38. Residues 40-296 (ankyrin repeats) in MYPT11-296 inhibited the phosphorylase phosphatase activity of PP1c (IC50 = 0.2 nM), whereas MYPT11-38, MYPT123-38 or MYPT11-34 were without effect. MYPT140-511, which alone did not bind to PP1c, showed facilitated binding to the complexes of PP1c-MYPT11-38 and PP1c-MYPT123-38. The inhibitory effect of MYPT140-511 on the phosphorylase phosphatase activity of PP1c also was increased in the presence of MYPT11-38. The binding of MYPT1304-511 to complexes of PP1c and MYPT11-38, or MYPT11-296, was detected by SPR. These results suggest that within the N-terminal half of MYPT1 there are at least four binding sites for PP1c. The essential interaction is with the PP1c-binding motif and the other interactions are facilitated in an ordered and cooperative manner.
Collapse
Affiliation(s)
- A Tóth
- Department of Medical Chemistry, University Medical School of Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 2000; 522 Pt 2:177-85. [PMID: 10639096 PMCID: PMC2269761 DOI: 10.1111/j.1469-7793.2000.t01-2-00177.x] [Citation(s) in RCA: 916] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We here review mechanisms that can regulate the activity of myosin II, in smooth muscle and non-muscle cells, by modulating the Ca2+ sensitivity of myosin regulatory light chain (RLC) phosphorylation. The major mechanism of Ca2+ sensitization of smooth muscle contraction and non-muscle cell motility is through inhibition of the smooth muscle myosin phosphatase (MLCP) that dephosphorylates the RLC in smooth muscle and non-muscle. The active, GTP-bound form of the small GTPase RhoA activates a serine/threonine kinase, Rho-kinase, that phosphorylates the regulatory subunit of MLCP and inhibits phosphatase activity. G-protein-coupled release of arachidonic acid may also contribute to inhibition of MLCP acting, at least in part, through the Rho/Rho-kinase pathway. Protein kinase C(s) activated by phorbol esters and diacylglycerol can also inhibit MLCP by phosphorylating and thereby activating CPI-17, an inhibitor of its catalytic subunit; this mechanism is independent of the Rho/Rho-kinase pathway and plays only a minor, transient role in the G-protein-coupled mechanism of Ca2+ sensitization. Ca2+ sensitization by the Rho/Rho-kinase pathway contributes to the tonic phase of agonist-induced contraction in smooth muscle, and abnormally increased activation of myosin II by this mechanism is thought to play a role in diseases such as high blood pressure and cancer cell metastasis.
Collapse
Affiliation(s)
- A P Somlyo
- Departments of Molecular Physiology and Biological Physics, Medicine (Cardiology) and Pathology, University of Virginia Health System, PO Box 800736, Charlottesville, VA 22908-0736, USA.
| | | |
Collapse
|
22
|
Mabuchi K, Gong BJ, Langsetmo K, Ito M, Nakano T, Tao T. Isoforms of the small non-catalytic subunit of smooth muscle myosin light chain phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:296-303. [PMID: 10525148 DOI: 10.1016/s0167-4838(99)00182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chicken gizzard smooth muscle myosin light chain phosphatase is composed of a approximately 37 kDa catalytic subunit, a approximately 110 kDa myosin binding or targeting subunit and a approximately 20 kDa subunit (MPs) whose function is as yet undefined. It was reported previously that a cloned chicken gizzard MPs cDNA encodes a protein of 186 amino acids (aa) [Y.H. Chen, M.X. Chen, D.R. Alessi, D.G. Gampbell, C. Shanahan, P. Cohen, P.T.W. Cohen, FEBS Lett. 356 (1994) 51-55]. More recently, we obtained by PCR amplification another MPs cDNA that encodes a protein of only 161 aa [Y. Zhang, K. Mabuchi, T. Tao, Biochim. Biophys. Acta 1343 (1997) 51-58]. In this work we obtained cDNAs corresponding to both sequences using a different set of PCR primers, indicating that the two sequences correspond to isoforms that most likely arose from alternative splicing of the same gene. Using two polyclonal antibodies, one raised against the recombinant 161 aa isoform of chicken gizzard MPs and the other against a C-terminal polypeptide that is present only in the 186 aa isoform, we found that while the 161 aa isoform is the predominant one in chicken gizzard, in chicken aorta it is the 186 aa one; in chicken stomach both isoforms are present, and in mammalian tissues such as ferret and rat only the 186 aa isoform is detected. Furthermore, we purified the MPs associated with the chicken gizzard myosin light chain phosphatase holoenzyme and determined its molecular weight, amino acid composition and six residues of its C-terminal sequence. The results from these analyses showed conclusively that the predominant isoform in chicken gizzard is the 161 aa one.
Collapse
Affiliation(s)
- K Mabuchi
- Muscle Research Group, Boston Biomedical Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
23
|
Totsukawa G, Yamakita Y, Yamashiro S, Hosoya H, Hartshorne DJ, Matsumura F. Activation of myosin phosphatase targeting subunit by mitosis-specific phosphorylation. J Cell Biol 1999; 144:735-44. [PMID: 10037794 PMCID: PMC2132942 DOI: 10.1083/jcb.144.4.735] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has been demonstrated previously that during mitosis the sites of myosin phosphorylation are switched between the inhibitory sites, Ser 1/2, and the activation sites, Ser 19/Thr 18 (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129- 137; Satterwhite, L.L., M.J. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), suggesting a regulatory role of myosin phosphorylation in cell division. To explore the function of myosin phosphatase in cell division, the possibility that myosin phosphatase activity may be altered during cell division was examined. We have found that the myosin phosphatase targeting subunit (MYPT) undergoes mitosis-specific phosphorylation and that the phosphorylation is reversed during cytokinesis. MYPT phosphorylated either in vivo or in vitro in the mitosis-specific way showed higher binding to myosin II (two- to threefold) compared to MYPT from cells in interphase. Furthermore, the activity of myosin phosphatase was increased more than twice and it is suggested this reflected the increased affinity of myosin binding. These results indicate the presence of a unique positive regulatory mechanism for myosin phosphatase in cell division. The activation of myosin phosphatase during mitosis would enhance dephosphorylation of the myosin regulatory light chain, thereby leading to the disassembly of stress fibers during prophase. The mitosis-specific effect of phosphorylation is lost on exit from mitosis, and the resultant increase in myosin phosphorylation may act as a signal to activate cytokinesis.
Collapse
Affiliation(s)
- G Totsukawa
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | | | | | | | |
Collapse
|
24
|
Vissi E, Tóth EC, Kovács I, Magyar Z, Horváth GV, Bagossi P, Gergely P, Dudits D, Dombrádi V. Protein phosphatase 1 catalytic subunit isoforms from alfalfa: biochemical characterization and cDNA cloning. Arch Biochem Biophys 1998; 360:206-14. [PMID: 9851832 DOI: 10.1006/abbi.1998.0933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The catalytic subunit of protein phosphatase 1 (PP1c) was purified from an alfalfa (Medicago sativa) microcallus cell culture. The preparation was inhibited by rabbit muscle inhibitor-2 and okadaic acid and had a molecular mass of 35 kDa. Five distinct cDNAs termed MsPP1alpha, -beta, -gamma, -delta, and -epsilon were cloned from a M. sativa somatic embryo library. MsPP1alpha was identical to a cDNA reported earlier [A. Páy, M. Pirck, L. Bögre, H. Hirt, and E. Heberle-Bors Mol. Gen. Genet. 244, 176-182, 1994], while the others represented novel isoforms encoded by separate genes. The predicted amino acid sequences of MsPP1alpha, -beta, -gamma, -delta, and -epsilon were highly similar to each other and to other known PP1c sequences. The GST-MsPP1ss fusion protein expressed in Escherichia coli was catalytically active and was inhibited by inhibitor-2 and okadaic acid. Affinity-purified polyclonal MsPP1antipeptide antibody detected a protein of 36 kDa in crude cell extracts. These results proved that the cDNA clone encoded an active PP1c which was very similar to the purified enzyme. The mRNA and protein concentrations of PP1c as well as the specific activity of protein phosphatase 1 did not change during the cell cycle in a synchronized alfalfa cell culture. On the other hand, the isoforms exhibited different steady-state mRNA levels in different plant organs suggesting tissue-specific functions.
Collapse
Affiliation(s)
- E Vissi
- Department of Medical Chemistry, University Medical School of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Myosin phosphorylation is an important mechanism in regulating contractile activity of smooth muscle. The level of myosin phosphorylation depends on the balance of two enzymes, myosin light chain kinase and myosin phosphatase. Recently it has been discovered that myosin phosphatase can be regulated and this renewed interest in characterization of the phosphatase. It is suggested that the myosin phosphatase is composed of three subunits: a catalytic subunit of type 1 phosphatase (delta isoform; PP1c delta); and two non-catalytic subunits, large and small (M20). The large subunit is thought to be a targeting subunit and is termed myosin phosphatase target subunit (MYPT). There are several isoforms of MYPT and two genes have been identified on human chromosomes 1 and 12. A dominant feature of MYPT is a series of ankyrin repeats at the N-terminal end of the molecule and these may be involved in binding to the catalytic subunit and to substrate, phosphorylated myosin. In addition, at the N-terminal fringe of the ankyrin motifs is a consensus PP1c binding motif. The function of the M20 subunit is not established but is known to bind to the C-terminal end of MYPT. Various interactions between subunits that might be relevant for the regulation of phosphatase activity are discussed.
Collapse
Affiliation(s)
- D J Hartshorne
- Muscle Biology Group, University of Arizona, Tucson 85721-0038, USA
| |
Collapse
|
26
|
Tanaka J, Ito M, Feng J, Ichikawa K, Hamaguchi T, Nakamura M, Hartshorne DJ, Nakano T. Interaction of myosin phosphatase target subunit 1 with the catalytic subunit of type 1 protein phosphatase. Biochemistry 1998; 37:16697-703. [PMID: 9843438 DOI: 10.1021/bi980782x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the investigation of the sequences of myosin phosphatase target subunit 1 (MYPT1) involved in binding the substrate and catalytic subunit of protein phosphatase type 1 (PP1c), fragments of MYPT1 were prepared and characterized. The shortest fragment capable of full activation of PP1c contained the sequence of residues 1-295. Within this fragment, the N-terminal sequence of residues 1-38 is involved in activation of PP1c (kcat) and the ankyrin repeats (residues 39-295) were involved in substrate binding (Km). The ankyrin repeats alone (residues 39-295) and the C-terminal fragment of residues 667-1004 did not activate PP1c. Using gel filtration, an interaction with PP1c was detected for the sequences of residues 1-295, 17-295, and 1-170. Affinity columns were prepared with various fragments to assess binding of PP1c. Binding to the column with residues 1-295 was strongest, followed by the binding to the column with residues 1-170. A weak interaction was observed with the column with residues 1-38. The column with residues 1-295 was used to isolate PP1c from gizzard. The purified PP1c was activated by MYPT1 and fragments to a greater extent than previous preparations. These results suggest that the N-terminal sequence (residues 1-38) and the ankyrin repeats are involved in binding PP1c. The C-terminal ankyrin repeats appear to be dominant, but there is an interaction of PP1c with the N-terminal ankyrin repeats. The N-terminal peptide has two apparent functions, the binding of PP1c via the consensus binding sequence and activation of PP1c by the sequence of residues 1-16.
Collapse
Affiliation(s)
- J Tanaka
- First Department of Internal Medicine, Mie University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kotani H, Ito M, Hamaguchi T, Ichikawa K, Nakano T, Shima H, Nagao M, Ohta N, Furuichi Y, Takahashi T, Umekawa H. The delta isoform of protein phosphatase type 1 is localized in nucleolus and dephosphorylates nucleolar phosphoproteins. Biochem Biophys Res Commun 1998; 249:292-6. [PMID: 9705875 DOI: 10.1006/bbrc.1998.9126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immunolocalization and substrates of protein phosphatases present in nucleolus were investigated using Swiss 3T3 cells and Novikoff hepatoma ascites cells. The protein phosphatase activity was detected in the extract of the isolated nucleoli and its activity was inhibited by okadaic acid with IC50 value of 160 nM. Immunoblotting assay indicated that PP1c delta but not PP1c alpha, PP1c gamma 1, and PP2Ac was localized in the isolated nucleoli. Confocal microscopy showed that PP1c delta was localized in nucleoli, nuclei, and cytosol, though the intensity of fluorescence at the nucleoli was stronger than that of the cytosol or nuclei. PP1c delta was co-localized with the major nucleolar phosphoprotein B23 at nucleoli. The phosphatase was capable of dephosphorylating several proteins in the nucleolus, including B23. The Km of PP1 for the recombinant B23.1, phosphorylated by endogenous kinase(s), was 3.5 microM. These results indicate that PP1c delta is the major serine/threonine phosphatase present in nucleolus and it dephosphorylates nucleolar phosphoproteins, including B23.
Collapse
Affiliation(s)
- H Kotani
- First Department of Internal Medicine, Mie University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|