1
|
Olasz B, Fiser B, Szőri M, Viskolcz B, Owen MC. Computational Elucidation of the Solvent-Dependent Addition of 4-Hydroxy-2-nonenal (HNE) to Cysteine and Cysteinate Residues. J Org Chem 2022; 87:12909-12920. [PMID: 36148484 DOI: 10.1021/acs.joc.2c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lipid peroxidation end product, 4-hydroxy-2-nonenal (HNE), is a secondary mediator of oxidative stress due to its strong ability to form adducts to the side chains of lysine, histidine, and cysteine residues (Cys) at increasing reactivities. This reaction can take place in various cellular environments and may be dependent on solvent. Moreover, approximately 10% of cysteine residues within the cells exist as the negatively charged cysteinate, which may also have a distinct reactivity toward HNE. In this study, quantum chemical calculations are used to investigate the reactivity of HNE toward Cys and cysteinate in three distinct solvent environments to mimic the aqueous, polar, and hydrophobic regions within the cell. Water enhances the reactivity of HNE to cysteine compared to that of the polar and hydrophobic solvents, and the reactivity of HNE is further augmented when Cys is first ionized to cysteinate. This is also confirmed by the transition state rate constant calculations. This study reveals the role of solvent polarity in these reactions and how cysteinate can account for the seemingly high reactivity of HNE toward Cys compared to other amino acid residues and demonstrates how a strong nucleophile can enhance the reactivity of an antioxidant analogue of the Cys residue.
Collapse
Affiliation(s)
- Balázs Olasz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Ferenc Rákóczi II Transcarpathian Hungarian College of Higher Education, UA-90200 Beregszász, Transcarpathia, Ukraine
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Michael C Owen
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| |
Collapse
|
2
|
Mondal LK, Pramanik S, Chowdhury S, Bose C, Bera D, Saha A, Bhattacharjee K. Do different lipid components accelerate the pathogenesis and severity of Diabetic Retinopathy? Int J Retina Vitreous 2022; 8:39. [PMID: 35690853 PMCID: PMC9188217 DOI: 10.1186/s40942-022-00390-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To assess the association of lipid and lipid-derived toxic molecules in pathogenesis and severity of diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM). METHODS The present cross-sectional study included 14 healthy individuals (HC) without T2DM, 22 T2DM subjects without DR (DNR), 24 T2DM subjects with mild non-proliferative DR (MNPDR), and 24 T2DM subjects with high-risk proliferative DR (HRPDR). All subjects underwent plasma and vitreous analysis for estimation of total lipid (TL), free fatty acid (FFA), lipid peroxides (LPOs) like malondialdehyde (MDA), 4-Hydroxy-noneal (HNE), the advanced lipoxidation end product (ALE) like Hexanoyl-lysine (HLY) and vascular endothelial growth factor (VEGF) following standard spectrophotometric and enzyme-linked immunosorbent assay (ELISA) methods respectively. RESULTS The concentration of TL, FFA, markers of lipid peroxidation and lipoxidation as well as VEGF in plasma and vitreous were found to be significantly elevated stepwise inT2DM subjects (HRPDR > MNPDR > DNR) compared to healthy controls (HC).Further, plasma conventional lipid components like total cholesterol (TCH), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG), FFA and TL showed their significant positive correlations with vitreous level of different LPOs, ALE and VEGF in the DR group. CONCLUSION Total lipid and lipid-derived detrimental biomolecules ultimately result in increased secretion of VEGF and thus not only add as associated mediators in the pathogenesis of DR, these also accelerate the severity of microangiopathy in T2DM.
Collapse
Affiliation(s)
- Lakshmi Kanta Mondal
- Department of Ophthalmology, Regional Institute of Ophthalmology, Medical College Campus, Kolkata, 700 073, West Bengal, India.
| | - Subhasish Pramanik
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Subhankar Chowdhury
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Chiranjit Bose
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Debgopal Bera
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Ayindrila Saha
- Department of Rheumatology, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Koena Bhattacharjee
- Department of Ophthalmology, Regional Institute of Ophthalmology, Medical College Campus, Kolkata, 700 073, West Bengal, India
| |
Collapse
|
3
|
Long MJC, Wang L, Aye Y. Getting the Right Grip? How Understanding Electrophile Selectivity Profiles Could Illuminate Our Understanding of Redox Signaling. Antioxid Redox Signal 2020; 33:1077-1091. [PMID: 31578876 PMCID: PMC7583342 DOI: 10.1089/ars.2019.7894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Electrophile signaling is coming into focus as a bona fide cell signaling mechanism. The electrophilic regulation occurs typically through a sensing event (i.e., labeling of a protein) and a signaling event (the labeling event having an effect of the proteins activity, association, etc.). Recent Advances: Herein, we focus on the first step of this process, electrophile sensing. Electrophile sensing is typically a deceptively simple reaction between the thiol of a protein cysteine, of which there are around 200,000 in the human proteome, and a Michael acceptor, of which there are numerous flavors, including enals and enones. Recent data overall paint a picture that despite being a simple chemical reaction, electrophile sensing is a discerning process, showing labeling preferences that are often not in line with reactivity of the electrophile. Critical Issues: With a view to trying to decide what brings about highly electrophile-reactive protein cysteines, and how reactive these sensors may be, we discuss aspects of the thermodynamics and kinetics of covalent/noncovalent binding. Data made available by several laboratories indicate that it is likely that specific proteins exhibit highly stereo- and chemoselective electrophile sensing, which we take as good evidence for recognition between the electrophile and the protein before forming a covalent bond. Future Directions: We propose experiments that could help us gain a better and more quantitative understanding of the mechanisms through which sensing comes about. We further extoll the importance of performing more detailed experiments on labeling and trying to standardize the way we assess protein-specific electrophile sensing.
Collapse
Affiliation(s)
- Marcus J C Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, United Kingdom
| | - Lingxi Wang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Balestri F, Barracco V, Renzone G, Tuccinardi T, Pomelli CS, Cappiello M, Lessi M, Rotondo R, Bellina F, Scaloni A, Mura U, Del Corso A, Moschini R. Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct. Antioxidants (Basel) 2019; 8:antiox8100502. [PMID: 31652566 PMCID: PMC6827081 DOI: 10.3390/antiox8100502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The formation of the adduct between the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and glutathione, which leads to the generation of 3-glutathionyl-4-hydroxynonane (GSHNE), is one of the main routes of HNE detoxification. The aldo-keto reductase AKR1B1 is involved in the reduction of the aldehydic group of both HNE and GSHNE. In the present study, the effect of chirality on the recognition by aldose reductase of HNE and GSHNE was evaluated. AKR1B1 discriminates very modestly between the two possible enantiomers of HNE as substrates. Conversely, a combined kinetic analysis of the glutathionyl adducts obtained starting from either 4R- or 4S-HNE and mass spectrometry analysis of GSHNE products obtained from racemic HNE revealed that AKR1B1 possesses a marked preference toward the 3S,4R-GSHNE diastereoisomer. Density functional theory and molecular modeling studies revealed that this diastereoisomer, besides having a higher tendency to be in an open aldehydic form (the one recognized by AKR1B1) in solution than other GSHNE diastereoisomers, is further stabilized in its open form by a specific interaction with the enzyme active site. The relevance of this stereospecificity to the final metabolic fate of GSHNE is discussed.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Vito Barracco
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine 1085, 80147 Napoli, Italy.
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | | | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Marco Lessi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi, 13, 56124 Pisa, Italy.
| | - Rossella Rotondo
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi, 13, 56124 Pisa, Italy.
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine 1085, 80147 Napoli, Italy.
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
5
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles. Trends Biochem Sci 2018; 44:75-89. [PMID: 30327250 DOI: 10.1016/j.tibs.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Revolutionary proteomic strategies have enabled rapid profiling of the cellular targets of electrophilic small molecules. However, precise means to directly interrogate how these individual electrophilic modifications at low occupancy functionally reshape signaling networks have until recently been largely limited. We highlight here new methods that transcend proteomic platforms to forge a quantitative link between protein target-selective engagement and downstream signaling. We focus on recent progress in the study of non-enzyme-assisted signaling mechanisms and crosstalk choreographed by native reactive electrophilic species (RES). Using this as a model, we offer a long-term vision of how these toolsets together with fundamental biochemical knowledge of precision electrophile signaling may be harnessed to assist covalent ligand-target matching and ultimately amend disease-specific signaling dysfunction.
Collapse
|
7
|
Surya SL, Long MJC, Urul DA, Zhao Y, Mercer EJ, EIsaid IM, Evans T, Aye Y. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chem Biol 2018; 13:1824-1831. [PMID: 29397684 PMCID: PMC6260788 DOI: 10.1021/acschembio.7b00925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small heat shock protein (sHSP)-B7 (HSPB7) is a muscle-specific member of the non-ATP-dependent sHSPs. The precise role of HSPB7 is enigmatic. Here, we disclose that zebrafish Hspb7 is a kinetically privileged sensor that is able to react rapidly with native reactive electrophilic species (RES), when only substoichiometric amounts of RES are available in proximity to Hspb7 expressed in living cells. Among the two Hspb7-cysteines, this RES sensing is fulfilled by a single cysteine (C117). Purification and characterizations in vitro reveal that the rate for RES adduction is among the most efficient reported for protein-cysteines with native carbonyl-based RES. Covalent-ligand binding is accompanied by structural changes (increase in β-sheet-content), based on circular dichroism analysis. Among the two cysteines, only C117 is conserved across vertebrates; we show that the human ortholog is also capable of RES sensing in cells. Furthermore, a cancer-relevant missense mutation reduces this RES-sensing property. This evolutionarily conserved cysteine-biosensor may play a redox-regulatory role in cardioprotection.
Collapse
Affiliation(s)
- Sanjna L. Surya
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Daniel A. Urul
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emily J. Mercer
- Department of Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Islam M. EIsaid
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
8
|
Poganik JR, Long MJC, Aye Y. Getting the Message? Native Reactive Electrophiles Pass Two Out of Three Thresholds to be Bona Fide Signaling Mediators. Bioessays 2018; 40:e1700240. [PMID: 29603288 PMCID: PMC6488019 DOI: 10.1002/bies.201700240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/24/2018] [Indexed: 12/11/2022]
Abstract
Precision cell signaling activities of reactive electrophilic species (RES) are arguably among the most poorly-understood means to transmit biological messages. Latest research implicates native RES to be a chemically-distinct subset of endogenous redox signals that influence cell decision making through non-enzyme-assisted modifications of specific proteins. Yet, fundamental questions remain regarding the role of RES as bona fide second messengers. Here, we lay out three sets of criteria we feel need to be met for RES to be considered as true cellular signals that directly mediate information transfer by modifying "first-responding" sensor proteins. We critically assess the available evidence and define the extent to which each criterion has been fulfilled. Finally, we offer some ideas on the future trajectories of the electrophile signaling field taking inspiration from work that has been done to understand canonical signaling mediators. Also see the video abstract here: https://youtu.be/rG7o0clVP0c.
Collapse
Affiliation(s)
- Jesse R. Poganik
- Department of Chemistry and Chemical Biology Cornell University Ithaca, NY 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology Cornell University Ithaca, NY 14853, USA
| | - Yimon Aye
- Department of Chemistry and Chemical Biology Cornell University Ithaca, NY 14853, USA
- Department of Biochemistry Weill Cornell Medicine New York, NY 10065, USA
| |
Collapse
|
9
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
10
|
Abunnaja MS, Kurogi K, Mohammed YI, Sakakibara Y, Suiko M, Hassoun EA, Liu MC. Identification and characterization of the zebrafish glutathione S-transferase Pi-1. J Biochem Mol Toxicol 2017. [PMID: 28621814 DOI: 10.1002/jbt.21948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S-transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi-1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3-month-old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH-dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.
Collapse
Affiliation(s)
- Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA.,Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yasir I Mohammed
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Ezdihar A Hassoun
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| |
Collapse
|
11
|
Balogh LM, Atkins WM. Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metab Rev 2011; 43:165-78. [PMID: 21401344 DOI: 10.3109/03602532.2011.558092] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrophilic products of lipid peroxidation are important contributors to the progression of several pathological states. The prototypical α,β-unsaturated aldehyde, 4-hydroxynonenal (HNE), triggers cellular events associated with oxidative stress, which can be curtailed by the glutathione-dependent elimination of HNE. The glutathione transferases (GSTs) are a major determinate of the intracellular concentration of HNE and can influence susceptibility to toxic effects, particularly when HNE and GST levels are altered in disease states. In this article, we provide a brief summary of the cellular effects of HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTs. Some of the key determining characteristics that impart high alkenal activity reside in the unique C-terminal interactions of the GSTA4-4 enzyme. Studies encompassing both kinetic and structural analyses of related isoforms will be highlighted, with additional attention to stereochemical aspects that demonstrate the capacity of GSTA4-4 to detoxify both enantiomers of the biologically relevant racemic mixture while generating a select set of diastereomeric products with subsequent implications. A summary of the literature that examines the interplay between GSTs and HNE in model systems relevant to oxidative stress will also be discussed to demonstrate the magnitude of importance of GSTs in the overall detoxification scheme.
Collapse
Affiliation(s)
- Larissa M Balogh
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | | |
Collapse
|
12
|
Picklo MJ, Azenkeng A, Hoffmann MR. Trans-4-oxo-2-nonenal potently alters mitochondrial function. Free Radic Biol Med 2011; 50:400-7. [PMID: 21092757 DOI: 10.1016/j.freeradbiomed.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/27/2022]
Abstract
Alzheimer disease elevates lipid peroxidation in the brain and data indicate that the resulting lipid-aldehydes are pathological effectors of lipid peroxidation. The disposition of 4-substituted nonenals derived from arachidonate (20:4, n-6) and linoleate (18:2, n-6) oxidation is modulated by their protein adduction targets, their metabolism, and the nature of the 4-substitutent. Trans-4-oxo-2-nonenal (4-ONE) has a higher toxicity in some systems than the more commonly studied trans-4-hydroxy-2-nonenal (HNE). In this work, we performed a structure-function analysis of 4-hydroxy/oxoalkenal upon mitochondrial endpoints. We tested the hypotheses that 4-ONE, owing to a highly reactive nature, is more toxic than HNE and that HNE toxicity is enantioselective. We chose to study freshly isolated brain mitochondria because of the role of mitochondrial dysfunction in neurodegenerative disorders. Whereas there was little effect related to HNE chirality, our data indicate that in the mitochondrial environment, the order of toxic potency under most conditions was 4-ONE>HNE. 4-ONE uncoupled mitochondrial respiration at a concentration of 5μM and inhibited aldehyde dehydrogenase 2 (ALDH2) activity with an IC(50) of approximately 0.5μM. The efficacy of altering mitochondrial endpoints was ALDH2 inhibition>respiration=mitochondrial swelling=ALDH5A inhibition>GSH depletion. Thiol-based alkenal scavengers, but not amine-based scavengers, were effective in blocking the effects of 4-ONE upon respiration. Quantum mechanical calculations provided insights into the basis for the elevated reactivity of 4-ONE>HNE. Our data demonstrate that 4-ONE is a potent effector of lipid peroxidation in the mitochondrial environment.
Collapse
Affiliation(s)
- Matthew J Picklo
- Agricultural Research Center, Grand Forks Human Nutrition Research Center, U.S. Department of Agriculture, Grand Forks, ND 58203-9034, USA.
| | | | | |
Collapse
|
13
|
Balogh LM, Le Trong I, Kripps KA, Shireman LM, Stenkamp RE, Zhang W, Mannervik B, Atkins WM. Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal. Biochemistry 2010; 49:1541-8. [PMID: 20085333 DOI: 10.1021/bi902038u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugation to glutathione (GSH) by glutathione transferase A4-4 (GSTA4-4) is a major route of elimination for the lipid peroxidation product 4-hydroxynonenal (HNE), a toxic compound that contributes to numerous diseases. Both enantiomers of HNE are presumed to be toxic, and GSTA4-4 has negligible stereoselectivity toward them, despite its high catalytic chemospecificity for alkenals. In contrast to the highly flexible, and substrate promiscuous, GSTA1-1 isoform that has poor catalytic efficiency with HNE, GSTA4-4 has been postulated to be a rigid template that is preorganized for HNE metabolism. However, the combination of high substrate chemoselectivity and low substrate stereoselectivity is intriguing. The mechanism by which GSTA4-4 achieves this combination is important, because it must metabolize both enantiomers of HNE to efficiently detoxify the biologically formed mixture. The crystal structures of GSTA4-4 and an engineered variant of GSTA1-1 with high catalytic efficiency toward HNE, cocrystallized with a GSH-HNE conjugate analogue, demonstrate that GSTA4-4 undergoes no enantiospecific induced fit; instead, the active site residue Arg15 is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The results reveal an evolutionary strategy for achieving biologically useful stereopromiscuity toward a toxic racemate, concomitant with high catalytic efficiency and substrate specificity toward an endogenously formed toxin.
Collapse
Affiliation(s)
- Larissa M Balogh
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Balogh LM, Roberts AG, Shireman LM, Greene RJ, Atkins WM. The stereochemical course of 4-hydroxy-2-nonenal metabolism by glutathione S-transferases. J Biol Chem 2008; 283:16702-10. [PMID: 18424441 DOI: 10.1074/jbc.m801725200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
4-Hydroxy-2-nonenal (HNE) is a toxic aldehyde generated during lipid peroxidation and has been implicated in a variety of pathological states associated with oxidative stress. Glutathione S-transferase (GST) A4-4 is recognized as one of the predominant enzymes responsible for the metabolism of HNE. However, substrate and product stereoselectivity remain to be fully explored. The results from a product formation assay indicate that hGSTA4-4 exhibits a modest preference for the biotransformation of S-HNE in the presence of both enantiomers. Liquid chromatography mass spectrometry analyses using the racemic and enantioisomeric HNE substrates explicitly demonstrate that hGSTA4-4 conjugates glutathione to both HNE enantiomers in a completely stereoselective manner that is not maintained in the spontaneous reaction. Compared with other hGST isoforms, hGSTA4-4 shows the highest degree of stereoselectivity. NMR experiments in combination with simulated annealing structure determinations enabled the determination of stereochemical configurations for the GSHNE diastereomers and are consistent with an hGSTA4-4-catalyzed nucleophilic attack that produces only the S-configuration at the site of conjugation, regardless of substrate chirality. In total these results indicate that hGSTA4-4 exhibits an intriguing combination of low substrate stereoselectivity with strict product stereoselectivity. This behavior allows for the detoxification of both HNE enantiomers while generating only a select set of GSHNE diastereomers with potential stereochemical implications concerning their effects and fates in biological tissues.
Collapse
Affiliation(s)
- Larissa M Balogh
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA
| | | | | | | | | |
Collapse
|
15
|
Brichac J, Ho KK, Honzatko A, Wang R, Lu X, Weiner H, Picklo MJ. Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent. Chem Res Toxicol 2007; 20:887-95. [PMID: 17480102 DOI: 10.1021/tx7000509] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic alpha,beta-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable Bürgi-Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.
Collapse
Affiliation(s)
- Jiri Brichac
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Honzatko A, Brichac J, Murphy TC, Reberg A, Kubátová A, Smoliakova IP, Picklo MJ. Enantioselective metabolism of trans-4-hydroxy-2-nonenal by brain mitochondria. Free Radic Biol Med 2005; 39:913-24. [PMID: 16140211 DOI: 10.1016/j.freeradbiomed.2005.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 05/07/2005] [Accepted: 05/09/2005] [Indexed: 11/28/2022]
Abstract
Trans-4-hydroxy-2-nonenal (HNE) is a product of lipid peroxidation with many cellular effects. HNE possesses a stereogenic center at the C4 carbon that influences the metabolism and alkylation targets of HNE. We tested the hypothesis that rat brain mitochondria metabolize HNE in an enantioselective manner after exposure to racemic HNE. The study of HNE chirality, however, is hindered by the lack of facile methods to chromatographically resolve (R)-HNE and (S)-HNE. We used a chiral hydrazine, (S)-carbidopa, as a derivatization reagent to form diastereomers with (R)-HNE and (S)-HNE that were separated by reverse-phase HPLC. After exposure to racemic HNE, rat brain mitochondria metabolized HNE enantioselectively with a higher rate of (R)-HNE metabolism. By using the purified enantiomers of HNE, we found that this enantioselective metabolism of HNE was the result of higher rates of enzymatic oxidation of (R)-HNE by aldehyde dehydrogenases compared to (S)-HNE. Conjugation of HNE to glutathione was a minor metabolic pathway and was not enantioselective. These studies demonstrate that the chirality of HNE affects its mitochondrial metabolism and potentially other processes in the central nervous system.
Collapse
Affiliation(s)
- Ales Honzatko
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9024, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous alpha,beta-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-kappaB (NF-kappaB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Center, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | |
Collapse
|
18
|
Guéraud F, Crouzet F, Alary J, Rao D, Debrauwer L, Laurent F, Cravedi JP. Enantioselective metabolism of (R)- and (S)-4-hydroxy-2-nonenal in rat. Biofactors 2005; 24:97-104. [PMID: 16403968 DOI: 10.1002/biof.5520240111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4-Hydroxy-2-nonenal (HNE) is an endogenous product of lipid peroxidation, which is believed to play a biological role in the pathogenesis of various diseases. HNE is formed as a racemic mixture of (R)- and (S)- enantiomers. These enantiomers differ in their biological properties. The aim of this study was to investigate separately the in vivo metabolism of the two HNE enantiomers in male rats after intravenous administration of the corresponding radiolabeled compounds and to compare the results with those obtained with the racemic mixture. Although the difference in the excretion rates was not statistically significant, the HPLC profiles of urinary metabolites showed qualitative and quantitative differences between the two enantiomers. The level of 3-mercapturic acid-1,4-dihydroxynonane, which is considered as the major urinary metabolite of HNE, was significantly lower in the case of (S)-HNE injected rats. In vitro studies using rat liver cytosolic incubations and HNE-glutathione conjugate as substrate were performed to clarify the intermediate pathways involved in their metabolism. Large differences were obtained in the reduction and retro-Michael conversion steps of the metabolism between the conjugates originating from the two enantiomers.
Collapse
Affiliation(s)
- Françoise Guéraud
- Institut National de la Recherche Agronomique, UMR-1089 Xénobiotiques, BP 3, 31931 Toulouse Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Vassallo JD, Hicks SM, Daston GP, Lehman-McKeeman LD. Metabolic Detoxification Determines Species Differences in Coumarin-Induced Hepatotoxicity. Toxicol Sci 2004; 80:249-57. [PMID: 15141102 DOI: 10.1093/toxsci/kfh162] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatotoxicity of coumarin is attributed to metabolic activation to an epoxide intermediate, coumarin 3,4-epoxide (CE). However, whereas rats are most susceptible to coumarin-induced hepatotoxicity, formation of CE is greatest in mouse liver microsomes, a species showing little evidence of hepatotoxicity. Therefore, the present work was designed to test the hypothesis that detoxification of CE is a major determinant of coumarin hepatotoxicity. CE can either rearrange spontaneously to o-hydroxyphenylacetaldehyde (o-HPA) or be conjugated with gluatathione (GSH). o-HPA is hepatotoxic and is further detoxified by oxidation to o-hydroxyphenylacetic acid (o-HPAA). In vitro experiments were conducted using mouse liver microsomes to generate a constant amount of CE, and cytosols from F344 rats, B6C3F1 mice, and human liver were used to characterize CE detoxification. All metabolites were quantified by HPLC methods with UV detection. In rats and mice, GSH conjugation occurred non-enzymatically and through glutathione-S-transferases (GSTs), and the kinetics of GSH conjugation were similar in rats and mice. In rat liver cytosol, oxidation of o-HPA to o-HPAA was characterized with a high affinity K(m) of approximately 12 microM, and a V(max) of approximately 1.5 nmol/min/mg protein. In contrast, the K(m) and V(max) for o-HPA oxidation in mouse liver cytosol were approximately 1.7 microM and 5 nmol/min/mg protein, respectively, yielding a total intrinsic clearance through oxidation to o-HPAA that was 20 times higher in mouse than in rats. Human cytosols (two separate pools) detoxified CE through o-HPA oxidation with an apparent K(m) of 0.84 microM and a V(max) of 5.7 nmol/min/mg protein, for a net intrinsic clearance that was more than 50 times higher than the rat. All species also reduced o-HPA to o-hydroxyphenylethanol (o-HPE), but this was only a major reaction in rats. In the presence of a metabolic reaction replete with all necessary cofactors, GSH conjugation accounted for nearly half of all CE metabolites in rat and mouse, whereas the GSH conjugate represented only 10% of the metabolites in human cytosol. In mouse, o-HPAA represented the major ring-opened metabolite, accounting for the remaining 50% of metabolites, and in human cytosol, o-HPAA was the major metabolite, representing nearly 90% of all CE metabolites. In contrast, no o-HPAA was detected in rats, whereas o-HPE represented a major metabolite. Collectively, these in vitro data implicate o-HPA detoxification through oxidation to o-HPAA as the major determinant of species differences in coumarin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jeffrey D Vassallo
- Miami Valley Laboratories, The Procter and Gamble Company, 11810 East Miami River Road, Cincinnati, Ohio 45252, USA.
| | | | | | | |
Collapse
|
20
|
Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 2004; 6:289-300. [PMID: 15025930 DOI: 10.1089/152308604322899350] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione peroxidase activity and that these enzymes can also detoxify lipid peroxidation end products such as 4-hydroxynonenal (4-HNE). In this article, recent studies suggesting that the Alpha class GSTs provide a formidable defense against oxidative stress are critically evaluated and the role of these enzymes in the regulation of oxidative stress-mediated signaling is reviewed. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that lipid peroxidation products, particularly hydroperoxides and 4-HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the Alpha class GSTs through the regulation of the intracellular concentrations of 4-HNE.
Collapse
Affiliation(s)
- Rajendra Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|
21
|
Hiratsuka A, Tobita K, Saito H, Sakamoto Y, Nakano H, Ogura K, Nishiyama T, Watabe T. (S)-preferential detoxification of 4-hydroxy-2(E)-nonenal enantiomers by hepatic glutathione S-transferase isoforms in guinea-pigs and rats. Biochem J 2001; 355:237-44. [PMID: 11256969 PMCID: PMC1221732 DOI: 10.1042/0264-6021:3550237] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In guinea-pig liver cytosol, racemic 4-hydroxy-2(E)-nonenal (HNE), a reactive and highly toxic product released from biomembranes by lipid peroxidation, was detoxified (S)-preferentially by GSH conjugation mediated by glutathione S-transferases (GSTs) and (R)-preferentially by NAD(+)-dependent oxidation mediated by aldehyde dehydrogenase (ALDH). The GST-mediated detoxification of the HNE enantiomers proceeded at much higher rates than that mediated by ALDH in guinea-pig liver cytosol. All the major guinea-pig GSTs, A1-1, M1-1, M1-2 and M1-3*, isolated from guinea-pig liver cytosol also catalysed the (S)-preferential conjugation of the HNE enantiomers. The liver and other major tissues of guinea-pigs had no immunologically detectable level of a putative GSTA4-4 orthologue, which exists as a minor GST protein in rat, mouse and human livers and exhibits extremely high catalytic activity towards HNE. All the hepatic rat GSTs, A1-1(2), A1-3, A4-4, M1-1, M1-2 and M2-2, also catalysed the (S)-preferential conjugation of HNE enantiomers.
Collapse
Affiliation(s)
- A Hiratsuka
- Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|