1
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
2
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
3
|
Identification of an immune-related signature indicating the dedifferentiation of thyroid cells. Cancer Cell Int 2021; 21:231. [PMID: 33892730 PMCID: PMC8067302 DOI: 10.1186/s12935-021-01939-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Immune cells account for a large proportion of the tumour microenvironment in anaplastic thyroid carcinomas (ATCs). However, the expression pattern of immune-related genes (IRGs) in ATCs is unclear. Our study aimed to identify an immune-related signature indicating the dedifferentiation of thyroid cells. Methods We compared the differences in thyroid differentiation score (TDS), infiltration of immune cells and enriched pathways between ATCs and papillary thyroid carcinomas (PTCs) or normal thyroid tissues in the Gene Expression Omnibus database. Univariate and multivariable Cox analyses were used to screen prognosis-associated IRGs in The Cancer Genome Atlas database. After constructing a risk score, we investigated its predictive value for differentiation and survival by applying receiver operating characteristic and Kaplan–Meier curves. We further explored its associations with important immune checkpoint molecules, infiltrating immune cells and response to immunotherapy. Results Compared with PTCs or normal thyroid tissues, ATCs exhibited lower TDS values and higher enrichment of immune cells and activation of the inflammatory response. The quantitative analyses and immunohistochemical staining validated that most ATC cell lines and ATC tissues had higher expression of MMP9 and lower expression of SDC2 than normal thyroid samples and PTC. Higher risk scores indicates dedifferentiation and a worse prognosis. Additionally, the risk score was positively correlated with the immune checkpoint molecules PDL1, CTLA4, IDO1, and HAVCR2 and infiltration of multiple immune cells. Importantly, we found that the samples with higher risk scores tended to have a better response to immunotherapy than those with lower scores. Conclusion Our findings indicate that the risk score may not only contribute to the determination of differentiation and prognosis of thyroid carcinomas but also help the prediction of immune cells infiltration and immunotherapy response. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01939-3.
Collapse
|
4
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
5
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
6
|
Tsoyi K, Osorio JC, Chu SG, Fernandez IE, De Frias SP, Sholl L, Cui Y, Tellez CS, Siegfried JM, Belinsky SA, Perrella MA, El-Chemaly S, Rosas IO. Lung Adenocarcinoma Syndecan-2 Potentiates Cell Invasiveness. Am J Respir Cell Mol Biol 2020; 60:659-666. [PMID: 30562054 DOI: 10.1165/rcmb.2018-0118oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Juan C Osorio
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Isis E Fernandez
- 3 Comprehensive Pneumology Centre, Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Lynette Sholl
- 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, and
| | | | - Jill M Siegfried
- 6 Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, and.,7 Pulmonary Fibrosis Group, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| |
Collapse
|
7
|
Obraztsova K, Evans J, Krymskaya VP. Syndecan-2: Old Player in a New Field. Am J Respir Cell Mol Biol 2019; 60:611-612. [PMID: 30896971 PMCID: PMC6543750 DOI: 10.1165/rcmb.2019-0033ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kseniya Obraztsova
- 1 Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| | - Jilly Evans
- 1 Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| | - Vera P Krymskaya
- 1 Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
9
|
Liu Z, Li C, Chen S, Lin H, Zhao H, Liu M, Weng J, Liu T, Li X, Lei C, Li C, Jiang Y, Moyer MP, Yin C, Zhou X. MicroRNA-21 increases the expression level of occludin through regulating ROCK1 in prevention of intestinal barrier dysfunction. J Cell Biochem 2018; 120:4545-4554. [PMID: 30302792 DOI: 10.1002/jcb.27742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the role of molecular mechanism of microRNA (miR)-21 on tight junction (TJ)-proteins and its protective effects on the intestinal barrier. METHODS TJ proteins and target genes expression were analyzed in miR-21 inhibition and overexpression NCM460 cell lines. To further verify the role of miR-21, the mmu-miR-21 intestinal epithelial conditional knockout (IKO) mice model was established. MiR-21 expression was detected in clinical specimens of acute stercoral obstruction patients. RESULTS Rho-associated protein kinase 1 (ROCK1) were identified as target genes of miR-21. There is a negative correlation between miR-21 expression level and TJ proteins levels. TJ protein and ROCK1 were significantly decreased in miR-21 IKO mice, which presented intestinal inflammation response and intestinal barrier dysfunction (both P < 0.05). Determination of clinical samples showed consistent results with NCM460 cell line and miR-21 IKO mice. CONCLUSIONS MiR-21 could be a protective factor of intestinal barrier dysfunction, which promoting the expression of TJ protein by targeting ROCK1 in vivo and in vitro.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Li
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shihua Chen
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huan Zhao
- Department of Shenzhen Ruikang Pharmaceutical Technology Co. Ltd, Shenzhen, Guangdong, China
| | - Min Liu
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsheng Weng
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqiong Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mary Pat Moyer
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chunxia Yin
- Department of Gynaecology and Obstetrics, Changchun Obstetrics and Gynecology Hospital, Changchun, Jilin, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
11
|
Mytilinaiou M, Nikitovic D, Berdiaki A, Kostouras A, Papoutsidakis A, Tsatsakis AM, Tzanakakis GN. Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression. IUBMB Life 2017; 69:824-833. [PMID: 28940845 DOI: 10.1002/iub.1678] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Syndecan 2 (SDC2) belongs to a four-member family of evolutionary conserved small type I transmembrane proteoglycans consisting of a protein core to which glycosaminoglycan chains are covalently attached. SDC2 is a cell surface heparan sulfate proteoglycan, which is increasingly drawing attention for its distinct characteristics and its participation in numerous cell functions, including those related to carcinogenesis. Increasing evidence suggests that the role of SDC2 in cancer pathogenesis is dependent on cancer tissue origin rendering its use as a biomarker/therapeutic target feasible. This mini review discusses the mechanisms, through which SDC2, in a distinct manner, modulates complex signalling networks to affect cancer progression. © 2017 IUBMB Life, 69(11):824-833, 2017.
Collapse
Affiliation(s)
- Maria Mytilinaiou
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Kostouras
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
12
|
The leucine-rich repeat protein PRELP binds fibroblast cell-surface proteoglycans and enhances focal adhesion formation. Biochem J 2016; 473:1153-64. [PMID: 26920026 DOI: 10.1042/bcj20160095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
PRELP (proline/arginine-rich end leucine-rich repeat protein) is a member of the leucine-rich repeat (LRR) family of extracellular matrix proteins in connective tissue. In contrast with other members of the family, the N-terminal domain of PRELP has a high content of proline and positively charged amino acids. This domain has previously been shown to bind chondrocytes and to inhibit osteoclast differentiation. In the present study, we show that PRELP mediates cell adhesion by binding to cell-surface glycosaminoglycans (GAGs). Thus, rat skin fibroblasts (RSFs) bound to full-length PRELP and to the N-terminal part of PRELP alone, but not to truncated PRELP lacking the positively charged N-terminal region. Cell attachment to PRELP was inhibited by addition of soluble heparin or heparan sulfate (HS), by blocking sulfation of the fibroblasts or by treating the cells with a combination of chondroitinase and heparinase. Using affinity chromatography, we identified syndecan-1, syndecan-4 and glypican-1 as cell-surface proteoglycans (PGs) binding to the N-terminal part of PRELP. Finally, we show that the N-terminal domain of PRELP in combination with the integrin-binding domain of fibronectin, but neither of the fragments alone, induced fibroblast focal adhesion formation. These findings provide support for a role of the N-terminal region of PRELP as an important regulator of cell adhesion and behaviour, which may be of importance in pathological conditions.
Collapse
|
13
|
Choi S, Choi Y, Jun E, Kim IS, Kim SE, Jung SA, Oh ES. Shed syndecan-2 enhances tumorigenic activities of colon cancer cells. Oncotarget 2016; 6:3874-86. [PMID: 25686828 PMCID: PMC4414160 DOI: 10.18632/oncotarget.2885] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/09/2014] [Indexed: 12/14/2022] Open
Abstract
Because earlier studies showed the cell surface heparan sulfate proteoglycan, syndecan-2, sheds from colon cancer cells in culture, the functional roles of shed syndecan-2 were assessed. A non-cleavable mutant of syndecan-2 in which the Asn148-Leu149 residues were replaced with Asn148-Ile149, had decreased shedding, less cancer-associated activities of syndecan-2 in vitro, and less syndecan-2-mediated metastasis of mouse melanoma cells in vivo, suggesting the importance of shedding on syndecan-2-mediated pro-tumorigenic functions. Indeed, shed syndecan-2 from cancer-conditioned media and recombinant shed syndecan-2 enhanced cancer-associated activities, and depletion of shed syndecan-2 abolished these effects. Similarly, shed syndecan-2 was detected from sera of patients from advanced carcinoma (625.9 ng/ml) and promoted cancer-associated activities. Furthermore, a series of syndecan-2 deletion mutants showed that the tumorigenic activity of shed syndecan-2 resided in the C-terminus of the extracellular domain and a shed syndecan-2 synthetic peptide (16 residues) was sufficient to establish subcutaneous primary growth of HT29 colon cancer cells, pulmonary metastases (B16F10 cells), and primary intrasplenic tumor growth and liver metastases (4T1 cells). Taken together, these results demonstrate that shed syndecan-2 directly enhances colon cancer progression and may be a promising therapeutic target for controlling colon cancer development.
Collapse
Affiliation(s)
- Sojoong Choi
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea
| | - Youngsil Choi
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunsung Jun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea.,Department of Biochemistry and Cell Biology, School of Medicine and Cell & Matrix Research Institute, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul 158-710, Republic of Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul 158-710, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
14
|
Pataki CA, Couchman JR, Brábek J. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans. J Histochem Cytochem 2015; 63:465-80. [PMID: 25910817 DOI: 10.1369/0022155415586961] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling comprises a group of pathways emanating from the extracellular environment through cell-surface receptors into the intracellular milieu. Wnt signaling cascades can be divided into two main branches, the canonical/β-catenin pathway and the non-canonical pathways containing the Wnt/planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some of the pathologies resulting from dysregulation of the components of these pathways are summarized.
Collapse
Affiliation(s)
- Csilla A Pataki
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research and Innovation Center, University of Copenhagen, Denmark (JRC)
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| |
Collapse
|
15
|
Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HAB. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2014; 96:1-10. [PMID: 25546317 DOI: 10.1111/iep.12112] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Vicente CM, Ricci R, Nader HB, Toma L. Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts. BMC Cell Biol 2013; 14:25. [PMID: 23705906 PMCID: PMC3681618 DOI: 10.1186/1471-2121-14-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. RESULTS Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. CONCLUSIONS Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells.
Collapse
Affiliation(s)
- Carolina Meloni Vicente
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 - 4º andar, Vila Clementino, São Paulo, SP CEP 04044-020, Brazil
| | | | | | | |
Collapse
|
17
|
Choi S, Kang DH, Oh ES. Targeting syndecans: a promising strategy for the treatment of cancer. Expert Opin Ther Targets 2013; 17:695-705. [DOI: 10.1517/14728222.2013.773313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Jia X, Dang S, Cheng Y, Zhang X, Li M, Li Y, Li S. Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. J TRADIT CHIN MED 2012; 32:415-422. [PMID: 23297566 DOI: 10.1016/s0254-6272(13)60048-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rat with hepatocellular carcinoma (HCC). METHODS Male SD rats were divided into control (n=10), model (n=20) and SSd (n=20) groups, and model and SSd groups given intragastric 0.2% (w/v) N-diethylnitrosamine to induce HCC. SSd group received 0.03% (w/v) SSd in saline. Liver samples were analysed immunohistochemically for syndecan-2, MMP-2, MMP-13 and TIMP-2 at 16 weeks. RESULTS The model group had more malignant nodules than the SSd group; all model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01). The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates. CONCLUSION SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue.
Collapse
Affiliation(s)
- Xiaoli Jia
- Department of Infectious Diseases, the Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Syndecans play dual roles as cell adhesion receptors and docking receptors. FEBS Lett 2012; 586:2207-11. [DOI: 10.1016/j.febslet.2012.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 02/01/2023]
|
20
|
Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer 2012; 11:19. [PMID: 22471946 PMCID: PMC3350462 DOI: 10.1186/1476-4598-11-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC) cells. Methods Syndecan-2 (SDC-2) expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides) did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural) invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.
Collapse
|
21
|
Choi Y, Chung H, Jung H, Couchman JR, Oh ES. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol 2010; 30:93-9. [PMID: 21062643 DOI: 10.1016/j.matbio.2010.10.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/28/2022]
Abstract
An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation. As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions.
Collapse
Affiliation(s)
- Youngsil Choi
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Ryu HY, Lee J, Yang S, Park H, Choi S, Jung KC, Lee ST, Seong JK, Han IO, Oh ES. Syndecan-2 functions as a docking receptor for pro-matrix metalloproteinase-7 in human colon cancer cells. J Biol Chem 2010; 284:35692-701. [PMID: 19858218 DOI: 10.1074/jbc.m109.054254] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although elevated syndecan-2 expression is known to be crucial for the tumorigenic activity in colon carcinoma cells, how syndecan-2 regulates colon cancer is unclear. In human colon adenocarcinoma tissue samples, we found that both mRNA and protein expression of syndecan-2 were increased, compared with the neighboring normal epithelium, suggesting that syndecan-2 plays functional roles in human colon cancer cells. Consistent with this notion, syndecan-2-overexpressing HT-29 colon adenocarcinoma cells showed enhanced migration/invasion, anchorage-independent growth, and primary tumor formation in nude mice, paralleling their morphological changes into highly tumorigenic cells. In addition, our experiments revealed that syndecan-2 enhanced both expression and secretion of matrix metalloproteinase-7 (MMP-7), directly interacted with pro-MMP-7, and potentiated the enzymatic activity of pro-MMP-7 by activating its processing into the active MMP-7. Collectively, these data strongly suggest that syndecan-2 functions as a docking receptor for pro-MMP-7 in colon cancer cells.
Collapse
Affiliation(s)
- Heui-Young Ryu
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee JH, Park H, Chung H, Choi S, Kim Y, Yoo H, Kim TY, Hann HJ, Seong I, Kim J, Kang KG, Han IO, Oh ES. Syndecan-2 regulates the migratory potential of melanoma cells. J Biol Chem 2009; 284:27167-75. [PMID: 19641225 DOI: 10.1074/jbc.m109.034678] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Syndecan-2, a transmembrane heparan sulfate proteoglycan, is a critical mediator in the tumorigenesis of colon carcinoma cells. We explored the function of syndecan-2 in melanoma, one of the most invasive types of cancers, and found that the expression of this protein was elevated in tissue samples from both nevus and malignant human melanomas but not in melanocytes of the normal human skin tissues. Similarly, elevated syndecan-2 expression was observed in various melanoma cell lines. Overexpression of syndecan-2 enhanced migration and invasion of melanoma cells, whereas the opposite was observed when syndecan-2 levels were knocked down using small inhibitory RNAs. Syndecan-2 expression was enhanced by fibroblast growth factor-2, which is known to stimulate melanoma cell migration; however, alpha-melanocyte-stimulating hormone decreased syndecan-2 expression and melanoma cell migration and invasion in a melanin synthesis-independent manner. Furthermore, syndecan-2 overexpression rescued the migration defects induced by alpha-melanocyte-stimulating hormone treatment. Together, these data strongly suggest that syndecan-2 plays a crucial role in the migratory potential of melanoma cells.
Collapse
Affiliation(s)
- Jung-hyun Lee
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res 2009; 339:31-46. [DOI: 10.1007/s00441-009-0829-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/17/2009] [Indexed: 12/14/2022]
|
26
|
Choi S, Kim Y, Park H, Han IO, Chung E, Lee SY, Kim YB, Lee JW, Oh ES, Yi JY. Syndecan-2 overexpression regulates adhesion and migration through cooperation with integrin alpha2. Biochem Biophys Res Commun 2009; 384:231-5. [PMID: 19394307 DOI: 10.1016/j.bbrc.2009.04.093] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/21/2009] [Indexed: 01/11/2023]
Abstract
Syndecan-2, a transmembrane heparan sulfate proteoglycan, is known to serve as an adhesion receptor, but details of the regulatory mechanism governing syndecan-2 cell adhesion and migration remain unclear. Here, we examined this regulatory mechanism, showing that overexpression of syndecan-2 enhanced collagen adhesion, cell migration and invasion of normal rat intestinal epithelial cells (RIE1), and increased integrin alpha2 expression levels. Interestingly, RIE1 cells transfected with either syndecan-2 or integrin alpha2 showed similar adhesion and migration patterns, and a function-blocking anti-integrin alpha2 antibody abolished syndecan-2-mediated adhesion and migration. Consistent with these findings, transfection of integrin alpha2 siRNA diminished syndecan-2-induced cell migration in HCT116 human colon cancer cells. Taken together, these results demonstrate a novel cooperation between syndecan-2 and integrin alpha2beta1 in adhesion-mediated cell migration and invasion. This interactive dynamic might be a possible mechanism underlying the tumorigenic activities of colon cancer cells.
Collapse
Affiliation(s)
- Sojoong Choi
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences and the Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li F, Ten Dam GB, Murugan S, Yamada S, Hashiguchi T, Mizumoto S, Oguri K, Okayama M, van Kuppevelt TH, Sugahara K. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells. J Biol Chem 2008; 283:34294-304. [PMID: 18930920 PMCID: PMC2662238 DOI: 10.1074/jbc.m806015200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/08/2008] [Indexed: 12/14/2022] Open
Abstract
The altered expression of cell surface chondroitin sulfate (CS) and dermatan sulfate (DS) in cancer cells has been demonstrated to play a key role in malignant transformation and tumor metastasis. However, the functional highly sulfated structures in CS/DS chains and their involvement in the process have not been well documented. In the present study, a structural analysis of CS/DS from two mouse Lewis lung carcinoma (3LL)-derived cell lines with different metastatic potentials revealed a higher proportion of Delta(4,5)HexUA-GalNAc(4,6-O-disulfate) generated from E-units (GlcUA-GalNAc(4, 6-O-disulfate)) in highly metastatic LM66-H11 cells than in low metastatic P29 cells, although much less CS/DS is expressed by LM66-H11 than P29 cells. This key finding prompted us to study the role of CS-E-like structures in experimental lung metastasis. The metastasis of LM66-H11 cells to lungs was effectively inhibited by enzymatic removal of tumor cell surface CS or by preadministration of CS-E rich in E-units in a dose-dependent manner. In addition, immunocytochemical analysis showed that LM66-H11 rather than P29 cells expressed more strongly the CS-E epitope, which was specifically recognized by the phage display antibody GD3G7. More importantly, this antibody and a CS-E decasaccharide fraction, the minimal structure recognized by GD3G7, strongly inhibited the metastasis of LM66-H11 cells probably by modifying the proliferative and invading behavior of the metastatic tumor cells. These results suggest that the E-unit-containing epitopes are involved in the metastatic process and a potential target for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Fuchuan Li
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Noguer O, Villena J, Lorita J, Vilaró S, Reina M. Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells. Exp Cell Res 2008; 315:795-808. [PMID: 19073173 DOI: 10.1016/j.yexcr.2008.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/13/2008] [Accepted: 11/23/2008] [Indexed: 11/27/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a necessary process during development but also for tumour growth and other pathologies. It is promoted by different growth factors that stimulate endothelial cells to proliferate, migrate, and generate new tubular structures. Syndecans, transmembrane heparan sulphate proteoglycans, bind such growth factors through their glycosaminoglycan chains and could transduce the signal to the cytoskeleton, thus regulating cell behaviour. We demonstrated that syndecan-2, the major syndecan expressed by human microvascular endothelial cells, is regulated by growth factors and extracellular matrix proteins, in both bidimensional and tridimensional culture conditions. The role of syndecan-2 in "in vitro" tumour angiogenesis was also examined by inhibiting its core protein expression with antisense phosphorothioate oligonucleotides. Downregulation of syndecan-2 reduces spreading and adhesion of endothelial cells, enhances their migration, but also impairs the formation of capillary-like structures. These results suggest that syndecan-2 has an important function in some of the necessary steps that make up the angiogenic process. We therefore propose a pivotal role of this heparan sulphate proteoglycan in the formation of new blood vessels.
Collapse
Affiliation(s)
- Oriol Noguer
- Department of Cellular Biology, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | | | | | | | | |
Collapse
|
29
|
Munesue S, Yoshitomi Y, Kusano Y, Koyama Y, Nishiyama A, Nakanishi H, Miyazaki K, Ishimaru T, Miyaura S, Okayama M, Oguri K. A Novel Function of Syndecan-2, Suppression of Matrix Metalloproteinase-2 Activation, Which Causes Suppression of Metastasis. J Biol Chem 2007; 282:28164-74. [PMID: 17623663 DOI: 10.1074/jbc.m609812200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The syndecans comprise a family of cell surface heparan sulfate proteoglycans exhibiting complex biological functions involving the interaction of heparan sulfate side chains with a variety of soluble and insoluble heparin-binding extracellular ligands. Here we demonstrate an inverse correlation between the expression level of syndecan-2 and the metastatic potential of three clones derived from Lewis lung carcinoma 3LL. This correlation was proved to be a causal relationship, because transfection of syndecan-2 into the higher metastatic clone resulted in the suppression of both spontaneous and experimental metastases to the lung. Although the expression levels of matrix metalloproteinase-2 (MMP-2) and its cell surface activators, such as membrane-type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinase-2, were similar regardless of the metastatic potentials of the clones, elevated activation of MMP-2 was observed in the higher metastatic clone. Removal of heparan sulfate from the cell surface of low metastatic cells by treatment with heparitinase-I promoted MMP-2 activation, and transfection of syndecan-2 into highly metastatic cells suppressed MMP-2 activation. Furthermore, transfection of mutated syndecan-2 lacking glycosaminoglycan attachment sites into highly metastatic cells did not have any suppressive effect on MMP-2 activation, suggesting that this suppression was mediated by the heparan sulfate side chains of syndecan-2. Actually, MMP-2 was found to exhibit a strong binding ability to heparin, the dissociation constant value being 62 nM. These results indicate a novel function of syndecan-2, which acts as a suppressor for MMP-2 activation, causing suppression of metastasis in at least the metastatic system used in the present study.
Collapse
Affiliation(s)
- Seiichi Munesue
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Orosco A, Fromigué O, Bazille C, Entz-Werle N, Levillain P, Marie PJ, Modrowski D. Syndecan-2 Affects the Basal and Chemotherapy-Induced Apoptosis in Osteosarcoma. Cancer Res 2007; 67:3708-15. [PMID: 17440083 DOI: 10.1158/0008-5472.can-06-4164] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans controlling cell adhesion, migration, and proliferation. We previously showed that syndecan-2 is involved in the control of apoptosis in cultured osteosarcoma cells. These data led us to the hypothesis that syndecan-2 may play a role in the apoptotic signaling in bone tumors. We immunohistochemically analyzed tissue sections from biopsies from 21 patients with well-characterized osteosarcoma. These tissues expressed low levels of syndecan-2 compared with osteoblasts and osteocytes in normal bone. Cultured human osteosarcoma cells also produced lower mRNA levels of syndecan-2 than normal osteoblastic cells. Moreover, the presence of syndecan-2 correlated with spontaneous apoptosis in osteosarcoma tissues as assessed by detection of DNA fragmentation in situ. Overexpression of syndecan-2 resulted in decreased number of migrating and invading U2OS osteosarcoma cells in Matrigel. In addition, overexpression of syndecan-2 sensitized human osteosarcoma cells to chemotherapy-induced apoptosis, increasing the response to methotrexate, doxorubicin, and cisplatin. Consistently, knockdown of the proteoglycan using stable transfection with a plasmid coding small interfering RNA resulted in inhibition of chemotherapy-induced apoptosis. Analysis of syndecan-2 expression both in biopsies and in corresponding postchemotherapy-resected tumors, as well as in cells treated with methotrexate or doxorubicin, showed that the cytotoxic action of chemotherapy can be associated with an increase in syndecan-2. These results provide support for a tumor-suppressor function for syndecan-2 and suggest that dysregulation of apoptosis may be related to abnormal syndecan-2 expression or induction in osteosarcoma. Moreover, our data identify syndecan-2 as a new factor mediating the antioncogenic effect of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Armelle Orosco
- INSERM U606 and Université Paris 7, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Pakula R, Melchior A, Denys A, Vanpouille C, Mazurier J, Allain F. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis. Glycobiology 2007; 17:492-503. [PMID: 17267519 DOI: 10.1093/glycob/cwm009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.
Collapse
Affiliation(s)
- Rachel Pakula
- Laboratory of Molecular and Cellular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Orosco A, Fromigué O, Haÿ E, Marie PJ, Modrowski D. Dual involvement of protein kinase C delta in apoptosis induced by syndecan-2 in osteoblasts. J Cell Biochem 2006; 98:838-50. [PMID: 16440330 DOI: 10.1002/jcb.20826] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Syndecans are proteoglycans that act as signaling molecules. Previously, we showed that syndecan-2 (SYND2) is involved in the control of osteoblastic (OB) cell apoptosis. Here, we show a novel functional interaction between SYND2 and protein kinase C delta (PKCdelta). Overexpression of SYND2 in MG63 OB cells resulted in increased PKCdelta protein level without change in PKCdelta mRNA production. In SYND2-transfected cells, the increase in PKCdelta was restricted to the cytosolic compartment, threonine 505-PKCdelta was underphosphorylated and immunoprecipitated PKCdelta showed decreased capacity to phosphorylate histone, indicating that SYND2 decreased PKCdelta activity. Inhibition of PKCdelta by Rottlerin or a dead-kinase dominant negative (DN) construct activated effector caspases and increased the number of apoptotic cells. In addition, rescue of kinase activity with a construct coding, the PKCdelta catalytic domain (CAT) reduced SYND2-induced apoptosis. This indicates that PKCdelta acts as a pro-survival kinase and that SYND2 inhibits the anti-apoptotic action of PKCdelta in OB cells. We also showed that overexpression of PKCdelta wild type (WT) induced osteoblast apoptosis. Moreover, inhibition of PKCdelta by siRNA resulted in increased apoptosis in control cells but reduced apoptosis in SYND2-overexpressing osteoblasts, indicating that SYND2 requires PKCdelta accumulation to induce apoptosis. These results show that SYND2 modulates PKCdelta actions by inhibition of the canonical allosterical activation pathway that plays an anti-apoptotic role in OB cells, and promotion of a pro-apoptotic role that may depend on PKCdelta protein level and that participates to the induction of cell death by SYND2. This establishes a functional interaction between SYND2 and PKCdelta in osteoblasts.
Collapse
Affiliation(s)
- Armelle Orosco
- Laboratory of Osteoblast Biology and Pathology, INSERM, Lariboisière Hospital, University Paris 7, Paris, France
| | | | | | | | | |
Collapse
|
33
|
McQuade KJ, Beauvais DM, Burbach BJ, Rapraeger AC. Syndecan-1 regulates alphavbeta5 integrin activity in B82L fibroblasts. J Cell Sci 2006; 119:2445-56. [PMID: 16720645 DOI: 10.1242/jcs.02970] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B82L mouse fibroblasts respond to fibronectin or vitronectin via a syndecan-1-mediated activation of the alphavbeta5 integrin. Cells attached to syndecan-1-specific antibody display only filopodial extension. However, the syndecan-anchored cells extend lamellipodia when the antibody-substratum is supplemented with serum, or low concentrations of adsorbed vitronectin or fibronectin, that are not sufficient to activate the integrin when plated alone. Integrin activation is blocked by treatment with (Arg-Gly-Asp)-containing peptides and function-blocking antibodies that target alphav integrins, as well as by siRNA-mediated silencing of beta5 integrin expression. In addition, alphavbeta5-mediated cell attachment and spreading on high concentrations of vitronectin is blocked by competition with recombinant syndecan-1 ectodomain core protein and by downregulation of mouse syndecan-1 expression by mouse-specific siRNA. Taking advantage of the species-specificity of the siRNA, rescue experiments in which human syndecan-1 constructs are expressed trace the activation site to the syndecan-1 ectodomain. Moreover, both full-length mouse and human syndecan-1 co-immunoprecipitate with the beta5 integrin subunit, but fail to do so if the syndecan is displaced by competition with soluble, recombinant syndecan-1 ectodomain. These results suggest that the ectodomain of the syndecan-1 core protein contains an active site that assembles into a complex with the alphavbeta5 integrin and regulates alphavbeta5 integrin activity.
Collapse
Affiliation(s)
- Kyle J McQuade
- Graduate Programs in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
34
|
Bischof D, Elsawa SF, Mantchev G, Yoon J, Michels GE, Nilson A, Sutor SL, Platt JL, Ansell SM, von Bulow G, Bram RJ. Selective activation of TACI by syndecan-2. Blood 2005; 107:3235-42. [PMID: 16357320 PMCID: PMC1895754 DOI: 10.1182/blood-2005-01-0256] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-lymphocyte homeostasis and function are regulated by complementary actions of the TNFR family members TACI, BCMA, and BAFF-R, which are expressed by mature B cells. How these receptors are differentially activated is not entirely understood, because the primary ligand BAFF binds to all three. We searched for alternative ligands for TACI using recombinant TACI-Fc fusion protein as a probe and identified syndecan-2 as a new binding partner. TACI binding appears to require heparan sulfate posttranslational modifications of syndecan-2, because free heparin or pretreatment with heparitinase blocked the interaction. Syndecan-2 bound TACI but bound neither BAFF-R nor BCMA. Transfected cells expressing syndecan-2 activated signaling through TACI, as indicated by an NFAT-specific reporter. Syndecan-1 and syndecan-4 were also able to induce TACI signaling in a similar manner. This is the first identification of ligands that selectively activate TACI without simultaneously triggering BCMA or BAFF-R. This finding may help explain the alternative outcomes of signaling from this family of receptors in B cells.
Collapse
Affiliation(s)
- Daniela Bischof
- Mayo Clinic, Mayo Medical School, Department of Pediatric and Adolescent Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cattaruzza S, Perris R. Proteoglycan control of cell movement during wound healing and cancer spreading. Matrix Biol 2005; 24:400-17. [PMID: 16055321 DOI: 10.1016/j.matbio.2005.06.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/20/2005] [Indexed: 12/21/2022]
Abstract
By virtue of their multifunctional nature, proteoglycans (PGs) are thought to govern the process of cell movement in numerous physiological and pathological contexts, spanning from early embryonic development to tumour invasion and metastasis. The precise mode by which they influence this process is still fragmentary, but evidence is accruing that they may affect it in a multifaceted manner. PGs bound to the plasma membrane mediate the polyvalent interaction of the cell with matrix constituents and with molecules of the neighbouring cells' surfaces; they modulate the activity of receptors implicated in the recognition of these components; and they participate in the perception and convergence of growth- and motility-promoting cues contributed by soluble factors. Through some of these interactions several PGs transduce to pro-motile cells crucial intracellular signals that are likely to be essential for their mobility. A regulated shedding of certain membrane-intercalated PGs seems to provide an additional level of control of cell movement. Coincidentally, matrix-associated PGs may govern cell migration by structuring permissive and non-permissive migratory paths and, when directly secreted by the moving cells, may alternatively create favourable or hostile microenvironments. To exert this latter, indirect effect on cell movement, matrix PGs strongly rely upon their primary molecular partners, such as hyaluronan, link proteins, tenascins, collagens and low-affinity cell surface receptors, whereas a further finer control is provided by a highly regulated proteolytic processing of the PGs accounted by both the migrating cells themselves and cells of their surrounding tissues. Overall, PGs seem to play an important role in determining the migratory phenotype of a cell by initiating, directing and terminating cell movement in a spatio-temporally controlled fashion. This implies that the "anti-adhesive and/or "anti-migratory" properties that have previously been assigned to certain PGs may be re-interpreted as being a means by which these macromolecules elaborate haptotaxis-like mechanisms imposing directionality upon the moving cells. Since these conditions would allow cells to be led to given tissue locations and become immobilized at these sites, a primary function may be ascribed to PGs in the dictation of a "stop or go" choice of the migrating cells.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology University of Parma, Viale delle Scienze 11/A PARMA 43100, Italy
| | | |
Collapse
|
36
|
Yoshitomi Y, Nakanishi H, Kusano Y, Munesue S, Oguri K, Tatematsu M, Yamashina I, Okayama M. Inhibition of experimental lung metastases of Lewis lung carcinoma cells by chemically modified heparin with reduced anticoagulant activity. Cancer Lett 2004; 207:165-74. [PMID: 15072825 DOI: 10.1016/j.canlet.2003.11.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 11/20/2003] [Accepted: 11/28/2003] [Indexed: 10/26/2022]
Abstract
Heparin, a widely used anticoagulant, is known to have anti-metastatic activity, although the mechanism is not fully understood. In the present study, we investigated the mechanism of this anti-metastatic activity using periodate-oxidized and borohydride-reduced heparin with low anticoagulant activity (LAC heparin). The anticoagulant activity of LAC heparin is markedly reduced to almost the control level in terms of prothrombin time in vitro, and no hemorrhagic complication was observed with injection of LAC heparin into mice in vivo. LAC heparin injected intravenously with Lewis lung carcinoma cells or 10 min before tumor cell injection significantly inhibited, to the same extent as intact heparin and in a dose- and time-dependent manner, the lung colonization that develops after intravenous injection (i.v.) of tumor cells. Flow cytometric analysis revealed that Lewis lung carcinoma cells strongly express heparan sulfate on their surface. Both the LAC heparin and intact heparin inhibited the adhesion and invasion of tumor cells to Matrigel-coated dishes in vitro without significant effect on the tumor cell growth. LAC heparin also significantly diminished tumor cell retention in the lung after i.v. of LacZ gene-tagged Lewis lung carcinoma cells. These results suggest that LAC heparin may prevent tumor cells from attachment to the subendothelial matrix of lung capillaries by competitively inhibiting cell surface heparan sulfate functions and suppress lung colonization.
Collapse
Affiliation(s)
- Yasuo Yoshitomi
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Couchman JR. Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 2004; 4:926-37. [PMID: 14685171 DOI: 10.1038/nrm1257] [Citation(s) in RCA: 343] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- John R Couchman
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
38
|
Li XN, Ding YQ, Liu GB. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma. World J Gastroenterol 2003; 9:1734-8. [PMID: 12918110 PMCID: PMC4611533 DOI: 10.3748/wjg.v9.i8.1734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.
METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L) for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reverse-transcription. The probes were mixed and hybridized on the microarray at 60 °C for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semi-quantitative RT-PCR.
RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000. Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22% of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52% of the investigated genes) and 68 genes were down-regulated (holding 1.70% of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.
CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.
Collapse
Affiliation(s)
- Xue-Nong Li
- Department of Pathology, First Military Medical University, Guangzhou 510515, Guangdong Province, China.
| | | | | |
Collapse
|
39
|
Floris S, van den Born J, van der Pol SMA, Dijkstra CD, De Vries HE. Heparan sulfate proteoglycans modulate monocyte migration across cerebral endothelium. J Neuropathol Exp Neurol 2003; 62:780-90. [PMID: 12901703 DOI: 10.1093/jnen/62.7.780] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are known to participate in a wide range of biological events, including cellular trafficking. In this study we report that in situ cerebral blood vessels highly express HSPGs. Of the syndecan family, syndecan-2 is highly expressed on virtually all brain vessels and syndecan-1 and -3 are only present on larger blood vessels. These endothelial HSPGs have a functional role in monocyte diapedesis across brain endothelium, as assessed in our in vitro adhesion and migration assays. Our data indicate that heparin prevents monocyte adhesion to brain endothelium by interacting solely with the monocyte. Transendothelial migration of monocytes can be prevented by preincubation of brain endothelium with heparin by enzymatic removal of heparan sulphate side chains or by inhibition of cellular sulfation. Blocking of G-protein-dependent signaling in the monocytes prevented monocyte adhesion and migration to similar extent, suggesting that G-dependent signaling may be involved in HSPG-mediated monocyte adhesion and transendothelial migration. Our data demonstrate that brain endothelial HSPGs have a modulatory role in the transendothelial migration of monocytes in a direct and indirect fashion and may therefore contribute to the formation of neuroinflammatory lesions.
Collapse
MESH Headings
- Animals
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cerebral Cortex/blood supply
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Disease Models, Animal
- Encephalitis/drug therapy
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Encephalomyelitis, Autoimmune, Experimental
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- GTP-Binding Proteins/antagonists & inhibitors
- GTP-Binding Proteins/metabolism
- Heparan Sulfate Proteoglycans/metabolism
- Heparin/pharmacology
- Male
- Membrane Glycoproteins/metabolism
- Monocytes/drug effects
- Monocytes/metabolism
- Protein Structure, Secondary/drug effects
- Protein Structure, Secondary/physiology
- Proteoglycans/metabolism
- Rats
- Rats, Inbred Lew
- Rats, Wistar
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sulfates/antagonists & inhibitors
- Syndecan-2
Collapse
Affiliation(s)
- Sarah Floris
- Department of Molecular Cell Biology , Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|