1
|
Tsurusaki S, Kizana E. Mechanisms and Therapeutic Potential of Multiple Forms of Cell Death in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:13492. [PMID: 39769255 PMCID: PMC11728078 DOI: 10.3390/ijms252413492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI). MIRI occurs when blood flow and oxygen return to an ischemic area, causing excessive production of reactive oxygen species. While this reperfusion is critical for treating myocardial infarction, it inevitably causes cellular damage via oxidative stress. Furthermore, this cellular damage triggers multiple forms of cardiomyocyte death, which is the primary cause of inflammation, cardiac tissue remodeling, and ensuing heart failure. Therefore, understanding the molecular mechanisms of various forms of cell death in MIRI is crucial for therapeutic target discovery. Developing therapeutic strategies to inhibit multiple cell death pathways simultaneously could provide effective protection against MIRI. In this paper, we review the fundamental molecular pathways and MIRI-specific mechanisms of apoptosis, necroptosis, ferroptosis, and pyroptosis. Additionally, we suggest that the simultaneous suppression of multiple cell death pathways could be an effective therapy and identify potential therapeutic targets for implementing this strategy.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Ding Y, Su J, Shan B, Fu X, Zheng G, Wang J, Wu L, Wang F, Chai X, Sun H, Zhang J. Brown adipose tissue-derived FGF21 mediates the cardioprotection of dexmedetomidine in myocardial ischemia/reperfusion injury. Sci Rep 2024; 14:18292. [PMID: 39112671 PMCID: PMC11306229 DOI: 10.1038/s41598-024-69356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Brown adipose tissue (BAT) plays a critical role in regulating cardiovascular homeostasis through the secretion of adipokines, such as fibroblast growth factor 21 (FGF21). Dexmedetomidine (DEX) is a selective α2-adrenergic receptor agonist with a protection against myocardial ischemia/reperfusion injury (MI/RI). It remains largely unknown whether or not BAT-derived FGF21 is involved in DEX-induced cardioprotection in the context of MI/RI. Herein, we demonstrated that DEX alleviated MI/RI and improved heart function through promoting the release of FGF21 from interscapular BAT (iBAT). Surgical iBAT depletion or supplementation with a FGF21 neutralizing antibody attenuated the beneficial effects of DEX. AMPK/PGC1α signaling-induced fibroblast growth factor 21 (FGF21) release in brown adipocytes is required for DEX-mediated cardioprotection since blockade of the AMPK/PGC1α axis weakened the salutary effects of DEX. Co-culture experiments showed that DEX-induced FGF21 from brown adipocytes increased the resistance of cardiomyocytes to hypoxia/reoxygenation (H/R) injury via modulating the Keap1/Nrf2 pathway. Our results provided robust evidence that the BAT-cardiomyocyte interaction is required for DEX cardioprotection, and revealed an endocrine role of BAT in DEX-mediating protection of hearts against MIRI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiabao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Beiying Shan
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Xiao Fu
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China
| | - Guanli Zheng
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiwen Wang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Lixue Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Fangming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Xiaoying Chai
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Haijian Sun
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China.
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China.
| |
Collapse
|
3
|
Hu B, Tian T, Li XT, Hao PP, Liu WC, Chen YG, Jiang TY, Chen PS, Cheng Y, Xue FS. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. Redox Rep 2023; 28:2158526. [PMID: 36738240 PMCID: PMC9904316 DOI: 10.1080/13510002.2022.2158526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To observe the protective effects of dexmedetomidine (Dex) postconditioning on myocardial ischemia/reperfusion injury (IRI) and to explore its potential molecular mechanisms. METHODS One-hundred forty-seven male Sprague-Dawley rats were randomly divided into five groups receiving the different treatments: Sham, ischemia/reperfusion (I/R), Dex, Brusatol, Dex + Brusatol. By the in vivo rat model of myocardial IRI, cardioprotective effects of Dex postconditioning were evaluated by assessing serum CK-MB and cTnI levels, myocardial HE and Tunel staining and infarct size. Furthermore, the oxidative stress-related markers including intracellular ROS level, myocardial tissue MDA level, SOD and GSH-PX activities were determined. RESULTS Dex postconditioning significantly alleviated myocardial IRI, decreased intracellular ROS and myocardial tissue MDA level, increased SOD and GSH-PX activities. Dex postconditioning significantly up-regulated myocardial expression of Bcl-2, down-regulated Bax and cleaved caspase-3 and decreased cardiomyocyte apoptosis rate. furthermores, Dex postconditioning promoted Nrf2 nuclear translocation, increased myocardial expression of Sirt3 and SOD2 and decreased Ac-SOD2. However, brusatol reversed cardioprotective benefits of Dex postconditioning, significantly decreased Dex-induced Nrf2 nuclear translocation and reduced myocardial expression of Sirt3 and SOD2. CONCLUSIONS Dex postconditioning can alleviate myocardial IRI by suppressing oxidative stress and apoptosis, and these beneficial effects are at least partly mediated by activating the Nrf2/Sirt3/SOD2 signaling pathway.
Collapse
Affiliation(s)
- Bin Hu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tian Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xin-Tao Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pei-Pei Hao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wei-Chao Liu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ying-Gui Chen
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tian-Yu Jiang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pei-Shan Chen
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Cheng
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China, Yi Cheng ; Fu-Shan Xue ; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing100050, People’s Republic of China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China, Yi Cheng ; Fu-Shan Xue ; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing100050, People’s Republic of China
| |
Collapse
|
4
|
Yang K, Ma Y, Xie C, He L, Zhao H, Dai Z, Wang X. Dexmedetomidine combined with propofol attenuates myocardial ischemia/reperfusion injury by activating the AMPK signaling pathway. Heliyon 2023; 9:e22054. [PMID: 38034796 PMCID: PMC10682120 DOI: 10.1016/j.heliyon.2023.e22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Myocardial ischemia/reperfusion (MI/R) injury is a major cause of cardiac tissue damage, with high disability and death rates. Although both dexmedetomidine (Dex) and propofol (PPF) have been indicated to alleviate MI/R injury in rat models, the effects of the combined use of these two drugs remain unclear. This study aimed to investigate the combined effects of Dex and PPF against MI/R injury and related mechanisms. Methods A rat model of MI/R injury was established and used to explore the combined effects of Dex and PPF on MI/R injury. Hematoxylin-eosin (HE) and Masson staining were used for histopathological evaluation. 2,3,5-triphenyltetrazolium chloride (TTC), echocardiography, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to determine myocardial infarction size, cardiac function, and apoptosis, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to assess myocardial function and oxidative stress (OS). Autophagy was observed through transmission electron microscopy. Moreover, western blotting was conducted to detect autophagy markers and the AMPK pathway. Results The combination of Dex and PPF alleviated histopathological injury, reduced myocardial infarction, and rescued cardiac dysfunction in MI/R rats. Furthermore, Dex combined with PPF decreased the levels of MDA and ROS and increased the SOD level in MI/R rats. Besides, Dex combined with PPF inhibited myocardial apoptosis in MI/R rats. After combined treatment with Dex and PPF, the number of autophagosomes, expression levels of Beclin-1 and LC3II/LC3I were elevated, while the expression levels of p62 were reduced in MI/R rats. The combined use of Dex and PPF activated the AMPK pathway in MI/R rats. Compound C (an AMPK inhibitor) could abolish the combined effects of Dex and PPF on alleviating myocardial injury and enhancing autophagy in MI/R rats. Conclusion The combination of Dex and PPF attenuated MI/R injury in rats, which may be associated with the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
| | | | - Chunmei Xie
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Lixian He
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Haoxing Zhao
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Zheng Dai
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Xiaoqi Wang
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| |
Collapse
|
5
|
Yin ZY, Fu T, He SM, Fu L, Li XZ, Xu L, Du L, Yang TT, Zhu X, Wang C, Qiao WL, Tang ZQ, Zhang XY, Li K, Zhang XY, Gong Z, Zhou XY, Zhang B, Sun H. 16α-OHE1, a novel oestrogen metabolite, attenuates dysfunction of left ventricle contractility via regulation of autophagy after myocardial ischemia and reperfusion. Int J Cardiol 2023; 388:131123. [PMID: 37330017 DOI: 10.1016/j.ijcard.2023.131123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) can exacerbate the initial cardiac damage in the myocardial functional changes, including dysfunction of left ventricular contractility. Oestrogen has been proven to protect the cardiovascular system. However, whether the oestrogen or its metabolites play the main role in attenuating dysfunction of left ventricular contractility is unknown. METHODS AND RESULTS This study used the LC-MS/MS to detect oestrogen and its metabolites in clinical serum samples (n = 62) with heart diseases. After correlation analysis with markers of myocardial injury including cTnI (P < 0.01), CK-MB (P < 0.05), and D-Dimer (P < 0.001), 16α-OHE1 was identified. The result from LC-MS/MS in female and ovariectomised (OVX) rat serum samples (n = 5) matched the findings in patients. In MI/R model of animal, the recovery of left ventricular developed pressure (LVDP), rate pressure product (RPP), dp/dtmax and dp/dtmin after MI/R in OVX or male group were worsened than those in female group. Also, the infarction area of OVX or male group was larger than that in females (n = 5, p < 0.01). Furthermore, LC3 II in the left ventricle of OVX and male group was lower than that in females (n = 5, p < 0.01) by immunofluorescence. In H9C2 cells, after the application of 16α-OHE1, the number of autophagosomes was further increased and other organelles improved in MI/R. Simultaneously, LC3 II, Beclin1, ATG5, and p-AMPK/AMPK were increased, and p-mTOR/mTOR was decreased (n = 3, p < 0.01) by Simple Western. CONCLUSION 16α-OHE1 could attenuate left ventricle contractility dysfunction via autophagy regulation after MI/R, which also offered fresh perspectives on therapeutical treatment for attenuating MI/R injury.
Collapse
Affiliation(s)
- Ze-Yuan Yin
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tong Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Departments of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Shi-Min He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Departments of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Xi-Zhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Cheng Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei-Li Qiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Qing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Kun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin-Yuan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zheng Gong
- The School of Public Affairs and Governance, Silliman University, Dumaguete, Philippines
| | - Xue-Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Bei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Departments of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China.
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Wang L, Liu J, Wang Z, Qian X, Zhao Y, Wang Q, Dai N, Xie Y, Zeng W, Yang W, Bai X, Yang Y, Qian J. Dexmedetomidine abates myocardial ischemia reperfusion injury through inhibition of pyroptosis via regulation of miR-665/MEF2D/Nrf2 axis. Biomed Pharmacother 2023; 165:115255. [PMID: 37549462 DOI: 10.1016/j.biopha.2023.115255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI. We explored the mechanisms through functional experiments on an H9c2 cell hypoxia/reoxygenation (H/R) model. Cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8) and AV/PI dual staining respectively. The expressions of miR-665 and MEF2D mRNA were detected by qRT-PCR. Western blot was employed to determine the expression levels of pyroptosis- and signaling pathway- related proteins. The interplays between miR-665 and MEF2D were validated by Dual-luciferase reporter assays. Our findings indicated that Dex preconditioning dramatically attenuated hemodynamic derangements, infarct size, and histopathological damage in rats undergoing MIRI. Dex markedly augmented cell viability, while suppressing cell apoptosis and expressions of NLRP3, cleaved-caspase-1, ASC, GSDMD, IL-1β, and IL-18 in H9c2 cells subjected to H/R injury. MiR-665 was significantly upregulated, MEF2D and Nrf2 downregulated following H/R, whereas Dex preconditioning reversed these changes. MEF2D was validated to be a target gene of miR-665. Overexpression of miR-665 decreased the expression of MEF2D and blunted the protective effects of Dex in H9c2 cells. Moreover, the functional rescue experiment further verified that Dex regulated MEF2D/Nrf2 pathway via miR-665. In conclusion, Dex mitigates MIRI through inhibiting pyroptosis via regulating miR-665/MEF2D/Nrf2 axis.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Dai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuhan Xie
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weijun Zeng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiangfeng Bai
- Department of Cardiac Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Jiang L, Zhang T, Zhang Y, Yu D, Zhang Y. Dexmedetomidine postconditioning provides renal protection in patients undergoing laparoscopic partial nephrectomy: A randomized controlled trial. Front Pharmacol 2022; 13:988254. [PMID: 36267269 PMCID: PMC9577176 DOI: 10.3389/fphar.2022.988254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: For localized disease, partial nephrectomy of small tumors continues to be the gold-standard treatment. However, temporary clamping is routinely performed during this process to control renal blood flow, which can cause renal ischemic/reperfusion injury. We evaluated whether dexmedetomidine postconditioning (DPOC) can reduce renal ischemic/reperfusion injury for patients receiving laparoscopic partial nephrectomy (LPN).Methods: This randomized double-blind controlled trial included 77 patients who were scheduled for LPN at our hospital. Patients were randomly allocated to the DPOC or control group. DPOC was performed via intravenous administration of dexmedetomidine at 0.6 μg kg−1 for 10 min immediately after unclamping the renal artery. In the control group, saline was administered in place of dexmedetomidine under the same protocol. All participants underwent a 6-month follow-up. The primary outcome were the values of 99mTc-DTPA-GFR in the affected kidney at one and 6 months post-LPN.Result: The GFR values in the DPOC group (35.65 ± 4.89 ml min−1.1.73 m−2) were significantly higher than those the control group (33.10 ± 5.41 ml min−1.1.73 m−2; p = 0.022) at 1 month after LPN. There was no statistically significant difference in GFR value between the two groups at 6 months after LPN.Conclusion: DPOC provides therapeutic benefits to LPN patients, at least on a short-term basis, by alleviating renal ischemic/reperfusion injury.Clinical Trial Registration: Chinese Clinical Trial Registry, identifier [ChiCTR-TRC-14004766].
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Anaesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, China
| | - Tao Zhang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yang Zhang
- Department of Anaesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dexin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anaesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ye Zhang,
| |
Collapse
|
8
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
9
|
Zhao H, Wang Y, Zhu X. Chrysophanol exerts a protective effect against sepsis-induced acute myocardial injury through modulating the microRNA-27b-3p/Peroxisomal proliferating-activated receptor gamma axis. Bioengineered 2022; 13:12673-12690. [PMID: 35599576 PMCID: PMC9275920 DOI: 10.1080/21655979.2022.2063560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sepsis, a leading contributor to the death of inpatients, results in severe organ dysfunction as complications. The heart is one of the major organs attacked by sepsis, and the effective control of the inflammatory cascade reaction in sepsis is of great significance in alleviating sepsis-associated acute myocardial injury (S-AMI). Chrysophanol, a natural anthraquinone, has been discovered to carry anti-inflammatory effects. The aim of this paper is to probe the impact of Chrysophanol on S-AMI. An S-AMI model was engineered in rats via CLP. Pathological alterations in the myocardial tissues of rats were monitored. qRT-PCR, ELISA, and western blot measured the profiles of miR-27b-3p, Peroxisomal proliferating-activated receptor gamma (PPARG), inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8), and inflammatory response proteins (NF-κB-p65, MAPK-p38, JNK1/2). Besides, miR-27b-3p mimics were transfected into cardiomyocytes, and the proliferation and apoptosis of cardiomyocytes were examined through MTT and flow cytometry. As evidenced by the experimental outcomes, chrysophanol suppressed sepsis-mediated acute myocardial injury and LPS-mediated apoptosis in myocardial cells and lessened the release of pro-inflammatory cytokines and inflammatory response proteins. Moreover, chrysophanol cramped miR-27b-3p expression and heightened PPARG expression. miR-27b-3p targeted PPARG and restrained its expression. On the other hand, the PPARG agonist (RGZ) partially eliminated the apoptosis and pro-inflammatory responses of myocardial cells elicited by LPS. Therefore, this study revealed that Chrysophanol guarded against sepsis-mediated acute myocardial injury through dampening inflammation and apoptosis via the miR-27b-3p-PPARG axis, adding to the references for treating sepsis-AMI.
Collapse
Affiliation(s)
- Haiyan Zhao
- Dry Treatment Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xishan, China
| | - Yuping Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| | - Xiaolin Zhu
- Dry Treatment Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| |
Collapse
|
10
|
Zhao S, Wu W, Lin X, Shen M, Yang Z, Yu S, Luo Y. Protective effects of dexmedetomidine in vital organ injury: crucial roles of autophagy. Cell Mol Biol Lett 2022; 27:34. [PMID: 35508984 PMCID: PMC9066865 DOI: 10.1186/s11658-022-00335-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Vital organ injury is one of the leading causes of global deaths. Accumulating studies have demonstrated that dexmedetomidine (DEX) has an outstanding protective effect on multiple organs for its antiinflammatory and antiapoptotic properties, while the underlying molecular mechanism is not clearly understood. Autophagy, an adaptive catabolic process, has been found to play a crucial role in the organ-protective effects of DEX. Herein, we present a first attempt to summarize all the evidence on the proposed roles of autophagy in the action of DEX protecting against vital organ injuries via a comprehensive review. We found that most of the relevant studies (17/24, 71%) demonstrated that the modulation of autophagy was inhibited under the treatment of DEX on vital organ injuries (e.g. brain, heart, kidney, and lung), but several studies suggested that the level of autophagy was dramatically increased after administration of DEX. Albeit not fully elucidated, the underlying mechanisms governing the roles of autophagy involve the antiapoptotic properties, inhibiting inflammatory response, removing damaged mitochondria, and reducing oxidative stress, which might be facilitated by the interaction with multiple associated genes (i.e., hypoxia inducible factor-1α, p62, caspase-3, heat shock 70 kDa protein, and microRNAs) and signaling cascades (i.e., mammalian target of rapamycin, nuclear factor-kappa B, and c-Jun N-terminal kinases pathway). The authors conclude that DEX hints at a promising strategy in the management of vital organ injuries, while autophagy is crucially involved in the protective effect of DEX.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhenyu Yang
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Sicong Yu
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Yu Luo
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China.
| |
Collapse
|
11
|
Artemisinin Alleviates Cerebral Ischemia/Reperfusion Injury via Regulation of the Forkhead Transcription Factor O1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7824436. [PMID: 35422868 PMCID: PMC9005279 DOI: 10.1155/2022/7824436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022]
Abstract
The effect and mechanism of artemisinin therapy on cerebral ischemia-reperfusion injury (CIRI) was analyzed in this work. 100 healthy male C57BL/6 mice were selected and randomly divided into the sham group (no treatment), CIRI model group (IR), IR + artemisinin posttreatment group (IR + Arte), EX527 + IR group (EX527 + IR), and EX527 + IR + artemisinin posttreatment group (EX527 + IR + Arte), with 20 mice in each group. The cerebral infarct volumes of mice in different groups were measured by the 2,3,5-triphenyltetrazolium chloride (TTC) staining method. The neurological function scores and oxidative stress levels of mice in different groups were measured and compared. In addition, the expressions of silent information regulator 1 (SIRT1), forkhead transcription factor O1 (FOXO1), and p53 protein in brain tissue were detected. The results showed that the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) in the EX527 + IR group and EX527 + IR + Arte group were significantly higher than those in the IR + Arte group (P < 0.05). The expressions of SIRT1 protein in the brain tissue of the IR group and EX527 + IR group were much lower than that of the sham group (P < 0.01); compared with the IR + Arte group, the expression of the X527 + IR group in the brain tissue was greatly reduced (P < 0.05). The expression levels of FOXO1 protein and p53 protein in the brain tissue of mice in the IR group and EX527 + IR group were higher than those in the sham group (P < 0.01). It was concluded that artemisinin treatment can reduce oxidative stress damage and alleviate CIRI through the SIRT1/FOXO1 signaling pathway, thereby achieving neuroprotective effects.
Collapse
|
12
|
Wang J, Song X, Tan G, Sun P, Guo L, Zhang N, Wang J, Li B. NAD+ improved experimental autoimmune encephalomyelitis by regulating SIRT1 to inhibit PI3K/Akt/mTOR signaling pathway. Aging (Albany NY) 2021; 13:25931-25943. [PMID: 34928817 PMCID: PMC8751589 DOI: 10.18632/aging.203781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate the effect of NAD+ on thymus autophagy in experimental autoimmune encephalomyelitis (EAE) mice through SIRT1. METHODS Bioinformatic analysis was used to identify hub genes. Forty female C57BL/6 mice were randomly divided into 4 groups: control, EAE, NAD+, and NAD+ +SIRT1 inhibitor (SIRT-IN-3) groups and SIRT1 group. The NAD+ group and SIRT1 inhibitor group were treated with NAD+ drug and fed for 4 weeks. The neurological function scores were evaluated weekly. The thymus tissues of wild-type mice were removed, ground and filtered into single-cell suspension. MOG 35-55 (1 μg/mL) was given to primary thymic epithelial cells (TECs) to induce EAE model in vitro. The expression of LC-3A/B was observed by immunofluorescence. The expressions or the activation/phosphorylation of associated proteins were detected by Western blot. RESULTS Enrichment analysis showed PI3K-Akt-mTOR and autophagy pathway were main terms in EAE diseases, and the relationship between NAD+ and SIRT1. The activation of p-PI3K, p-Akt and p-mTOR were the highest in the EAE group consistent with decreased P62, Beclin1, LC-3A/B and SIRT1, and NAD+ reversed these results, furthermore SIRT1 inhibitor: SIRT-IN3 weakened the NAD+' effects in both in vivo and in vitro experiments. Immunofluorescence study in vivo and in vitro were accord with the results of western blot. CONCLUSIONS NAD+ exerted a protective effect on EAE mice by inhibiting PI3K/Akt/mTOR signaling pathway through SIRT1 in TECs, and prevented EAE mice from sustained damage.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Pengtao Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Ning Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
13
|
Zhou L, Sun J, Gu L, Wang S, Yang T, Wei T, Shan T, Wang H, Wang L. Programmed Cell Death: Complex Regulatory Networks in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:794879. [PMID: 34901035 PMCID: PMC8661013 DOI: 10.3389/fcell.2021.794879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Abnormalities in programmed cell death (PCD) signaling cascades can be observed in the development and progression of various cardiovascular diseases, such as apoptosis, necrosis, pyroptosis, ferroptosis, and cell death associated with autophagy. Aberrant activation of PCD pathways is a common feature leading to excessive cardiac remodeling and heart failure, involved in the pathogenesis of various cardiovascular diseases. Conversely, timely activation of PCD remodels cardiac structure and function after injury in a spatially or temporally restricted manner and corrects cardiac development similarly. As many cardiovascular diseases exhibit abnormalities in PCD pathways, drugs that can inhibit or modulate PCD may be critical in future therapeutic strategies. In this review, we briefly describe the process of various types of PCD and their roles in the occurrence and development of cardiovascular diseases. We also discuss the interplay between different cell death signaling cascades and summarize pharmaceutical agents targeting key players in cell death signaling pathways that have progressed to clinical trials. Ultimately a better understanding of PCD involved in cardiovascular diseases may lead to new avenues for therapy.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianwen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Li Y, Qu M, Xing F, Li H, Cheng D, Xing N, Zhang W. The Protective Mechanism of Dexmedetomidine in Regulating Atg14L-Beclin1-Vps34 Complex Against Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2021; 14:1063-1074. [PMID: 33914271 DOI: 10.1007/s12265-021-10125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
The blood flow restoration of ischemic tissues causes myocardial injury. Dexmedetomidine (Dex) protects multi-organs against ischemia/reperfusion (I/R) injury. This study investigated the protective mechanism of Dex post-treatment in myocardial I/R injury. The rat model of myocardial I/R was established. The effects of Dex post-treatment on cardiac function and autophagy flow were observed. Dex attenuated myocardial I/R injury and reduced I/R-induced autophagy in rats. Dex weakened the interactions between Beclin1 and Vps34 and Beclin1 and Atg14L, thus downregulating Vps34 kinase activity. In vitro, the cardiomyocytes subjected to oxygen glucose deprivation/reoxygenation were treated with Dex and PI3K inhibitor LY294002. LY294002 attenuated the myocardial protective effect of DEX, indicating that Dex protected against cardiac I/R by activating the PI3K/Akt pathway. In conclusion, Dex upregulated the phosphorylation of Beclin1 at S295 site by activating the PI3K/Akt pathway and reduced the interactions of Atg14L-Beclin1-Vps34 complex, thus inhibiting autophagy and protecting against myocardial I/R injury.
Collapse
Affiliation(s)
- Yanna Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Huixin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Dan Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China.
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, China.
| |
Collapse
|
15
|
Dexmedetomidine inhibits endoplasmic reticulum stress to suppress pyroptosis of hypoxia/reoxygenation-induced intestinal epithelial cells via activating the SIRT1 expression. J Bioenerg Biomembr 2021; 53:655-664. [PMID: 34586578 DOI: 10.1007/s10863-021-09922-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine (Dex) can protect the intestine against ischemia/reperfusion (I/R)-induced injury. Sirtuin 1 (SIRT1) pathway, which could be activated by Dex, was reported to inhibit I/R injury. Pyroptosis plays an important role in intestinal diseases. We aimed to investigate whether Dex could attenuate pyroptosis of hypoxia/reoxygenation (H/R)-induced intestinal epithelial cells via activating SIRT1. The intestinal epithelial cell line IEC-6 with or without SIRT1 knockdown after H/R treatment was exposed to Dex, then cell viability, endoplasmic reticulum stress (ERS), apoptosis, pyroptosis, inflammatory cytokines production and SIRT1 expression were detected. Results showed that Dex treatment had no significant effect on IEC-6 cell viability but rescued the H/R-reduced cell viability. The expression of proteins involved in ERS including Grp78, Gadd153 and caspase 12 was enhanced upon H/R stimulation, but was reversely reduced by Dex. The cell apoptosis increased by H/R was also decreased by Dex. Additionally, Dex inhibited pyroptosis and inflammation, which were markedly promoted upon H/R stimulation. The expression of SIRT1, which was reduced after H/R treatment was also partially rescued by Dex. Finally, the above effects of Dex were all blocked by SIRT1 knockdown. In conclusion, Dex could inhibit H/R-induced intestinal epithelial cells ERS, apoptosis and pyroptosis via activating SIRT1 expression.
Collapse
|
16
|
Zhang Y, Zhao Q, Li X, Ji F. Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway. Mol Cell Biochem 2021; 476:2803-2812. [PMID: 33725228 DOI: 10.1007/s11010-021-04102-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023]
Abstract
We aimed to investigate the protective role and mechanism of dexmedetomidine (DEX) on H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R) injury. Six experimental groups were designed as follows: normal control group (group C), H/R group, H/R + DEX group, H/R + gastrodin group, H/R + Ex527 (SIRT1 inhibitor) group, and H/R + DEX + Ex527 group. Lactate dehydrogenase (LDH) activity and the levels of oxidative stress-related enzymes such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were measured using corresponding commercial kits. Cell counting kit (CCK)-8 assay was used to detect cell survival rate while flow cytometry and caspase 3/7 activity were used to determine cell apoptosis, respectively. Western blot was used to detect the expression of silent information regulator 1 (SIRT1), C/EBP homologous protein (CHOP), cleaved-caspase-12/3 and pro-caspase-12/3 in each group. From our findings, when compared with H/R, H/R + Ex527 and H/R + DEX + Ex527 groups, DEX pretreatment of cells in H/R + DEX group significantly increased cell survival rate, and simultaneously reduced LDH activity, oxidative stress and the apoptosis rate of H9c2 cells with H/R injury. Moreover, DEX up-regulated SIRT1 expression level and down-regulated the levels of endoplasmic reticulum (ER) stress-related markers such as CHOP, cleaved-caspase-12 and cleaved-caspase-3, respectively. Ex527 could completely block DEX-induced upregulated expression of SIRT1, and partially blocked the DEX-induced downregulated expression levels of CHOP, cleaved-caspase-12 and cleaved-caspase-3. These results proved that DEX reversed H/R injury-induced oxidative stress and ER stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.,Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Qihong Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
17
|
Liu CY, Zhou Y, Chen T, Lei JC, Jiang XJ. AMPK/SIRT1 Pathway is Involved in Arctigenin-Mediated Protective Effects Against Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2021; 11:616813. [PMID: 33574759 PMCID: PMC7870703 DOI: 10.3389/fphar.2020.616813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Arctigenin, one of the active ingredients extracted from Great Burdock (Arctium lappa) Achene, has been found to relieve myocardial infarction injury. However, the specific mechanism of Arctigenin against myocardial infarction remains largely unknown. Here, both acute myocardial ischemia-reperfusion injury (AMI/R) rat model and oxygen glucose deprivation (OGD)-induced myocardial cell injury model were constructed to explore the underlying role of AMPK/SIRT1 pathway in Arctigenin-mediated effects. The experimental data in our study demonstrated that Arctigenin ameliorated OGD-mediated cardiomyocytes apoptosis, inflammation and oxidative stress in a dose-dependent manner. Besides, Arctigenin activated AMPK/SIRT1 pathway and downregulated NF-κB phosphorylation in OGD-treated cardiomyocytes, while inhibiting AMPK or SIRT1 by the Compound C (an AMPK inhibitor) or SIRT1-IN-1 (a SIRT1 inhibitor) significantly attenuated Arctigenin-exerted protective effects on cardiomyocytes. In the animal experiments, Arctigenin improved the heart functions and decreased infarct size of the AMI/R-rats, accompanied with downregulated oxidative stress, inflammation and apoptotic levels in the heart tissues. What's more, Arctigenin enhanced the AMPK/SIRT1 pathway and repressed NF-κB pathway activation. Taken together, our data indicated that Arctigenin reduced cardiomyocytes apoptosis against AMI/R-induced oxidative stress and inflammation at least via AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Cheng-Yin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing-Chao Lei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
18
|
Dexmedetomidine Ameliorates Hippocampus Injury and Cognitive Dysfunction Induced by Hepatic Ischemia/Reperfusion by Activating SIRT3-Mediated Mitophagy and Inhibiting Activation of the NLRP3 Inflammasome in Young Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7385458. [PMID: 34493950 PMCID: PMC8418694 DOI: 10.1155/2020/7385458] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (HIR) has been proven to trigger oxidative stress and pyroptosis in the hippocampus. Sirtuin 3 (SIRT3) is an essential mitochondrial protein deacetylase regulating oxidative stress and mitophagy. Dexmedetomidine (Dex) has been demonstrated to confer neuroprotection in different brain injury models. However, whether the protective effects of Dex following HIR are orchestrated by activation of SIRT3-mediated mitophagy and inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activation remains unknown. Herein, two-week-old rats were treated with Dex or a selective SIRT3 inhibitor (3-TYP)/autophagy inhibitor (3-MA) and then subjected to HIR. The results revealed that Dex treatment effectively attenuated neuroinflammation and cognitive deficits via upregulating SIRT3 expression and activity. Furthermore, Dex treatment inhibited the activation of NLRP3 inflammasome, while 3-TYP and 3-MA eliminated the protective effects of Dex, suggesting that SIRT3-mediated mitophagy executes the protective effects of Dex. Moreover, 3-TYP treatment downregulated the expression level of SIRT3 downstream proteins: forkhead-box-protein 3α (FOXO3α), superoxide dismutase 2 (SOD2), peroxiredoxin 3 (PRDX3), and cyclophilin D (CYP-D), which were barely influenced by 3-MA treatment. Notably, both 3-TYP and 3-MA were able to offset the antioxidative and antiapoptosis effects of Dex, indicating that SIRT3-mediated mitophagy may be the last step and the major pathway executing the neuroprotective effects of Dex. In conclusion, Dex inhibits HIR-induced NLRP3 inflammasome activation mainly by triggering SIRT3-mediated mitophagy.
Collapse
|