1
|
Ghebreamlak S, Stoian SA, Lees NS, Cronin B, Smith F, Ross MO, Telser J, Hoffman BM, Duin EC. The Active-Site [4Fe-4S] Cluster in the Isoprenoid Biosynthesis Enzyme IspH Adopts Unexpected Redox States during Ligand Binding and Catalysis. J Am Chem Soc 2024; 146:3926-3942. [PMID: 38291562 DOI: 10.1021/jacs.3c11674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase, or IspH (formerly known as LytB), catalyzes the terminal step of the bacterial methylerythritol phosphate (MEP) pathway for isoprene synthesis. This step converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into one of two possible isomeric products, either isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). This reaction involves the removal of the C4 hydroxyl group of HMBPP and addition of two electrons. IspH contains a [4Fe-4S] cluster in its active site, and multiple cluster-based paramagnetic species of uncertain redox and ligation states can be detected after incubation with reductant, addition of a ligand, or during catalysis. To characterize the clusters in these species, 57Fe-labeled samples of IspH were prepared and studied by electron paramagnetic resonance (EPR), 57Fe electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies. Notably, this ENDOR study provides a rarely reported, complete determination of the 57Fe hyperfine tensors for all four Fe ions in a [4Fe-4S] cluster. The resting state of the enzyme (Ox) has a diamagnetic [4Fe-4S]2+ cluster. Reduction generates [4Fe-4S]+ (Red) with both S = 1/2 and S = 3/2 spin ground states. When the reduced enzyme is incubated with substrate, a transient paramagnetic reaction intermediate is detected (Int) which is thought to contain a cluster-bound substrate-derived species. The EPR properties of Int are indicative of a 3+ iron-sulfur cluster oxidation state, and the Mössbauer spectra presented here confirm this. Incubation of reduced enzyme with the product IPP induced yet another paramagnetic [4Fe-4S]+ species (Red+P) with S = 1/2. However, the g-tensor of this state is commonly associated with a 3+ oxidation state, while Mössbauer parameters show features typical for 2+ clusters. Implications of these complicated results are discussed.
Collapse
Affiliation(s)
- Selamawit Ghebreamlak
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, MS 2343 Moscow, Idaho 83844, United States
| | - Nicholas S Lees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Forrest Smith
- Department of Drug Discovery & Development, Auburn University, 4306 Walker Building, Auburn, Alabama 36849, United States
| | - Matthew O Ross
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 S. Michigan Avenue, Chicago, Illinois 60605, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
3
|
Huang S, Xue Y, Ma Y, Zhou C. Microbial ( E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate reductase (IspH) and its biotechnological potential: A mini review. Front Bioeng Biotechnol 2022; 10:1057938. [PMID: 36524053 PMCID: PMC9745026 DOI: 10.3389/fbioe.2022.1057938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 05/07/2025] Open
Abstract
(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) reductase (IspH) is a [4Fe-4S] cluster-containing enzyme, involved in isoprenoid biosynthesis as the final enzyme of the methylerythritol phosphate (MEP) pathway found in many bacteria and malaria parasites. In recent years, many studies have revealed that isoprenoid compounds are an alternative to petroleum-derived fuels. Thus, ecofriendly methods harnessing the methylerythritol phosphate pathway in microbes to synthesize isoprenoid compounds and IspH itself have received notable attention from researchers. In addition to its applications in the field of biosynthesis, IspH is considered to be an attractive drug target for infectious diseases such as malaria and tuberculosis due to its survivability in most pathogenic bacterium and its absence in humans. In this mini-review, we summarize previous reports that have systematically illuminated the fundamental and structural properties, substrate binding and catalysis, proposed catalytic mechanism, and novel catalytic activities of IspH. Potential bioengineering and biotechnological applications of IspH are also discussed.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Arjmand G, Haeri MR. Antibacterial Effect of Some Eukaryotic Sterol Biosynthesis Inhibitors. Adv Biomed Res 2022; 11:90. [PMID: 36518857 PMCID: PMC9744079 DOI: 10.4103/abr.abr_291_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Isoprenoids and their derivatives are building blocks for the synthesis of biomolecules with important biological functions such as cholesterol in eukaryotes and lipid carrier undecaprenol, which is involved in cell wall biosynthesis in bacteria. With the global threat of multidrug-resistant bacteria, there is a need for finding new metabolic targets for killing bacteria. In the present study, we examined the impact of eukaryotic sterol biosynthesis inhibitors on the growth of four pathogenic bacteria. MATERIALS AND METHODS Antibacterial effect of HMG CoA reductase inhibitor (simvastatin), farnesyl pyrophosphate synthase inhibitor (alendronate), squalene epoxidase inhibitor (terbinafine), and lanosterol demethylase inhibitor (ketoconazole) were studied against four pathogenic bacteria: two gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis and two gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa. Broth microdilution method was used for assessing the antibacterial susceptibility of the components using 96 well plats. MIC and MBC were determined visibly. RESULTS MIC of Ketoconazole for Staphylococcus aureus and Enterococcus faecalis were 0.166 and 1 mg/mL, respectively. Terbinafine had a weak inhibitory effect on Staphylococcus aureus (MIC: 8 mg/mL). Ketoconazole and terbinafine had no inhibitory effect on gram-negative bacteria. MBC of Simvastatin for both Staphylococcus aureus and Enterococcus faecalis was 0.5 mg/mL and of Alendronate for Pseudomonas aeruginosa was 6.6 mg/mL. CONCLUSION Our results show that farnesyl pyrophosphate synthase and class II HMG-CoA reductases inhibitors (ketoconazole and simvastatin) have reasonable antibacterial activity against gram-positive bacteria. These two enzymes provide suitable targets for designing new antibiotics based on modifying the chemical structure of currently used drugs to obtain maximum activity.
Collapse
Affiliation(s)
- Ghasem Arjmand
- Department of Biochemistry, Faculty of Science, Payam Noor University, Tehran Branch, Tehran, Iran
| | - Mohammad Reza Haeri
- Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran,Address for correspondence: Dr. Mohammad Reza Haeri, Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran. E-mail:
| |
Collapse
|
5
|
Lv X, Xue H, Qin L, Li C. Transporter Engineering in Microbial Cell Factory Boosts Biomanufacturing Capacity. BIODESIGN RESEARCH 2022; 2022:9871087. [PMID: 37850143 PMCID: PMC10521751 DOI: 10.34133/2022/9871087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2022] [Indexed: 10/19/2023] Open
Abstract
Microbial cell factories (MCFs) are typical and widely used platforms in biomanufacturing for designing and constructing synthesis pathways of target compounds in microorganisms. In MCFs, transporter engineering is especially significant for improving the biomanufacturing efficiency and capacity through enhancing substrate absorption, promoting intracellular mass transfer of intermediate metabolites, and improving transmembrane export of target products. This review discusses the current methods and strategies of mining and characterizing suitable transporters and presents the cases of transporter engineering in the production of various chemicals in MCFs.
Collapse
Affiliation(s)
- Xiaodong Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Ball HS, Girma MB, Zainab M, Soojhawon I, Couch RD, Noble SM. Characterization and Inhibition of 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase: A Promising Drug Target in Acinetobacter baumannii and Klebsiella pneumoniae. ACS Infect Dis 2021; 7:2987-2998. [PMID: 34672535 PMCID: PMC8594541 DOI: 10.1021/acsinfecdis.1c00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The ESKAPE pathogens
comprise a group of multidrug-resistant bacteria
that are the leading cause of nosocomial infections worldwide. The
prevalence of antibiotic resistant strains and the relative ease by
which bacteria acquire resistance genes highlight the continual need
for the development of novel antibiotics against new drug targets.
The methylerythritol phosphate (MEP) pathway is an attractive target
for the development of new antibiotics. The MEP pathway governs the
synthesis of isoprenoids, which are key lipid precursors for vital
cell components such as ubiquinone and bacterial hopanoids. Additionally,
the MEP pathway is entirely distinct from the corresponding mammalian
pathway, the mevalonic acid (MVA) pathway, making the first committed
enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate
reductoisomerase (IspC), an attractive target for antibiotic development.
To facilitate drug development against two of the ESKAPE pathogens, Acinetobacter baumannii and Klebsiella
pneumoniae, we cloned, expressed, purified, and characterized
IspC from these two Gram-negative bacteria. Enzyme inhibition assays
using IspC from these two pathogens, and compounds fosmidomycin and
FR900098, indicate IC50 values ranging from 19.5–45.5
nM. Antimicrobial susceptibility tests with these inhibitors reveal
that A. baumannii is susceptible to
FR900098, whereas K. pneumoniae is
susceptible to both compounds. Finally, to facilitate structure-based
drug design of inhibitors targeting A. baumannii IspC, we determined the 2.5 Å crystal structure of IspC from A. baumannii in complex with inhibitor FR900098,
and cofactors NADPH and magnesium.
Collapse
Affiliation(s)
- Haley S. Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20109, United States of America
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Springs, Maryland 20910, United States of America
| | - Misgina B. Girma
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20109, United States of America
| | - Mosufa Zainab
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20109, United States of America
| | - Iswarduth Soojhawon
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Springs, Maryland 20910, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20109, United States of America
| | - Schroeder M. Noble
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Springs, Maryland 20910, United States of America
| |
Collapse
|
7
|
Synthesis and Antiplasmodial Activity of Novel Fosmidomycin Derivatives and Conjugates with Artemisinin and Aminochloroquinoline. Molecules 2020; 25:molecules25204858. [PMID: 33096817 PMCID: PMC7587979 DOI: 10.3390/molecules25204858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
Malaria, despite many efforts, remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by Plasmodium falciparum. The antibiotic fosmidomycin (FSM) is also known for its antimalarial activity by targeting the non-mevalonate isoprenoid synthesis pathway, which is essential for the malaria parasites but is absent in mammalians. In this study, we synthesized and evaluated against the chloroquine-resistant P. falciparum FcB1/Colombia strain, a series of FSM analogs, derivatives, and conjugates with other antimalarial agents, such as artemisinin (ART) and aminochloroquinoline (ACQ). The biological evaluation revealed four new compounds with higher antimalarial activity than FSM: two FSM-ACQ derivatives and two FSM-ART conjugates, with 3.5-5.4 and 41.5-23.1 times more potent activities than FSM, respectively.
Collapse
|
8
|
Ball HS, Girma M, Zainab M, Riley H, Behrendt CT, Lienau C, Konzuch S, Avelar LAA, Lungerich B, Soojhawon I, Noble SM, Kurz T, Couch RD. Inhibition of the Yersinia pestis Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis by α-Phenyl-Substituted Reverse Fosmidomycin Analogues. ACS OMEGA 2020; 5:5170-5175. [PMID: 32201804 PMCID: PMC7081406 DOI: 10.1021/acsomega.9b04171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Fosmidomycin inhibits IspC (1-deoxy-d-xylulose 5-phosphate reductoisomerase), the first committed enzyme in the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis. The MEP pathway of isoprenoid biosynthesis is essential to the causative agent of the plague, Yersinia pestis, and is entirely distinct from the corresponding mammalian pathway. To further drug development, we established structure-activity relationships of fosmidomycin analogues by assessing a suite of 17 α-phenyl-substituted reverse derivatives of fosmidomycin against Y. pestis IspC. Several of these compounds showed increased potency over fosmidomycin with IC50 values in the nanomolar range. Additionally, we performed antimicrobial susceptibility testing with Y. pestis A1122 (YpA1122). The bacteria were susceptible to several compounds with minimal inhibitory concentration (MIC) values ranging from 128 to 512 μg/mL; a correlation between the IC50 and MIC values was observed.
Collapse
Affiliation(s)
- Haley S. Ball
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United
States
- Wound
Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Misgina Girma
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United
States
| | - Mosufa Zainab
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United
States
| | - Honoria Riley
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United
States
| | - Christoph T. Behrendt
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Lienau
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sarah Konzuch
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Leandro A. A. Avelar
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Beate Lungerich
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Iswarduth Soojhawon
- Wound
Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Schroeder M. Noble
- Wound
Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Thomas Kurz
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Robin D. Couch
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United
States
| |
Collapse
|
9
|
Ansari IA, Akhtar MS. Current Insights on the Role of Terpenoids as Anticancer Agents: A Perspective on Cancer Prevention and Treatment. NATURAL BIO-ACTIVE COMPOUNDS 2019:53-80. [DOI: 10.1007/978-981-13-7205-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Chenge-Espinosa M, Cordoba E, Romero-Guido C, Toledo-Ortiz G, León P. Shedding light on the methylerythritol phosphate (MEP)-pathway: long hypocotyl 5 (HY5)/phytochrome-interacting factors (PIFs) transcription factors modulating key limiting steps. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:828-841. [PMID: 30144333 DOI: 10.1111/tpj.14071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 05/22/2023]
Abstract
The plastidial methylerythritol phosphate (MEP) pathway is an essential route for plants as the source of precursors for all plastidial isoprenoids, many of which are of medical and biotechnological importance. The MEP pathway is highly sensitive to environmental cues as many of these compounds are linked to photosynthesis and growth and light is one of the main regulatory factors. However, the mechanisms coordinating the MEP pathway with light cues are not fully understood. Here we demonstrate that by a differential direct transcriptional modulation, via the key-master integrators of light signal transduction HY5 and PIFs which target the genes that encode the rate-controlling DXS1, DXR and HDR enzymes, light imposes a direct, rapid and potentially multi-faceted response that leads to unique protein dynamics of this pathway, resulting in a significant difference in the protein levels. For DXS1, PIF1/HY5 act as a direct activation/suppression module. In contrast, DXR accumulation in response to light results from HY5 induction with minor contribution of de-repression by PIF1. Finally, HDR transcription increases in the light exclusively by suppression of the PIFs repression. This is an example of how light signaling components can differentially multi-target the initial steps of a pathway whose products branch downstream to all chloroplastic isoprenoids. These findings demonstrate the diversity and flexibility of light signaling components that optimize key biochemical pathways essential for plant growth.
Collapse
Affiliation(s)
- Marel Chenge-Espinosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos, C.P. 62210, México
| | - Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos, C.P. 62210, México
| | - Cynthia Romero-Guido
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos, C.P. 62210, México
| | | | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos, C.P. 62210, México
| |
Collapse
|
11
|
Generation of Flavors and Fragrances Through Biotransformation and De Novo Synthesis. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2180-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Root K, Barylyuk K, Schwab A, Thelemann J, Illarionov B, Geist JG, Gräwert T, Bacher A, Fischer M, Diederich F, Zenobi R. Aryl bis-sulfonamides bind to the active site of a homotrimeric isoprenoid biosynthesis enzyme IspF and extract the essential divalent metal cation cofactor. Chem Sci 2018; 9:5976-5986. [PMID: 30079212 PMCID: PMC6050538 DOI: 10.1039/c8sc00814k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Characterizing the mode of action of non-covalent inhibitors in multisubunit enzymes often presents a great challenge. Most of the conventionally used methods are based on ensemble measurements of protein-ligand binding in bulk solution. They often fail to accurately describe multiple binding processes occurring in such systems. Native electrospray ionization mass spectrometry (ESI-MS) of intact protein complexes is a direct, label-free approach that can render the entire distribution of ligand-bound states in multimeric protein complexes. Here we apply native ESI-MS to comprehensively characterize the isoprenoid biosynthesis enzyme IspF from Arabidopsis thaliana, an example of a homomeric protein complex with multiple binding sites for several types of ligands, including a metal cofactor and a synthetic inhibitor. While standard biophysical techniques failed to reveal the mode of action of recently discovered aryl-sulfonamide-based inhibitors of AtIspF, direct native ESI-MS titrations of the protein with the ligands and ligand competition assays allowed us to accurately capture the solution-phase protein-ligand binding equilibria in full complexity and detail. Based on these combined with computational modeling, we propose a mechanism of AtIspF inhibition by aryl bis-sulfonamides that involves both the competition with the substrate for the ligand-binding pocket and the extraction of Zn2+ from the enzyme active site. This inhibition mode is therefore mixed competitive and non-competitive, the latter exerting a key inhibitory effect on the enzyme activity. The results of our study deliver a profound insight into the mechanisms of AtIspF action and inhibition, open new perspectives for designing inhibitors of this important drug target, and demonstrate the applicability and value of the native ESI-MS approach for deep analysis of complex biomolecular binding equilibria.
Collapse
Affiliation(s)
- Katharina Root
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Anatol Schwab
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Jonas Thelemann
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Boris Illarionov
- Hamburg School of Food Science , University of Hamburg , Hamburg , Germany
| | - Julie G Geist
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Tobias Gräwert
- Hamburg School of Food Science , University of Hamburg , Hamburg , Germany
| | - Adelbert Bacher
- Department of Chemistry , Technical University of Munich , Garching , Germany
| | - Markus Fischer
- Hamburg School of Food Science , University of Hamburg , Hamburg , Germany
| | - François Diederich
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich , Switzerland .
| |
Collapse
|
13
|
Haymond A, Dowdy T, Johny C, Johnson C, Ball H, Dailey A, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Dowd CS, Couch RD. A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD). Anal Biochem 2018; 542:63-75. [PMID: 29180070 PMCID: PMC5817008 DOI: 10.1016/j.ab.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Haley Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Clark J Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052, USA.
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
14
|
Jadaun JS, Sangwan NS, Narnoliya LK, Singh N, Bansal S, Mishra B, Sangwan RS. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis. PHYSIOLOGIA PLANTARUM 2017; 159:381-400. [PMID: 27580641 DOI: 10.1111/ppl.12507] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/18/2016] [Accepted: 08/05/2016] [Indexed: 05/08/2023]
Abstract
Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.
Collapse
Affiliation(s)
- Jyoti Singh Jadaun
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Lokesh K Narnoliya
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Neha Singh
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Shilpi Bansal
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
- Center of Innovative and Applied Bioprocessing (A National Institute under Department of Biotechnology, Govt. of India), C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali - 160071, Punjab, India
| |
Collapse
|
15
|
Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F, Widder S. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2016; 2:4. [PMID: 28649398 PMCID: PMC5460249 DOI: 10.1038/s41522-016-0002-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
In the context of a polymicrobial infection, treating a specific pathogen poses challenges because of unknown consequences on other members of the community. The presence of ecological interactions between microbes can change their physiology and response to treatment. For example, in the cystic fibrosis lung polymicrobial infection, antimicrobial susceptibility testing on clinical isolates is often not predictive of antibiotic efficacy. Novel approaches are needed to identify the interrelationships within the microbial community to better predict treatment outcomes. Here we used an ecological networking approach on the cystic fibrosis lung microbiome characterized using 16S rRNA gene sequencing and metagenomics. This analysis showed that the community is separated into three interaction groups: Gram-positive anaerobes, Pseudomonas aeruginosa, and Staphylococcus aureus. The P. aeruginosa and S. aureus groups both anti-correlate with the anaerobic group, indicating a functional antagonism. When patients are clinically stable, these major groupings were also stable, however, during exacerbation, these communities fragment. Co-occurrence networking of functional modules annotated from metagenomics data supports that the underlying taxonomic structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease with more predictable outcomes.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093 USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697 USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Jiangchao Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Douglas Conrad
- Department of Medicine, University of California at San Diego, La Jolla, CA 92037 USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Stefanie Widder
- CUBE, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr.14 A-1090, Vienna, Austria
- CeMM - Research Center, for Molecular Medicine of the Austrian Academy of Sciences, Lazarettg, 14, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Sooriyaarachchi S, Chofor R, Risseeuw MDP, Bergfors T, Pouyez J, Dowd CS, Maes L, Wouters J, Jones TA, Van Calenbergh S, Mowbray SL. Targeting an Aromatic Hotspot in Plasmodium falciparum
1-Deoxy-d
-xylulose-5-phosphate Reductoisomerase with β-Arylpropyl Analogues of Fosmidomycin. ChemMedChem 2016; 11:2024-36. [DOI: 10.1002/cmdc.201600249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/09/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Sanjeewani Sooriyaarachchi
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| | - René Chofor
- Laboratory for Medicinal Chemistry (FFW); Gent University; Ottergemsesteenweg 460 9000 Gent Belgium
| | - Martijn D. P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW); Gent University; Ottergemsesteenweg 460 9000 Gent Belgium
| | - Terese Bergfors
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| | - Jenny Pouyez
- Department of Chemistry; University of Namur; Rue de Bruxelles 61 5000 Namur Belgium
| | - Cynthia S. Dowd
- Department of Chemistry; George Washington University; Washington DC 20052 USA
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH); University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| | - Johan Wouters
- Department of Chemistry; University of Namur; Rue de Bruxelles 61 5000 Namur Belgium
| | - T. Alwyn Jones
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW); Gent University; Ottergemsesteenweg 460 9000 Gent Belgium
| | - Sherry L. Mowbray
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| |
Collapse
|
17
|
Matsumoto Y, Yasukawa J, Ishii M, Hayashi Y, Miyazaki S, Sekimizu K. A critical role of mevalonate for peptidoglycan synthesis in Staphylococcus aureus. Sci Rep 2016; 6:22894. [PMID: 26961421 PMCID: PMC4790635 DOI: 10.1038/srep22894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022] Open
Abstract
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, a mevalonate synthetase, is required for the growth of Staphylococcus aureus. However, the essential role of the enzyme in cell growth has remained unclear. Here we show that three mutants possessed single-base substitutions in the mvaA gene, which encodes HMG-CoA reductase, show a temperature-sensitive phenotype. The phenotype was suppressed by the addition of mevalonate or farnesyl diphosphate, which is a product synthesized from mevalonate. Farnesyl diphosphate is a precursor of undecaprenyl phosphate that is required for peptidoglycan synthesis. The rate of peptidoglycan synthesis was decreased in the mvaA mutants under the non-permissive conditions and the phenotype was suppressed by the addition of mevalonate. HMG-CoA reductase activities of mutant MvaA proteins in the temperature sensitive mutants were lower than that of wild-type MvaA protein. Our findings from genetic and biochemical analyses suggest that mevalonate produced by HMG-CoA reductase is required for peptidoglycan synthesis for S. aureus cell growth.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Jyunichiro Yasukawa
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Masaki Ishii
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Yohei Hayashi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Shinya Miyazaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| |
Collapse
|
18
|
Abstract
Escherichia coli and Salmonella contain the naphthoquinones menaquinone (MK; vitamin K2) and demethylmenaquinone and the benzoquinone ubiquinone (coenzyme Q; Q). Both quinones are derived from the shikimate pathway, which has been called a "metabolic tree with many branches." There are two different pathways for the biosynthesis of the naphthoquinones. The vast majority of prokaryotes, including E. coli and Salmonella, and the plants use the o-succinylbenzoate pathway, while a minority uses the futalosine pathway. The quinone nucleus of Q is derived directly from chorismate, while that of MK is derived from chorismate via isochorismate. The prenyl side chains of both quinones are from isopentenyl diphosphate formed by the 2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway and the methyl groups are from S-adenosylmethionine. In addition, MK biosynthesis requires 2-ketoglutarate and cofactors ATP, coenzyme A, and thiamine pyrophosphate. Despite the fact that both quinones originate from the shikimate pathway, there are important differences in their biosyntheses. The prenyl side chain in MK biosynthesis is introduced at the penultimate step, accompanied by decarboxylation, whereas in Q biosynthesis it is introduced at the second step, with retention of the carboxyl group. In MK biosynthesis, all the reactions of the pathway up to prenylation are carried out by soluble enzymes, whereas all the enzymes involved in Q biosynthesis except the first are membrane bound. In MK biosynthesis, the last step is a C-methylation; in Q biosynthesis, the last step is an O-methylation. In Q biosynthesis a second C-methylation and O-methylation take place in the middle part of the pathway. Despite the fact that Q and MK biosyntheses diverge at chorismate, the C-methylations in both pathways are carried out by the same methyltransferase.
Collapse
|
19
|
Quitterer F, Frank A, Wang K, Rao G, O'Dowd B, Li J, Guerra F, Abdel-Azeim S, Bacher A, Eppinger J, Oldfield E, Groll M. Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe4S4] Enzyme IspG (GcpE). J Mol Biol 2015; 427:2220-8. [PMID: 25868383 DOI: 10.1016/j.jmb.2015.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022]
Abstract
IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent and an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG-catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate into (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate. In addition, the enzyme's structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism, which describes all stages from initial ring opening to formation of (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many prokaryotic and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.
Collapse
Affiliation(s)
- Felix Quitterer
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Annika Frank
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Ke Wang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Guodong Rao
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Bing O'Dowd
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jikun Li
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Francisco Guerra
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Safwat Abdel-Azeim
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Adelbert Bacher
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Jörg Eppinger
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Eric Oldfield
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| |
Collapse
|
20
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
21
|
Inhibition of the Non-Mevalonate Isoprenoid Pathway by Reverse Hydroxamate Analogues of Fosmidomycin. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Konzuch S, Umeda T, Held J, Hähn S, Brücher K, Lienau C, Behrendt CT, Gräwert T, Bacher A, Illarionov B, Fischer M, Mordmüller B, Tanaka N, Kurz T. Binding modes of reverse fosmidomycin analogs toward the antimalarial target IspC. J Med Chem 2014; 57:8827-38. [PMID: 25254502 DOI: 10.1021/jm500850y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase of Plasmodium falciparum (PfIspC, PfDxr), believed to be the rate-limiting enzyme of the nonmevalonate pathway of isoprenoid biosynthesis (MEP pathway), is a clinically validated antimalarial target. The enzyme is efficiently inhibited by the natural product fosmidomycin. To gain new insights into the structure activity relationships of reverse fosmidomycin analogs, several reverse analogs of fosmidomycin were synthesized and biologically evaluated. The 4-methoxyphenyl substituted derivative 2c showed potent inhibition of PfIspC as well as of P. falciparum growth and was more than one order of magnitude more active than fosmidomycin. The binding modes of three new derivatives in complex with PfIspC, reduced nicotinamide adenine dinucleotide phosphate, and Mg(2+) were determined by X-ray structure analysis. Notably, PfIspC selectively binds the S-enantiomers of the study compounds.
Collapse
Affiliation(s)
- Sarah Konzuch
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität , Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haymond A, Johny C, Dowdy T, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Jose GS, Jackson ER, Dowd CS, Couch RD. Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase). PLoS One 2014; 9:e106243. [PMID: 25171339 PMCID: PMC4149570 DOI: 10.1371/journal.pone.0106243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Clark J. Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Geraldine San Jose
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Emily R. Jackson
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
24
|
Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment. BMC STRUCTURAL BIOLOGY 2014; 14:1. [PMID: 24410837 PMCID: PMC3927217 DOI: 10.1186/1472-6807-14-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/20/2013] [Indexed: 11/17/2022]
Abstract
Background 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF) catalyzes the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate to 2C-methyl-D-erythritol-2,4-cyclodiphosphate and cytidine monophosphate in production of isoprenoid-precursors via the methylerythritol phosphate biosynthetic pathway. IspF is found in the protozoan Plasmodium falciparum, a parasite that causes cerebral malaria, as well as in many Gram-negative bacteria such as Burkholderia cenocepacia. IspF represents a potential target for development of broad-spectrum antimicrobial drugs since it is proven or inferred as essential in these pathogens and absent from mammals. Structural studies of IspF from these two important yet distinct pathogens, and comparisons with orthologues have been carried out to generate reagents, to support and inform a structure-based approach to early stage drug discovery. Results Efficient recombinant protein production and crystallization protocols were developed, and high-resolution crystal structures of IspF from P. falciparum (Emphasis/Emphasis>IspF) and B. cenocepacia (BcIspF) in complex with cytidine nucleotides determined. Comparisons with orthologues, indicate a high degree of order and conservation in parts of the active site where Zn2+ is bound and where recognition of the cytidine moiety of substrate occurs. However, conformational flexibility is noted in that area of the active site responsible for binding the methylerythritol component of substrate. Unexpectedly, one structure of BcIspF revealed two molecules of cytidine monophosphate in the active site, and another identified citrate coordinating to the catalytic Zn2+. In both cases interactions with ligands appear to help order a flexible loop at one side of the active site. Difficulties were encountered when attempting to derive complex structures with other ligands. Conclusions High-resolution crystal structures of IspF from two important human pathogens have been obtained and compared to orthologues. The studies reveal new data on ligand binding, with citrate coordinating to the active site Zn2+ and when present in high concentrations cytidine monophosphate displays two binding modes in the active site. Ligand binding appears to order a part of the active site involved in substrate recognition. The high degree of structural conservation in and around the IspF active site suggests that any structural model might be suitable to support a program of structure-based drug discovery.
Collapse
|
25
|
Haines BE, Wiest O, Stauffacher CV. The increasingly complex mechanism of HMG-CoA reductase. Acc Chem Res 2013; 46:2416-26. [PMID: 23898905 DOI: 10.1021/ar3003267] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HMG-CoA reductase (HMGR) is the target of statins, cholesterol-lowering drugs prescribed to millions of patients worldwide. More recent research indicates that HMGR could be a useful target in the development of antimicrobial agents. Over the last seven decades, researchers have proposed a series of increasingly complex reaction mechanisms for this biomedically important enzyme. The maturation of the mechanistic proposals for HMGR have paralleled advances in a diverse set of research areas, such as molecular biology and computational chemistry. Thus, the development of the HMGR mechanism provides a useful case study for following the advances in state-of-the-art methods in enzyme mechanism research. Similarly, the questions raised by these mechanism proposals reflect the limitations of the methods used to develop them. The mechanism of HMGR, a four-electron oxidoreductase, is unique and far more complex than originally thought. The reaction contains multiple chemical steps, coupled to large-scale domain motions of the homodimeric enzyme. The first proposals for the HMGR mechanism were based on kinetic and labeling experiments, drawing analogies to the mechanism of known dehydrogenases. Advances in molecular biology and bioinformatics enabled researchers to use site-directed mutagenesis experiments and protein sequencing to identify catalytically important glutamate, aspartate, and histidine residues. These studies, in turn, have generated new and more complicated mechanistic proposals. With the development of protein crystallography, researchers solved HMGR crystal structures to reveal an unexpected lysine residue at the center of the active site. The many crystal structures of HMGR led to increasingly complex mechanistic proposals, but the inherent limitations of the protein crystallography left a number of questions unresolved. For example, the protonation state of the glutamate residue within the active site cannot be clearly determined from the crystal structure. The differing protonation state of this residue leads to different proposed mechanisms for the enzyme. As computational analysis of large biomolecules has become more feasible, the application of methods such as hybrid quantum mechanics/molecular mechanics (QM/MM) calculations to the HMGR mechanism have led to the most detailed mechanistic proposal yet. As these methodologies continue to improve, they prove to be very powerful for the study of enzyme mechanisms in conjunction with protein crystallography. Nevertheless, even the most current mechanistic proposal for HMGR remains incomplete due to limitations of the current computational methodologies. Thus, HMGR serves as a model for how the combination of increasingly sophisticated experimental and computational methods can elucidate very complex enzyme mechanisms.
Collapse
Affiliation(s)
- Brandon E. Haines
- Department of Chemistry and Biochemistry, Notre Dame University, Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, Notre Dame University, Notre Dame, Indiana 46556, United States
| | - Cynthia V. Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Chung BKS, Lakshmanan M, Klement M, Mohanty B, Lee DY. Genome-scale in silico modeling and analysis for designing synthetic terpenoid-producing microbial cell factories. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Kunfermann A, Lienau C, Illarionov B, Held J, Gräwert T, Behrendt CT, Werner P, Hähn S, Eisenreich W, Riederer U, Mordmüller B, Bacher A, Fischer M, Groll M, Kurz T. IspC as Target for Antiinfective Drug Discovery: Synthesis, Enantiomeric Separation, and Structural Biology of Fosmidomycin Thia Isosters. J Med Chem 2013; 56:8151-62. [DOI: 10.1021/jm4012559] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Kunfermann
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Claudia Lienau
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Boris Illarionov
- Hamburg
School of Food Science, Universität Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Jana Held
- Institut
für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstrasse 27, 72074 Tübingen Germany
| | - Tobias Gräwert
- Hamburg
School of Food Science, Universität Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Christoph T. Behrendt
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Philipp Werner
- Hamburg
School of Food Science, Universität Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Saskia Hähn
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wolfgang Eisenreich
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ulrich Riederer
- Institut
für Pharmazie, Universität Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| | - Benjamin Mordmüller
- Institut
für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstrasse 27, 72074 Tübingen Germany
| | - Adelbert Bacher
- Hamburg
School of Food Science, Universität Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg
School of Food Science, Universität Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Michael Groll
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thomas Kurz
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Kumar H, Kumar S. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni). Gene X 2013; 527:332-8. [PMID: 23800667 DOI: 10.1016/j.gene.2013.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.
Collapse
Affiliation(s)
- Hitesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
| | | |
Collapse
|
29
|
Carretero-Paulet L, Lipska A, Pérez-Gil J, Sangari FJ, Albert VA, Rodríguez-Concepción M. Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme. BMC Evol Biol 2013; 13:180. [PMID: 24004839 PMCID: PMC3847144 DOI: 10.1186/1471-2148-13-180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/16/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Isoprenoids constitute a vast family of natural compounds performing diverse and essential functions in all domains of life. In most eubacteria, isoprenoids are synthesized through the methylerythritol 4-phosphate (MEP) pathway. The production of MEP is usually catalyzed by deoxyxylulose 5-phosphate reductoisomerase (DXR-I) but a few organisms use an alternative DXR-like enzyme (DXR-II). RESULTS Searches through 1498 bacterial complete proteomes detected 130 sequences with similarity to DXR-II. Phylogenetic analysis identified three well-resolved clades: the DXR-II family (clustering 53 sequences including eleven experimentally verified as functional enzymes able to produce MEP), and two previously uncharacterized NAD(P)-dependent oxidoreductase families (designated DLO1 and DLO2 for DXR-II-like oxidoreductases 1 and 2). Our analyses identified amino acid changes critical for the acquisition of DXR-II biochemical function through type-I functional divergence, two of them mapping onto key residues for DXR-II activity. DXR-II showed a markedly discontinuous distribution, which was verified at several levels: taxonomic (being predominantly found in Alphaproteobacteria and Firmicutes), metabolic (being mostly found in bacteria with complete functional MEP pathways with or without DXR-I), and phenotypic (as no biological/phenotypic property was found to be preferentially distributed among DXR-II-containing strains, apart from pathogenicity in animals). By performing a thorough comparative sequence analysis of GC content, 3:1 dinucleotide frequencies, codon usage and codon adaptation indexes (CAI) between DXR-II sequences and their corresponding genomes, we examined the role of horizontal gene transfer (HGT), as opposed to an scenario of massive gene loss, in the evolutionary origin and diversification of the DXR-II subfamily in bacteria. CONCLUSIONS Our analyses support a single origin of the DXR-II family through functional divergence, in which constitutes an exceptional model of acquisition and maintenance of redundant gene functions between non-homologous genes as a result of convergent evolution. Subsequently, although old episodic events of HGT could not be excluded, the results supported a prevalent role of gene loss in explaining the distribution of DXR-II in specific pathogenic eubacteria. Our results highlight the importance of the functional characterization of evolutionary shortcuts in isoprenoid biosynthesis for screening specific antibacterial drugs and for regulating the production of isoprenoids of human interest.
Collapse
Affiliation(s)
- Lorenzo Carretero-Paulet
- Institute for Plant Molecular and Cell Biology - IBMCP (CSIC-UPV), Integrative Systems Biology Group, C/ Ingeniero Fausto Elio s/n., Valencia 46022, Spain
- Department of Biological Sciences, SUNY-University at Buffalo, North Campus. 109 Cooke Hall, Buffalo, NY 14260, USA
| | - Agnieszka Lipska
- Institute for Plant Molecular and Cell Biology - IBMCP (CSIC-UPV), Integrative Systems Biology Group, C/ Ingeniero Fausto Elio s/n., Valencia 46022, Spain
| | - Jordi Pérez-Gil
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Félix J Sangari
- Department of Molecular Biology, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, Avda. de los Castros s/n, Santander E-39005, Cantabria, Spain
| | - Victor A Albert
- Institute for Plant Molecular and Cell Biology - IBMCP (CSIC-UPV), Integrative Systems Biology Group, C/ Ingeniero Fausto Elio s/n., Valencia 46022, Spain
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
30
|
Singh VK, Ghosh I. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum. FEBS Lett 2013; 587:2806-17. [PMID: 23816706 DOI: 10.1016/j.febslet.2013.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022]
Abstract
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | |
Collapse
|
31
|
Abstract
Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.
Collapse
|
32
|
Hemmerlin A. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:41-54. [PMID: 23415327 DOI: 10.1016/j.plantsci.2012.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 05/23/2023]
Abstract
Identification of regulatory enzymes is fundamental for engineering metabolic pathways such as the isoprenoid one. All too often, investigation of gene expression remains the major trend in unraveling regulation mechanisms of the isoprenoid cytosolic mevalonate and the plastid-localized methylerythritol phosphate metabolic pathways. But such metabolic regulatory enzymes are frequently multilevel-regulated, especially at a post-translational level. A prominent example is the endoplasmic reticulum-bound 3-hydroxy-3-methylglutaryl coenzyme A reductase catalyzing the synthesis of mevalonic acid. Despite the discovery and the intense efforts made to understand regulation of the methylerythritol phosphate pathway, this enzyme remains a leading player in the regulation of the whole isoprenoid pathway. Strict correlation between this enzyme's gene expression, protein level and enzyme activity is not observed, thus confirming multilevel-regulation. In this context, besides post-translational modifications of proteins, we have to consider feedback of metabolic flow and allosteric regulation, alternative protein structures, targeted proteolysis and/or redox regulation. Such multilevel-regulation processes deliver a range of benefits including rapid response to environmental and physiological challenges or metabolic fluctuations. This review specially emphasizes essential functions of these post-translational events that permit the close regulation of key enzymes involved in plant isoprenoid precursor biosynthesis.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France.
| |
Collapse
|
33
|
A chemo-enzymatic cascade for the one-pot synthesis of 1-deoxy-d-xylulose 5-phosphate and 1-deoxy-d-xylulose. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Perez-Gil J, Uros EM, Sauret-Güeto S, Lois LM, Kirby J, Nishimoto M, Baidoo EEK, Keasling JD, Boronat A, Rodriguez-Concepcion M. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway. PLoS One 2012; 7:e43775. [PMID: 22928031 PMCID: PMC3424233 DOI: 10.1371/journal.pone.0043775] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022] Open
Abstract
A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.
Collapse
Affiliation(s)
- Jordi Perez-Gil
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Eva Maria Uros
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Susanna Sauret-Güeto
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - L. Maria Lois
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - James Kirby
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Minobu Nishimoto
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | | | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
35
|
Structure of the GcpE (IspG)-MEcPP complex from Thermus thermophilus. FEBS Lett 2012; 586:3452-7. [DOI: 10.1016/j.febslet.2012.07.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/22/2022]
|
36
|
Brücher K, Illarionov B, Held J, Tschan S, Kunfermann A, Pein MK, Bacher A, Gräwert T, Maes L, Mordmüller B, Fischer M, Kurz T. α-Substituted β-oxa isosteres of fosmidomycin: synthesis and biological evaluation. J Med Chem 2012; 55:6566-75. [PMID: 22731758 DOI: 10.1021/jm300652f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Specific inhibition of enzymes of the non-mevalonate pathway is a promising strategy for the development of novel antiplasmodial drugs. α-Aryl-substituted β-oxa isosteres of fosmidomycin with a reverse orientation of the hydroxamic acid group were synthesized and evaluated for their inhibitory activity against recombinant 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) of Plasmodium falciparum and for their in vitro antiplasmodial activity against chloroquine-sensitive and resistant strains of P. falciparum . The most active derivative inhibits IspC protein of P. falciparum (PfIspC) with an IC(50) value of 12 nM and shows potent in vitro antiplasmodial activity. In addition, lipophilic ester prodrugs demonstrated improved P. falciparum growth inhibition in vitro.
Collapse
Affiliation(s)
- Karin Brücher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu W, Lees NS, Hall D, Welideniya D, Hoffman BM, Duin EC. A closer look at the spectroscopic properties of possible reaction intermediates in wild-type and mutant (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase. Biochemistry 2012; 51:4835-49. [PMID: 22646150 DOI: 10.1021/bi3001215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.
Collapse
Affiliation(s)
- Weiya Xu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | |
Collapse
|
38
|
Heuston S, Begley M, Gahan CGM, Hill C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology (Reading) 2012; 158:1389-1401. [DOI: 10.1099/mic.0.051599-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sinéad Heuston
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Li H, Dai SB, Gao WY. Preparation of Isotope Labeled/Unlabeled Key Intermediates in 2-Methyl-D-erythritol 4-Phosphate Terpenoid Biosynthetic Pathway. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201100396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Tidten-Luksch N, Grimaldi R, Torrie LS, Frearson JA, Hunter WN, Brenk R. IspE inhibitors identified by a combination of in silico and in vitro high-throughput screening. PLoS One 2012; 7:e35792. [PMID: 22563402 PMCID: PMC3340893 DOI: 10.1371/journal.pone.0035792] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
CDP-ME kinase (IspE) contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP) pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens.
Collapse
Affiliation(s)
| | | | | | | | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (WNH); (RB)
| | - Ruth Brenk
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (WNH); (RB)
| |
Collapse
|
41
|
Pérez-Gil J, Calisto BM, Behrendt C, Kurz T, Fita I, Rodríguez-Concepción M. Crystal structure of Brucella abortus deoxyxylulose-5-phosphate reductoisomerase-like (DRL) enzyme involved in isoprenoid biosynthesis. J Biol Chem 2012; 287:15803-9. [PMID: 22442144 DOI: 10.1074/jbc.m112.354811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most bacteria use the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the synthesis of their essential isoprenoid precursors. The absence of the MEP pathway in humans makes it a promising new target for the development of much needed new and safe antimicrobial drugs. However, bacteria show a remarkable metabolic plasticity for isoprenoid production. For example, the NADPH-dependent production of MEP from 1-deoxy-D-xylulose 5-phosphate in the first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) in most bacteria, whereas an unrelated DXR-like (DRL) protein was recently found to catalyze the same reaction in some organisms, including the emerging human and animal pathogens Bartonella and Brucella. Here, we report the x-ray crystal structures of the Brucella abortus DRL enzyme in its apo form and in complex with the broad-spectrum antibiotic fosmidomycin solved to 1.5 and 1.8 Å resolution, respectively. DRL is a dimer, with each polypeptide folding into three distinct domains starting with the NADPH-binding domain, in resemblance to the structure of bacterial DXR enzymes. Other than that, DRL and DXR show a low structural relationship, with a different disposition of the domains and a topologically unrelated C-terminal domain. In particular, the active site of DRL presents a unique arrangement, suggesting that the design of drugs that would selectively inhibit DRL-harboring pathogens without affecting beneficial or innocuous bacteria harboring DXR should be feasible. As a proof of concept, we identified two strong DXR inhibitors that have virtually no effect on DRL activity.
Collapse
Affiliation(s)
- Jordi Pérez-Gil
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Uh E, Jackson ER, Jose GS, Maddox M, Lee RE, Lee RE, Boshoff HI, Dowd CS. Antibacterial and antitubercular activity of fosmidomycin, FR900098, and their lipophilic analogs. Bioorg Med Chem Lett 2011; 21:6973-6. [PMID: 22024034 PMCID: PMC3215086 DOI: 10.1016/j.bmcl.2011.09.123] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/17/2022]
Abstract
The nonmevalonate pathway (NMP) of isoprene biosynthesis is an exciting new route toward novel antibiotic development. Inhibitors against several enzymes in this pathway are currently under examination. A significant liability of many of these agents is poor cell penetration. To overcome and improve our understanding of this problem, we have synthesized a series of lipophilic, prodrug analogs of fosmidomycin and FR900098, inhibitors of the NMP enzyme Dxr. Several of these compounds show improved antibacterial activity against a panel of organisms relative to the parent compound, including activity against Mycobacterium tuberculosis (Mtb). Our results show that this strategy can be an effective way for improving whole cell activity of NMP inhibitors.
Collapse
Affiliation(s)
- Eugene Uh
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Emily R. Jackson
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Géraldine San Jose
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Marcus Maddox
- Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Robin E. Lee
- Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Richard E. Lee
- Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington DC 20052
| |
Collapse
|
43
|
Gräwert T, Groll M, Rohdich F, Bacher A, Eisenreich W. Biochemistry of the non-mevalonate isoprenoid pathway. Cell Mol Life Sci 2011; 68:3797-814. [PMID: 21744068 PMCID: PMC11114746 DOI: 10.1007/s00018-011-0753-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/26/2011] [Accepted: 06/14/2011] [Indexed: 02/08/2023]
Abstract
The non-mevalonate pathway of isoprenoid (terpenoid) biosynthesis is essential in many eubacteria including the major human pathogen, Mycobacterium tuberculosis, in apicomplexan protozoa including the Plasmodium spp. causing malaria, and in the plastids of plants. The metabolic route is absent in humans and is therefore qualified as a promising target for new anti-infective drugs and herbicides. Biochemical and structural knowledge about all enzymes involved in the pathway established the basis for discovery and development of inhibitors by high-throughput screening of compound libraries and/or structure-based rational design.
Collapse
Affiliation(s)
- Tobias Gräwert
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Michael Groll
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | - Adelbert Bacher
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Department Chemie, Lehrstuhl für Biochemie, Center for Integrated Protein Science München, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
44
|
Characterization of a feedback-resistant mevalonate kinase from the archaeon Methanosarcina mazei. Appl Environ Microbiol 2011; 77:7772-8. [PMID: 21908638 DOI: 10.1128/aem.05761-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mevalonate pathway is utilized for the biosynthesis of isoprenoids in many bacterial, eukaryotic, and archaeal organisms. Based on previous reports of its feedback inhibition, mevalonate kinase (MVK) may play an important regulatory role in the biosynthesis of mevalonate pathway-derived compounds. Here we report the purification, kinetic characterization, and inhibition analysis of the MVK from the archaeon Methanosarcina mazei. The inhibition of the M. mazei MVK by the following metabolites derived from the mevalonate pathway was explored: dimethylallyl diphosphate (DMAPP), geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), isopentenyl monophosphate (IP), and diphosphomevalonate. M. mazei MVK was not inhibited by DMAPP, GPP, FPP, diphosphomevalonate, or IP, a proposed intermediate in an alternative isoprenoid pathway present in archaea. Our findings suggest that the M. mazei MVK represents a distinct class of mevalonate kinases that can be differentiated from previously characterized MVKs based on its inhibition profile.
Collapse
|
45
|
de Ruyck J, Wouters J, Poulter CD. Inhibition Studies on Enzymes Involved in Isoprenoid Biosynthesis: Focus on Two Potential Drug Targets: DXR and IDI-2 Enzymes. ACTA ACUST UNITED AC 2011; 7. [PMID: 24339799 DOI: 10.2174/157340811796575317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoprenoid compounds constitute an immensely diverse group of acyclic, monocyclic and polycyclic compounds that play important roles in all living organisms. Despite the diversity of their structures, this plethora of natural products arises from only two 5-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This review will discuss the enzymes in the mevalonate (MVA) and methylerythritol phosphate (MEP) biosynthetic pathways leading to IPP and DMAPP with a particular focus on MEP synthase (DXR) and IPP isomerase (IDI), which are potential targets for the development of antibiotic compounds. DXR is the second enzyme in the MEP pathway and the only one for which inhibitors with antimicrobial activity at pharmaceutically relevant concentrations are known. All of the published DXR inhibitors are fosmidomycin analogues, except for a few bisphosphonates with moderate inhibitory activity. These far, there are no other candidates that target DXR. IDI was first identified and characterised over 40 years ago (IDI-1) and a second convergently evolved isoform (IDI-2) was discovered in 2001. IDI-1 is a metalloprotein found in Eukarya and many species of Bacteria. Its mechanism has been extensively studied. In contrast, IDI-2 requires reduced flavin mononucleotide as a cofactor. The mechanism of action for IDI-2 is less well defined. This review will describe how lead inhibitors are being improved by structure-based drug design and enzymatic assays against DXR to lead to new drug families and how mechanistic probes are being used to address questions about the mechanisms of the isomerases.
Collapse
Affiliation(s)
- Jérôme de Ruyck
- Department of Chemistry, University of Utah, 315 South 1400 East RM 2020, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
46
|
Tsang A, Seidle H, Jawaid S, Zhou W, Smith C, Couch RD. Francisella tularensis 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase: kinetic characterization and phosphoregulation. PLoS One 2011; 6:e20884. [PMID: 21694781 PMCID: PMC3111433 DOI: 10.1371/journal.pone.0020884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022] Open
Abstract
Deliberate and natural outbreaks of infectious disease, the prevalence of antibiotic resistant strains, and the ease by which antibiotic resistant bacteria can be intentionally engineered all underscore the necessity of effective vaccines and continued development of novel antimicrobial/antiviral therapeutics. Isoprenes, a group of molecules fundamentally involved in a variety of crucial biological functions, are derived from either the mevalonic acid (MVA) or methylerythritol phosphate (MEP) pathway. While mammals utilize the MVA pathway, many bacteria utilize the MEP pathway, highlighting the latter as an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP cytidylyltransferase, a MEP pathway enzyme and potential target for antibiotic development. Size exclusion chromatography indicates the protein exists as a dimer in solution. Enzyme assays produced an apparentK(MEP)(M) = 178 μM, K(CTP)(M) = 73 μM , k(MEP)(cat) = 1(s-1), k(CTP)(cat) = 0.8( s-1), and a k(MEP)(cat)/ K(MEP)(M) = 3.4 x 10(5) M(-1) min(-1). The enzyme exhibits a strict preference for Mg(+2) as a divalent cation and CTP as the nucleotide. Titanium dioxide chromatography-tandem mass spectrometry identified Thr141 as a site of phosphorylation. T141D and T141E site-directed mutants are catalytically inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP cytidylyltransferase is an excellent target for the development of novel antibiotics against F. tularensis.
Collapse
Affiliation(s)
- Arthur Tsang
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Heather Seidle
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Safdar Jawaid
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Weidong Zhou
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Clint Smith
- Geospatial Research and Engineering Division, U.S. Army Engineer Research and Development Center, Alexandria, Virginia, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
47
|
Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr. Mol Biol Rep 2011; 39:1487-92. [DOI: 10.1007/s11033-011-0886-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/14/2011] [Indexed: 11/26/2022]
|
48
|
Ferrand S, Tao J, Shen X, McGuire D, Schmid A, Glickman JF, Schopfer U. Screening for Mevalonate Biosynthetic Pathway Inhibitors Using Sensitized Bacterial Strains. ACTA ACUST UNITED AC 2011; 16:637-46. [DOI: 10.1177/1087057111403927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A simple, optical density-based assay for inhibitors of the mevalonate-dependent pathway for isoprenoid biosynthesis was developed. The assay uses pathway-sensitized Staphylococcus aureus strains and is fully compatible with high-density screening in a 1536-well format. S. aureus strains were constructed in which genes required for mevalonate-dependent isopentenyl pyrophosphate (IPP) synthesis were regulated by an isopropyl-β-D-thiogalactopyranoside (IPTG)–inducible promoter. Inhibitors of the target enzymes displayed greater antibacterial potency in media containing low concentrations of IPTG, and therefore less induction of mevalonate pathway genes, than in media with high IPTG conditions. This differential growth phenotype was exploited to bias the cell-based screening hits toward specific inhibitors of mevalonate-dependent IPP biosynthesis. Screens were run against strains engineered for regulation of the enzymes HMG-CoA synthase (MvaS) and mevalonate kinase (mvaK1), mevalonate diphosphate decarboxylase (mvaD), and phosphomevalonate kinase (mvaK2). The latter three enzymes are regulated as an operon. These assays resulted in the discovery of potent antibacterial hits that were progressed to an active hit-to-lead program. The example presented here demonstrates that a cell sensitization strategy can be successfully applied to a 1.3-million compound high-throughput screen in a high-density 1536-well format.
Collapse
Affiliation(s)
- Sandrine Ferrand
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jianshi Tao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Dorothy McGuire
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Andres Schmid
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - J. Fraser Glickman
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland,
| | - Ulrich Schopfer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
49
|
Sinko W, de Oliveira C, Williams S, Van Wynsberghe A, Durrant JD, Cao R, Oldfield E, McCammon JA. Applying molecular dynamics simulations to identify rarely sampled ligand-bound conformational states of undecaprenyl pyrophosphate synthase, an antibacterial target. Chem Biol Drug Des 2011; 77:412-20. [PMID: 21294851 PMCID: PMC3095679 DOI: 10.1111/j.1747-0285.2011.01101.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Undecaprenyl pyrophosphate synthase is a cis-prenyltransferase enzyme, which is required for cell wall biosynthesis in bacteria. Undecaprenyl pyrophosphate synthase is an attractive target for antimicrobial therapy. We performed long molecular dynamics simulations and docking studies on undecaprenyl pyrophosphate synthase to investigate its dynamic behavior and the influence of protein flexibility on the design of undecaprenyl pyrophosphate synthase inhibitors. We also describe the first X-ray crystallographic structure of Escherichia coli apo-undecaprenyl pyrophosphate synthase. The molecular dynamics simulations indicate that undecaprenyl pyrophosphate synthase is a highly flexible protein, with mobile binding pockets in the active site. By carrying out docking studies with experimentally validated undecaprenyl pyrophosphate synthase inhibitors using high- and low-populated conformational states extracted from the molecular dynamics simulations, we show that structurally dissimilar compounds can bind preferentially to different and rarely sampled conformational states. By performing structural analyses on the newly obtained apo-undecaprenyl pyrophosphate synthase and other crystal structures previously published, we show that the changes observed during the molecular dynamics simulation are very similar to those seen in the crystal structures obtained in the presence or absence of ligands. We believe that this is the first time that a rare 'expanded pocket' state, key to drug design and verified by crystallography, has been extracted from a molecular dynamics simulation.
Collapse
Affiliation(s)
- William Sinko
- Department of Chemistry & Biochemistry, and NSF Center for Theoretical Biological Physics, University of California San Diego, La Jolla, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cordoba E, Porta H, Arroyo A, San Román C, Medina L, Rodríguez-Concepción M, León P. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2023-38. [PMID: 21199890 DOI: 10.1093/jxb/erq393] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The 1-deoxy-D-xylulose 5-phosphate synthase (DXS) enzyme catalyses the first biosynthetic step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. In plants the MEP pathway is involved in the synthesis of the common precursors to the plastidic isoprenoids, isopentenyl diphosphate and dimethylallyl diphosphate, in plastids. DXS is recognized as limiting this pathway and is a potential target for manipulation to increase various isoprenoids such as carotenoids. In Zea mays three dxs genes exist that encode plastid-targeted functional enzymes. Evidence is provided that these genes represent phylogenetically distinctive clades conserved among plants preceding monocot-dicot divergence. There is differential accumulation for each dxs gene transcript, during development and in response to external signals such as light. At the protein level, the analysis demonstrates that in Z. mays, DXS protein is feedback regulated in response to the inhibition of the pathway flow. The results support that the multilevel regulation of DXS activity is conserved in evolution.
Collapse
Affiliation(s)
- Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa. Apdo. Postal 510-3 Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | | | | | |
Collapse
|