1
|
Kageyama A, Terakawa J, Takarabe S, Sugita H, Kawata Y, Ito J, Kashiwazaki N. Zinc transporter ZnT3/Slc30a3 has a potential role in zinc ion influx in mouse oocytes. J Reprod Dev 2024; 70:338-342. [PMID: 39048372 PMCID: PMC11461517 DOI: 10.1262/jrd.2024-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1-14 and ZnT1-8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Jumpei Terakawa
- Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Shunsuke Takarabe
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Hibiki Sugita
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Yui Kawata
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
2
|
Azimi Z, Isa MR, Khan J, Wang SM, Ismail Z. Association of zinc level with DNA methylation and its consequences: A systematic review. Heliyon 2022; 8:e10815. [PMID: 36203899 PMCID: PMC9530842 DOI: 10.1016/j.heliyon.2022.e10815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Objectives Method Results Conclusion
Collapse
Affiliation(s)
- Ziauddin Azimi
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry, Faculty of Pharmacy, Kabul University, Jamal Mina, Kabul, Afghanistan
| | - Mohamad Rodi Isa
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Jesmine Khan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Seok Mui Wang
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Center, Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Corresponding author.
| |
Collapse
|
3
|
Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, O’Halloran TV. Dynamic zinc fluxes regulate meiotic progression in Caenorhabditis elegans†. Biol Reprod 2022; 107:406-418. [PMID: 35466369 PMCID: PMC9902257 DOI: 10.1093/biolre/ioac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 03/20/2022] [Indexed: 11/14/2022] Open
Abstract
Zinc influx and efflux events are essential for meiotic progression in oocytes of several mammalian and amphibian species, but it is less clear whether this evolutionary conservation of zinc signals is also important in late-stage germline development in invertebrates. Using quantitative, single cell elemental mapping methods, we find that Caenorhabditis elegans oocytes undergo significant stage-dependent fluctuations in total zinc content, rising by over sevenfold from Prophase I through the beginning of mitotic divisions in the embryo. Live imaging of the rapid cell cycle progression in C. elegans enables us to follow changes in labile zinc pools across meiosis and mitosis in single embryo. We find a dynamic increase in labile zinc prior to fertilization that then decreases from Anaphase II through pronuclear fusion and relocalizes to the eggshell. Disruption of these zinc fluxes blocks extrusion of the second polar body, leading to a range of mitotic defects. We conclude that spatial temporal zinc fluxes are necessary for meiotic progression in C. elegans and are a conserved feature of germ cell development in a broad cross section of metazoa.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Aaron Sue
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Teresa K Woodruff
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| | - Sarah M Wignall
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| | - Thomas V O’Halloran
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| |
Collapse
|
4
|
Abdo AI, Tran HB, Hodge S, Beltrame JF, Zalewski PD. Zinc Homeostasis Alters Zinc Transporter Protein Expression in Vascular Endothelial and Smooth Muscle Cells. Biol Trace Elem Res 2021; 199:2158-2171. [PMID: 32776265 DOI: 10.1007/s12011-020-02328-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Zinc is an important essential micronutrient with anti-oxidative and anti-inflammatory properties in humans. The role of zinc in signalling has been characterized in the nervous, endocrine, gastrointestinal, renal and reproductive systems. Relatively little is known regarding its role in the vascular system, but the role of zinc homeostasis in augmenting vascular health and vasorelaxation is emerging. Zinc transport proteins are integral to the protective function of zinc, but knowledge of their expression in vascular endothelial and smooth muscle cells is lacking. METHODOLOGY Human coronary artery endothelial cells and pulmonary artery smooth muscle cells were assessed for gene expression (RT-PCR) of SLC39A (ZIP), SLC30A (ZnT) and metallothionein (MT) families of Zn transporters and storage proteins. Protein expression (fluorescence confocal microscopy) was then analysed for the proteins of interest that changed mRNA expression: ZIP2, ZIP12, ZnT1, ZnT2 and MT1/2. RESULTS Endothelial and smooth muscle cell mRNA expression of ZnT1, ZnT2 and MT1 was significantly downregulated by low and high Zn conditions, while ZIP2 and ZIP12 expression was induced by Zn depletion with the Zn chelator, TPEN. Changes in gene expression were consistent with protein expression levels for ZIP2, ZIP12 and MT1, where ZIP2 was localized to intracellular bodies and ZIP12 to lamellipodia. CONCLUSION Vascular endothelial and smooth muscle cells actively regulate specific Zn transport and metallothionein gene and protein expressions to achieve Zn homeostasis.
Collapse
Affiliation(s)
- Adrian I Abdo
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia.
| | - Hai Bac Tran
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Sandra Hodge
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - John F Beltrame
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Peter D Zalewski
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
5
|
Sergeeva EG, Rosenberg PA, Benowitz LI. Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Front Cell Neurosci 2021; 15:666798. [PMID: 33935656 PMCID: PMC8085350 DOI: 10.3389/fncel.2021.666798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Elena G. Sergeeva
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Paul A. Rosenberg
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Larry I. Benowitz
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Kim JJ, Hong J, Yu S, You Y. Deep-Red-Fluorescent Zinc Probe with a Membrane-Targeting Cholesterol Unit. Inorg Chem 2020; 59:11562-11576. [DOI: 10.1021/acs.inorgchem.0c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin Ju Kim
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jayeon Hong
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungyeon Yu
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Yu HT, Zhen J, Xu JX, Cai L, Leng JY, Ji HL, Keller BB. Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothionein-dependent and independent mechanisms. Acta Pharmacol Sin 2020; 41:638-649. [PMID: 31768045 PMCID: PMC7471469 DOI: 10.1038/s41401-019-0320-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is a nonessential heavy metal and a prevalent environmental toxin that has been shown to induce significant cardiomyocyte apoptosis in neonatal murine engineered cardiac tissues (ECTs). In contrast, zinc (Zn) is a potent metallothionein (MT) inducer, which plays an important role in protection against Cd toxicity. In this study, we investigated the protective effects of Zn against Cd toxicity in ECTs and explore the underlying mechanisms. ECTs were constructed from neonatal ventricular cells of wild-type (WT) mice and mice with global MT gene deletion (MT-KO). In WT-ECTs, Cd (5-20 μM) caused a dose-dependent toxicity that was detected within 8 h evidenced by suppressed beating, apoptosis, and LDH release; Zn (50-200 μM) dose-dependently induced MT expression in ECTs without causing ECT toxicity; co-treatment of ECT with Zn (50 µM) prevented Cd-induced toxicity. In MT-KO ECTs, Cd toxicity was enhanced; but unexpectedly, cotreatment with Zn provided partial protection against Cd toxicity. Furthermore, Cd, but not Zn, significantly activated Nrf2 and its downstream targets, including HO-1; inhibition of HO-1 by a specific HO-1 inhibitor, ZnPP (10 µM), significantly increased Cd-induced toxicity, but did not inhibit Zn protection against Cd injury, suggesting that Nrf2-mediated HO-1 activation was not required for Zn protective effect. Finally, the ability of Zn to reduce Cd uptake provided an additional MT-independent mechanism for reducing Cd toxicity. Thus, Zn exerts protective effects against Cd toxicity for murine ECTs that are partially MT-mediated. Further studies are required to translate these findings towards clinical trials.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Juan Zhen
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jian-Xiang Xu
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Lu Cai
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Radiation Oncology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Fang L, Trigiante G, Crespo-Otero R, Philpott MP, Jones CR, Watkinson M. An alternative modular 'click-S NAr-click' approach to develop subcellular localised fluorescent probes to image mobile Zn 2+ . Org Biomol Chem 2019; 17:10013-10019. [PMID: 31621740 DOI: 10.1039/c9ob01855g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zn2+ is involved in a number of biological processes and its wide-ranging roles at the subcellular level, especially in specific organelles, have not yet been fully established due to a lack of tools to image it effectively. We report a new and efficient modular double 'click' approach towards a range of sub-cellular localised probes for mobile zinc. Through this methodology, endoplasmic reticulum, mitochondria and lysosome localised probes were successfully prepared which show good fluorescence responses to mobile Zn2+in vitro and in cellulo whilst a non-targeting probe was synthesized as a control. The methodology appears to have wide-utility for the generation of sub-cellular localised probes by incorporating specific organelle targeting vectors for mobile Zn2+ imaging.
Collapse
Affiliation(s)
- Le Fang
- The Joseph Priestley Building, School of Biological and Chemical Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | |
Collapse
|
9
|
Ji L, Zhao G, Zhang P, Huo W, Dong P, Watari H, Jia L, Pfeffer LM, Yue J, Zheng J. Knockout of MTF1 Inhibits the Epithelial to Mesenchymal Transition in Ovarian Cancer Cells. J Cancer 2018; 9:4578-4585. [PMID: 30588241 PMCID: PMC6299381 DOI: 10.7150/jca.28040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
Due to peritoneal metastasis and frequent recurrence, ovarian cancer has the highest mortality among gynecological cancers. Epithelial to mesenchymal transition (EMT) contributes to ovarian tumor metastasis. In this study, we report for the first time that metal regulatory transcription factor 1 (MTF1) was upregulated in ovarian cancer, and its high expression was associated with poor patient survival and disease relapse. Knockout of MTF1 using lentiviral CRISPR/Cas9 nickase vector-mediated gene editing inhibited EMT by upregulating epithelial cell markers E-cadherin and cytokeratin 7, and downregulating mesenchymal markers Snai2 and β-catenin in ovarian cancer SKOV3 and OVCAR3 cells. Loss of MTF1 reduced cell proliferation, migration, and invasion in both SKOV3 and OVCAR3 cells. Knockout of MTF1 upregulated the expression of the KLF4 transcription factor, and attenuated two cellular survival pathways, ERK1/2 and AKT. Our studies demonstrated that MTF1 plays an oncogenic role and contributes to ovarian tumor metastasis by promoting EMT. MTF1 may be a novel biomarker for early diagnosis as well as a drug target for clinical therapy.
Collapse
Affiliation(s)
- Liang Ji
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Peng Zhang
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wenying Huo
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Limin Jia
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinhua Zheng
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Shang Y, Zheng S, Tsakama M, Wang M, Chen W. A water-soluble, small molecular fluorescence probe based on 2-(2′-hydroxyphenyl) benzoxazole for Zn2+ in plants. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Anand A, Chi CH, Banerjee S, Chou MY, Tseng FG, Pan CY, Chen YT. The Extracellular Zn 2+ Concentration Surrounding Excited Neurons Is High Enough to Bind Amyloid-β Revealed by a Nanowire Transistor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704439. [PMID: 29770576 DOI: 10.1002/smll.201704439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/07/2018] [Indexed: 06/08/2023]
Abstract
The Zn2+ stored in the secretory vesicles of glutamatergic neurons is coreleased with glutamate upon stimulation, resulting in the elevation of extracellular Zn2+ concentration (CZn2+ex). This elevation of CZn2+ex regulates the neurotransmission and facilitates the fibrilization of amyloid-β (Aβ). However, the exact CZn2+ex surrounding neurons under (patho)physiological conditions is not clear and the connection between CZn2+ex and the Aβ fibrilization remains obscure. Here, a silicon nanowire field-effect transistor (SiNW-FET) with the Zn2+ -sensitive fluorophore, FluoZin-3 (FZ-3), to quantify the CZn2+ex in real time is modified. This FZ-3/SiNW-FET device has a dissociation constant of ≈12 × 10-9 m against Zn2+ . By placing a coverslip seeded with cultured embryonic cortical neurons atop an FZ-3/SiNW-FET, the CZn2+ex elevated to ≈110 × 10-9 m upon stimulation with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Blockers against the AMPA receptor or exocytosis greatly suppress this elevation, indicating that the Zn2+ stored in the synaptic vesicles is the major source responsible for this elevation of CZn2+ex. In addition, a SiNW-FET modified with Aβ could bind Zn2+ with a dissociation constant of ≈633 × 10-9 m and respond to the Zn2+ released from AMPA-stimulated neurons. Therefore, the CZn2+ex can reach a level high enough to bind Aβ and the Zn2+ homeostasis can be a therapeutic strategy to prevent neurodegeneration.
Collapse
Affiliation(s)
- Ankur Anand
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Chih-Hung Chi
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Subhasree Banerjee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
12
|
Kamei S, Fujikawa H, Nohara H, Ueno-Shuto K, Maruta K, Nakashima R, Kawakami T, Matsumoto C, Sakaguchi Y, Ono T, Suico MA, Boucher RC, Gruenert DC, Takeo T, Nakagata N, Li JD, Kai H, Shuto T. Zinc Deficiency via a Splice Switch in Zinc Importer ZIP2/SLC39A2 Causes Cystic Fibrosis-Associated MUC5AC Hypersecretion in Airway Epithelial Cells. EBioMedicine 2017; 27:304-316. [PMID: 29289532 PMCID: PMC5828551 DOI: 10.1016/j.ebiom.2017.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023] Open
Abstract
Airway mucus hyperproduction and fluid imbalance are important hallmarks of cystic fibrosis (CF), the most common life-shortening genetic disorder in Caucasians. Dysregulated expression and/or function of airway ion transporters, including cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), have been implicated as causes of CF-associated mucus hypersecretory phenotype. However, the contributory roles of other substances and transporters in the regulation of CF airway pathogenesis remain unelucidated. Here, we identified a novel connection between CFTR/ENaC expression and the intracellular Zn2 + concentration in the regulation of MUC5AC, a major secreted mucin that is highly expressed in CF airway. CFTR-defective and ENaC-hyperactive airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the zinc importer ZIP2/SLC39A2 (ΔC-ZIP2), which lacks the C-terminal domain. Importantly, ΔC-ZIP2 levels correlated inversely with wild-type ZIP2 and intracellular Zn2 + levels. Moreover, the splice switch to ΔC-ZIP2 as well as decreased expression of other ZIPs caused zinc deficiency, which is sufficient for induction of MUC5AC; while ΔC-ZIP2 expression per se induced ENaC expression and function. Thus, our findings demonstrate that the novel splicing switch contributes to CF lung pathology via the novel interplay of CFTR, ENaC, and ZIP2 transporters. Zinc deficiency is a common feature in both CFTR-defective (CF) and ENaC-hyperactive (CF-like) airway epithelial cells. A splice switch from WT-ZIP2 to ΔC-ZIP2 as well as other ZIPs down-regulation caused zinc deficiency in CF and CF-like cells. Lower intracellular Zn2 + levels contributed to CF-associated MUC5AC hypersecretion in airway epithelial cells.
The role of zinc in the pathogenesis of CF lung disease is not well understood. We utilized human CF patient-derived cell lines and primary cells as well as murine CF model, and identified zinc deficiency as a common characteristic in CF models. Down-regulation of several zinc importers (ZIPs) in CF cells caused zinc deficiency, which is sufficient for induction of MUC5AC, a major secreted mucin that exacerbates CF pathogenesis. Especially, strong contribution of ΔC-ZIP2, a novel ZIP2 splice isoform, in the regulation of CF-associated MUC5AC hypersecretion was clearly demonstrated. The study refined the importance of zinc in airway homeostasis.
Collapse
Affiliation(s)
- Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiko Ueno-Shuto
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Kasumi Maruta
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taisei Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Chizuru Matsumoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Sakaguchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tomomi Ono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dieter C Gruenert
- Head and Neck Stem Cell Lab, University of California, San Francisco, 2340 Sutter St, Box 1330, N331, San Francisco, CA 94115, USA
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 714 Petit Science Center, 100 Piedmont Ave SE, Atlanta GA30303, USA
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
13
|
|
14
|
Ogata F, Satoh R, Kita A, Sugiura R, Kawasaki N. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast. J Toxicol Sci 2017; 42:159-166. [PMID: 28321042 DOI: 10.2131/jts.42.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO3), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO3, which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO3-treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.
Collapse
Affiliation(s)
- Fumihiko Ogata
- Department of Public Health, Faculty of Pharmacy, Kindai University
| | | | | | | | | |
Collapse
|
15
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
16
|
Karweina D, Kreuzer-Redmer S, Müller U, Franken T, Pieper R, Baron U, Olek S, Zentek J, Brockmann GA. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets. PLoS One 2015; 10:e0143098. [PMID: 26599865 PMCID: PMC4658085 DOI: 10.1371/journal.pone.0143098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors.
Collapse
Affiliation(s)
- Diana Karweina
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agri- and Horticulture, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Kreuzer-Redmer
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agri- and Horticulture, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uwe Müller
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agri- and Horticulture, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Franken
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agri- and Horticulture, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Gudrun A. Brockmann
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agri- and Horticulture, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
17
|
Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol 2015; 96:143-55. [PMID: 26088455 DOI: 10.1016/j.critrevonc.2015.05.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
Trace elements play critical roles in angiogenesis events. The effects of nitrogen, iron, selenium, phosphorus, gold, and calcium were discussed in part I. In part II, we evaluated the effect of chromium, silicon, zinc, copper, and sulfur on different aspects of angiogenesis, with critical roles in healing and regeneration processes, and undeniable roles in tumor growth and cancer therapy. This review is the second of series that serves as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. The methods of exposure, structure, mechanism, and potential activity of these trace elements are briefly discussed. An electronic search was performed on the role of these trace elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between five different trace elements and their role in regulation of angiogenesis, and homeostasis of pro- and anti-angiogenic factors were assessed. Many studies have investigated the effects and importance of these elements in angiogenesis events. Both stimulatory and inhibitory effects on angiogenesis are observed for the evaluated elements. Chromium can promote angiogenesis in pathological manners. Silicon as silica nanoparticles is anti-angiogenic, while in calcium silicate extracts and bioactive silicate glasses promote angiogenesis. Zinc is an anti-angiogenic agent acting on important genes and growth factors. Copper and sulfur compositions have pro-angiogenic functions by activating pro-angiogenic growth factors and promoting endothelial cells migration, growth, and tube formation. Thus, utilization of these elements may provide a unique opportunity to modulate angiogenesis under various setting.
Collapse
|
18
|
Frades I, Andreasson E, Mato JM, Alexandersson E, Matthiesen R, Martínez-Chantar ML. Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease. PLoS One 2015; 10:e0124544. [PMID: 25993042 PMCID: PMC4439034 DOI: 10.1371/journal.pone.0124544] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for Hepatocellular carcinoma (HCC), but he transition from NAFLD to HCC is poorly understood. Feature selection algorithms in human and genetically modified mice NAFLD and HCC microarray data were applied to generate signatures of NAFLD progression and HCC differential survival. These signatures were used to study the pathogenesis of NAFLD derived HCC and explore which subtypes of cancers that can be investigated using mouse models. Our findings show that: (I) HNF4 is a common potential transcription factor mediating the transcription of NAFLD progression genes (II) mice HCC derived from NAFLD co-cluster with a less aggressive human HCC subtype of differential prognosis and mixed etiology (III) the HCC survival signature is able to correctly classify 95% of the samples and gives Fgf20 and Tgfb1i1 as the most robust genes for prediction (IV) the expression values of genes composing the signature in an independent human HCC dataset revealed different HCC subtypes showing differences in survival time by a Logrank test. In summary, we present marker signatures for NAFLD derived HCC molecular pathogenesis both at the gene and pathway level.
Collapse
Affiliation(s)
- Itziar Frades
- Metabolomics Unit, CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias, Bizkaia Technology Park, Derio, Bizkaia, Spain
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Jose Maria Mato
- Metabolomics Unit, CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rune Matthiesen
- Department of Human genetics, National Health Institute Doutor Ricardo Jorge, Lisboa, Portugal
| | - Mª Luz Martínez-Chantar
- Metabolomics Unit, CIC bioGUNE, Centro de Investigación Cooperativa en Biociencias, Bizkaia Technology Park, Derio, Bizkaia, Spain
| |
Collapse
|
19
|
Effects of trace metal profiles characteristic for autism on synapses in cultured neurons. Neural Plast 2015; 2015:985083. [PMID: 25802764 PMCID: PMC4352758 DOI: 10.1155/2015/985083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022] Open
Abstract
Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD). Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic synapses of hippocampal neurons. We analyzed whether an imbalance of any one metal ion alters cell health and synapse numbers. Moreover, we evaluated whether a biometal profile characteristic for ASD patients influences synapse formation, maturation, and composition regarding NMDA receptor subunits and Shank proteins. Our results show that an ASD like biometal profile leads to a reduction of NMDAR (NR/Grin/GluN) subunit 1 and 2a, as well as Shank gene expression along with a reduction of synapse density. Additionally, synaptic protein levels of GluN2a and Shanks are reduced. Although Zn supplementation is able to rescue the aforementioned alterations, Zn deficiency is not solely responsible as causative factor. Thus, we conclude that balancing Zn levels in ASD might be a prime target to normalize synaptic alterations caused by biometal dyshomeostasis.
Collapse
|
20
|
Noh H, Paik HY, Kim J, Chung J. The changes of zinc transporter ZnT gene expression in response to zinc supplementation in obese women. Biol Trace Elem Res 2014; 162:38-45. [PMID: 25240971 DOI: 10.1007/s12011-014-0128-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 11/28/2022]
Abstract
Obesity is associated with an alteration in zinc metabolism. This alteration may be associated with changes in gene expression of zinc transporters. In this study, we examined the leukocyte expression of zinc transporter ZnTs in response to zinc supplementation in young obese women. Thirty-five young obese women (BMI ≥ 25 kg/m(2)), aged 18-28 years, were randomly assigned to two groups: a placebo group or a zinc group (30 mg zinc/day for 8 weeks). Usual dietary zinc intake was estimated from 3-day diet records. Serum zinc and urinary zinc concentrations were measured by atomic absorption spectrometry. Messenger RNA (mRNA) levels of leukocyte ZnT transporters were examined using quantitative real-time PCR. Expression levels of two ZnT transporters, ZnT1 and ZnT5, in obese women, increased significantly after zinc supplementation. At the end of the study, mRNA levels of ZnT1 and ZnT5 showed no correlation with serum zinc or urinary zinc concentration in obese women. In addition, a further study was conducted to identify whether the association between the gene expression levels of leukocyte ZnT1 and ZnT5 and dietary zinc intake remained consistent in 216 healthy young adults aged 20-29 years. A positive correlation between ZnT1 and dietary zinc intake (r = 0.181, P = 0.089) was also observed in healthy men although the significance was marginal. Taken together, these results show that the gene expression levels of ZnT1 and ZnT5 may be changed by zinc intake, suggesting that zinc supplementation could potentially restore ZnT transporter expression in obese women with altered zinc metabolism.
Collapse
Affiliation(s)
- Hwayoung Noh
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | | | | | | |
Collapse
|
21
|
Thomas P, Pang Y, Dong J, Berg AH. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology 2014; 155:4250-65. [PMID: 25014355 PMCID: PMC4197988 DOI: 10.1210/en.2014-1201] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we discovered a cDNA in teleost ovarian follicle cells belonging to the zinc transporter ZIP9 subfamily (SLC39A9) encoding a protein with characteristics of a membrane androgen receptor (mAR). Here, we demonstrate that human ZIP9 expressed in MDA-MB-468 breast cancer cells and stably overexpressed in human prostate cancer PC-3 cells (PC-3-ZIP9) also displays the ligand binding and signaling characteristics of a specific, high-affinity mAR. Testosterone treatment of MDA-MB-468 and PC-3-ZIP9 cells caused activation of G proteins and second messenger pathways as well as increases in intracellular free zinc concentrations that were accompanied by induction of apoptosis. [1,2,6,7-(3)H]-testosterone binding and these responses were abrogated in MDA-MB-468 cells after ZIP9 small interfering RNA (siRNA) treatment and absent in PC-3 cells transfected with empty vector, confirming that ZIP9 functions as an mAR. Testosterone treatment caused up-regulation of proapoptotic genes Bax (Bcl-2-associated X protein), p53 (tumor protein p53), and JNK (c-Jun N-terminal kinases) in both cell lines and increased expression of Bax, Caspase 3, and cytochrome C proteins. Treatment with a zinc chelator or a MAPK inhibitor blocked testosterone-induced increases in Bax, p53, and JNK mRNA expression. The results suggest that both androgen signaling and zinc transporter functions of ZIP9 mediate testosterone promotion of apoptosis. ZIP9 is widely expressed in human tissues and up-regulated in malignant breast and prostate tissues, suggesting that it is a potential therapeutic target for treating breast and prostate cancers. These results provide the first evidence for a mechanism mediated by a single protein through which steroid and zinc signaling pathways interact to regulate physiological functions in mammalian cells.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute (P.T., Y.P., J.D., A.H.B.), The University of Texas at Austin, Port Aransas, Texas 78373; and Department of Science and Technology (A.H.B.), Örebro University, Örebro, Sweden SE-70182
| | | | | | | |
Collapse
|
22
|
Jain K, Dhawan DK. Regulation of Biokinetics of 65Zn by Curcumin and Zinc in Experimentally Induced Colon Carcinogenesis in Rats. Cancer Biother Radiopharm 2014; 29:310-6. [DOI: 10.1089/cbr.2014.1670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kinnri Jain
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| | - Devinder K. Dhawan
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Abstract
Zinc (Zn2+) is an essential element crucial for growth and development, and also plays a role in cell signaling for cellular processes like cell division and apoptosis. In the mammalian pancreas, Zn2+ is essential for the correct processing, storage, secretion, and action of insulin in beta (β)-cells. Insulin is stored inside secretory vesicles or granules, where two Zn2+ ions coordinate six insulin monomers to form the hexameric-structure on which maturated insulin crystals are based. The total Zn2+ content of the mammalian pancreas is among the highest in the body, and Zn2+ concentration reach millimolar levels in the interior of the dense-core granule. Changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Hence, the relationship between co-stored Zn2+ and insulin undoubtedly is critical to normal β-cell function. The advances in the field of Zn2+ biology over the last decade have facilitated our understanding of Zn2+ trafficking, its intracellular distribution and its storage. When exocytosis of insulin occurs, insulin granules fuse with the β-cell plasma membrane and release their contents, i.e., insulin as well as substantial amount of free Zn2+, into the extracellular space and the local circulation. Studies increasingly indicate that secreted Zn2+ has autocrine or paracrine signaling in β-cells or the neighboring cells. This review discusses the Zn2+ homeostasis in β-cells with emphasis on the potential signaling role of Zn2+ to islet biology.
Collapse
Affiliation(s)
- Yang V Li
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 346 Irvine Hall, Athens, OH, 45701, USA,
| |
Collapse
|
24
|
Tsunemi T, Krainc D. Zn²⁺ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet 2013; 23:2791-801. [PMID: 24334770 DOI: 10.1093/hmg/ddt572] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in ATP13A2 (PARK9) cause Kufor-Rakeb syndrome (KRS) characterized by juvenile-onset parkinsonism, pyramidal signs and dementia. PARK9 belongs to type 5 P-type ATPase with its putative function as a cation transporter. Loss of PARK9 leads to lysosomal dysfunction and subsequent α-synuclein (α-Syn) accumulation. However, the mechanistic link between PARK9 and lysosomal dysfunction remains unclear. Here, we found that patient fibroblasts expressing mutant PARK9 or primary neurons with silenced PARK9 exhibited increased sensitivity to extracellular zinc (Zn(2+)). This effect was rescued with the Zn(2+) chelators clioquinol or TPEN. PARK9-deficient cells showed decreased lysosomal sequestration of Zn(2+) and increased expression of zinc transporters. Importantly, increased concentrations of Zn(2+) (Zn(2+) stress) resulted in lysosomal dysfunction that was partially restored by expression of wild-type PARK9. Zn(2+) stress also caused increased expression of α-Syn and consequently decreased activity of the lysosomal enzyme glucocerebrosidase. Together, these data suggest that PARK9 loss of function leads to dyshomeostasis of intracellular Zn(2+) that in turn contributes to lysosomal dysfunction and accumulation of α-Syn. It will be of interest to examine whether therapeutic lowering of zinc may prove beneficial for patients with KRS.
Collapse
Affiliation(s)
- Taiji Tsunemi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | |
Collapse
|
25
|
Wu W, Bromberg PA, Samet JM. Zinc ions as effectors of environmental oxidative lung injury. Free Radic Biol Med 2013; 65:57-69. [PMID: 23747928 DOI: 10.1016/j.freeradbiomed.2013.05.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/30/2022]
Abstract
The redox-inert transition metal Zn is a micronutrient that plays essential roles in protein structure, catalysis, and regulation of function. Inhalational exposure to ZnO or to soluble Zn salts in occupational and environmental settings leads to adverse health effects, the severity of which appears dependent on the flux of Zn(2+) presented to the airway and alveolar cells. The cellular toxicity of exogenous Zn(2+) exposure is characterized by cellular responses that include mitochondrial dysfunction, elevated production of reactive oxygen species, and loss of signaling quiescence leading to cell death and increased expression of adaptive and inflammatory genes. Central to the molecular effects of Zn(2+) are its interactions with cysteinyl thiols, which alters their functionality by modulating their reactivity and participation in redox reactions. Ongoing studies aimed at elucidating the molecular toxicology of Zn(2+) in the lung are contributing valuable information about its role in redox biology and cellular homeostasis in normal and pathophysiology.
Collapse
Affiliation(s)
- Weidong Wu
- School of Public Health XinXiang Medical University XinXiang, China 453003; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Chapel Hill, NC 27514, USA.
| |
Collapse
|
26
|
Schweiger M, Steffl M, Amselgruber WM. The zinc transporter ZnT8 (slc30A8) is expressed exclusively in beta cells in porcine islets. Histochem Cell Biol 2013; 140:677-84. [DOI: 10.1007/s00418-013-1137-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2013] [Indexed: 11/28/2022]
|
27
|
Grabrucker AM. A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Dev Neurobiol 2013; 74:136-46. [PMID: 23650259 PMCID: PMC4272576 DOI: 10.1002/dneu.22089] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/27/2013] [Accepted: 04/25/2013] [Indexed: 12/11/2022]
Abstract
The establishment and maintenance of synaptic contacts as well as synaptic plasticity are crucial factors for normal brain function. The functional properties of a synapse are largely dependent on the molecular setup of synaptic proteins. Multidomain proteins of the ProSAP/Shank family act as major organizing scaffolding elements of the postsynaptic density (PSD). Interestingly, ProSAP/Shank proteins at glutamatergic synapses have been linked to a variety of Autism Spectrum Disorders (ASDs) including Phelan McDermid Syndrome, and deregulation of ProSAP/Shank has been reported in Alzheimer's disease. Although the precise molecular mechanism of the dysfunction of these proteins remains unclear, an emerging model is that mutations or deletions impair neuronal circuitry by disrupting the formation, plasticity and maturation of glutamatergic synapses. Several PSD proteins associated with ASDs are part of a complex centered around ProSAP/Shank proteins and many ProSAP/Shank interaction partners play a role in signaling within dendritic spines. Interfering with any one of the members of this signaling complex might change the output and drive the system towards synaptic dysfunction. Based on recent data, it is possible that the concerted action of ProSAP/Shank and Zn2+ is essential for the structural integrity of the PSD. This interplay might regulate postsynaptic receptor composition, but also transsynaptic signaling. It might be possible that environmental factors like nutritional Zn2+ status or metal ion homeostasis in general intersect with this distinct pathway centered around ProSAP/Shank proteins and the deregulation of any of these two factors may lead to ASDs.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- Neurology Department, WG Molecular Analysis of Synaptopathies, Neurocenter of Ulm University, Ulm, Germany; Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Lockwood TD. Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Metallomics 2013; 5:110-24. [PMID: 23302864 DOI: 10.1039/c2mt20156a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the 1930's pioneers discovered that maximal autolysis in tissue homogenates requires metal chelator, sulfhydryl reducing agent and acid pH. However, metals, reducing equivalents and protons (MR&P) have been overlooked as combined catalytic controls. Three categories of lysosomal machinery drive three distinguishable cycles importing and exporting MR&P. Zn(2+) preemptively inhibits CysHis catalysis under otherwise optimal protonation and reduction. Protein-bound cell Zn(2+) concentration is 200-2000 times the non-sequestered inhibitory concentration. Following autophagy, lysosomal proteolysis liberates much inhibitory Zn(2+). The vacuolar proton pump is the driving force for Zn(2+) export, as well as protonation of the peptidolytic mechanism. Other machinery of lysosomal cycles includes proton-driven Zn(2+) exporters (e.g. SLC11A1), Zn(2+) channels (e.g. TRPML-1), lysosomal thiol reductase, etc. The CysHis dyad is a sensor of the vacuolar environment of MR&P, an integrator of these simultaneous variables, and a catalytic responder. Rate-determination can shift between autophagic substrate acquisition (swallowing) and substrate degradation (digesting). Zn(2+) recycling from degraded proteins to new proteins is a fourth cycle that might pace lysosomal function under some conditions. Heritable insufficient or excess functions of CysHis cathepsins are associated with dysfunctional inflammation and immunity/auto-immunity, including diabetic pathogenesis.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Dept. of Pharmacology, School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
29
|
Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad MB, Sedighi-Gilani M. Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 2012; 150:137-46. [PMID: 22890879 DOI: 10.1007/s12011-012-9484-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/29/2012] [Indexed: 12/21/2022]
Abstract
This is the first report to describe the effects of zinc (Zn) ions on the expression of germ cell (GC) genes from bone marrow-derived mesenchymal stem cells (BM-MSCs). Zn plays an important role in germinal epithelium maintenance, testosterone secretion, differentiation of GCs, and spermatogenesis. In addition, several studies have suggested that MSCs have the potential for differentiation into numerous cells types, including male GCs. In this study, we have treated passage-3 ram BM-MSCs with 0.14 μg/ml Zn sulfate (ZnSO₄) for a period of 21 days with the intent to determine whether Zn treatment can stimulate MSCs to differentiate into male GCs in vitro. We also sought to determine the type of changes seen in MSCs by Zn treatment. Differentiation into male GCs was evaluated by the assessment of expressions of the following GC-specific markers: VASA, PIWIL2, OCT4, beta1 INTEGRIN (ITG b1), DAZL (by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR), and PGP 9.5 (by immunocytochemistry). Also studied were morphological characteristics and changes in alkaline phosphatase activity. Interestingly, Zn upregulated the expressions of VASA and ITG b1 but downregulated PIWIL2 and OCT4. DAZL and PGP 9.5 were not expressed in the treatment group. According to our results, Zn ions did not stimulate BM-MSCs to transdifferentiate into male GCs; however, it changed the expression of GC genes in BM-MSCs. It can be concluded that a possible mechanism by which Zn ions can increase male fertility is by regulation of the expression of testis GC-specific genes in the differentiation process and spermatogenesis.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh-Hasankolai
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Serow Highway, P.O. Box 1177, Urmia, Iran
| | | | | | | |
Collapse
|
30
|
Juknat A, Rimmerman N, Levy R, Vogel Z, Kozela E. Cannabidiol affects the expression of genes involved in zinc homeostasis in BV-2 microglial cells. Neurochem Int 2012; 61:923-30. [DOI: 10.1016/j.neuint.2011.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/15/2011] [Accepted: 12/01/2011] [Indexed: 12/20/2022]
|
31
|
Sheffer M, Simon AJ, Jacob-Hirsch J, Rechavi G, Domany E, Givol D, D'Orazi G. Genome-wide analysis discloses reversal of the hypoxia-induced changes of gene expression in colon cancer cells by zinc supplementation. Oncotarget 2012; 2:1191-202. [PMID: 22202117 PMCID: PMC3282077 DOI: 10.18632/oncotarget.395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1), the major transcription factor specifically activated during hypoxia, regulates genes involved in critical aspects of cancer biology, including angiogenesis, cell proliferation, glycolysis and invasion. The HIF-1a subunit is stabilized by low oxygen, genetic alteration and cobaltous ions, and its over-expression correlates with drug resistance and increased cancer mortality in various cancer types, therefore representing an important anticancer target. Zinc supplementation has been shown to counteract the hypoxic phenotype in cancer cells, in vitro and in vivo, hence, understanding the molecular pathways modulated by zinc under hypoxia may provide the basis for reprogramming signalling pathways for anticancer therapy. Here we performed genome-wide analyses of colon cancer cells treated with combinations of cobalt, zinc and anticancer drug and evaluated the effect of zinc on gene expression patterns. Using Principal Component Analysis we found that zinc markedly reverted the cobalt-induced changes of gene expression, with reactivation of the drug-induced transcription of pro-apoptotic genes. We conclude that the hypoxia pathway is a potential therapeutic target addressed by zinc that also influences tumor cell response to anticancer drug.
Collapse
Affiliation(s)
- Michal Sheffer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Zheng J, Zhang XX, Yu H, Taggart JE, Ding WQ. Zinc at cytotoxic concentrations affects posttranscriptional events of gene expression in cancer cells. Cell Physiol Biochem 2012; 29:181-8. [PMID: 22415087 DOI: 10.1159/000337599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2011] [Indexed: 12/23/2022] Open
Abstract
Zinc at cytotoxic concentrations has been shown to regulate gene transcription in cancer cells, though zinc's involvement in posttranscriptional regulation is less characterized. In this study, we investigated the involvement of cytotoxic zinc in the posttranscriptional steps of gene expression. Clioquinol, a well-established zinc ionophore, was used to raise intracellular zinc to reported cytotoxic levels. The MCF-7 human cancer cell line was applied as a cell model system. Several parameters were used as indictors of posttranscriptional regulation, including p-body formation, microRNA profiling, expression level of proteins known to regulate mRNA degradation, microRNA processing, and protein translation. p-body formation was observed in MCF-7 cells using several molecules known as p-body components. Clioquinol plus zinc enhanced p-body assembly in MCF-7 cells. This enhancement was zinc-specific and could be blocked by a high affinity zinc chelator. The enhancement does not seem to be due to a stress response, as paclitaxel, a commonly used chemotherapeutic, did not cause enhanced p-body formation at a highly cytotoxic concentration. microRNA profiling indicated that clioquinol plus zinc globally down-regulates microRNA expression in this model system, which is associated with the reduced expression of Dicer, an enzyme key to microRNA maturation, and Ago2, a protein essential for microRNA stability. This study demonstrates that ionophoric zinc can induce cytotoxicity in cancer cells by globally regulating posttranscriptional events.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
33
|
Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 2012; 5:ra11. [PMID: 22317921 PMCID: PMC3428905 DOI: 10.1126/scisignal.2002585] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.
Collapse
Affiliation(s)
- Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB, UK.
| | | | | | | | | |
Collapse
|
34
|
Ehrensberger KM, Bird AJ. Hammering out details: regulating metal levels in eukaryotes. Trends Biochem Sci 2011; 36:524-31. [PMID: 21840721 DOI: 10.1016/j.tibs.2011.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 12/01/2022]
Abstract
The transition metals zinc, iron and copper are common constituents in a wide range of proteins. Although these metals are all essential for life, when present in excess, they are frequently toxic to cell growth and viability. Therefore, all organisms rely on sophisticated mechanisms to maintain optimal levels of each metal. Genes that encode metal transport or storage proteins are often regulated at the transcriptional level in response to changes in metal status. In this review, we focus on what is known about the transcription factors that mediate these metal-dependent changes. Specifically, we highlight recent advances in our understanding of the mechanisms by which these factors sense metal ions.
Collapse
Affiliation(s)
- Kate M Ehrensberger
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
35
|
ZnT10 is expressed in adult human tissues. Proc Nutr Soc 2011. [DOI: 10.1017/s0029665111001789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Zheng D, Kille P, Feeney GP, Cunningham P, Handy RD, Hogstrand C. Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation. BMC Genomics 2010; 11:553. [PMID: 20937081 PMCID: PMC3091702 DOI: 10.1186/1471-2164-11-553] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 10/11/2010] [Indexed: 12/22/2022] Open
Abstract
Background Dietary zinc supplementation may help to promote growth, boost the immune system, protect against diabetes, and aid recovery from diarrhoea. We exploited the zebrafish (Danio rerio) gill as a unique vertebrate ion transporting epithelium model to study the time-dependent regulatory networks of gene-expression leading to homeostatic control during zinc supplementation. This organ forms a conduit for zinc uptake whilst exhibiting conservation of zinc trafficking components. Results Fish were maintained with either zinc supplemented water (4.0 μM) and diet (2023 mg zinc kg-1) or water and diet containing Zn2+ at 0.25 μM and 233 mg zinc kg-1, respectively. Gill tissues were harvested at five time points (8 hours to 14 days) and transcriptome changes analysed in quintuplicate using a 16 K microarray with results anchored to gill Zn2+ influx and whole body nutrient composition (protein, carbohydrate, lipid, elements). The number of regulated genes increased up to day 7 but declined as the fish acclimated. In total 525 genes were regulated (having a fold-change more than 1.8 fold change and an adjusted P-value less than 0.1 which is controlling a 10% False discovery rate, FDR) by zinc supplementation, but little overlap was observed between genes regulated at successive time-points. Many genes displayed cyclic expression, typical for homeostatic control mechanisms. Annotation enrichment analysis revealed strong overrepresentation of "transcription factors", with specific association evident with "steroid hormone receptors". A suite of genes linked to "development" were also statistically overrepresented. More specifically, early regulation of genes was linked to a few key transcription factors (e.g. Mtf1, Jun, Stat1, Ppara, Gata3) and was followed by hedgehog and bone morphogenic protein signalling. Conclusions The results suggest that zinc supplementation reactivated developmental pathways in the gill and stimulated stem cell differentiation, a response likely reflecting gill remodelling in response to its altered environment. This provides insight to the role of zinc during cell differentiation and illustrates the critical nature of maintaining zinc status. The study also highlights the importance of temporal transcriptomics analysis in order resolve the discrete elements of biological processes, such as zinc acclimation.
Collapse
Affiliation(s)
- Dongling Zheng
- Mineral Metabolism Group, Nutritional Sciences Division, King's College London, London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
37
|
Picco SJ, Anchordoquy JM, de Matos DG, Anchordoquy JP, Seoane A, Mattioli GA, Errecalde AL, Furnus CC. Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 2010; 74:1141-8. [PMID: 20688367 DOI: 10.1016/j.theriogenology.2010.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 02/02/2023]
Abstract
The objective was to investigate the effects of supplementary zinc (Zn) during in vitro maturation (IVM) of bovine oocytes. The DNA damage in cumulus cells was low with supplemental Zn concentrations of 1.1 and 1.5 μg/mL in the IVM medium (mean ± SEM index of DNA damage was 67.52 ± 9.32, 68.52 ± 13.34, 33.80 ± 4.89, and 34.65 ± 7.92 for supplementation with 0, 0.7, 1.1, and 1.5 μg/mL Zn, respectively; P < 0.01). Total glutathione concentrations did not differ following Zn supplementation of 1.1 and 1.5 μg/mL (3.7 ± 0.4 vs. 4.0 ± 0.5 pmol, respectively, in oocytes; and in cumulus cells, 0.5 ± 0.04 nmol/10(6) cells, combined for both treatments), but were greater (P < 0.01) than supplementation with 0.7 μg/mL (1.8 ± 0.5 pmol in oocytes and 0.2 ± 0.02 nmol/10(6) cumulus cells). Cleavage rate increased (P < 0.05) when Zn was added to the IVM medium at any concentration (67.16 ± 1.17, 73.15 ± 1.15, 74.05 ± 1.23, and 72.76 ± 0.74 for 0, 0.7, 1.1, and 1.5 μg/mL Zn). For these concentrations, subsequent embryo development to the blastocyst stage was 17.83 ± 2.15, 21.95 ± 0.95, 27.65 ± 1.61, and 30.33 ± 2.78%, highest (P < 0.01) in oocytes matured with 1.5 μg/mL Zn. There was an increase (P < 0.05) in mean cell number per blastocyst obtained from oocytes matured with 1.1 and 1.5 μg/mL Zn relative to 0 Zn (IVM alone) and 0.7 μg/mL Zn. In conclusion, Zn during oocytes maturation significantly affected intracellular GSH content and DNA integrity of cumulus cells, and improved preimplantational embryo development. We inferred that optimal embryo development to the blastocyst stage was partially dependent on the presence of adequate Zn concentrations.
Collapse
Affiliation(s)
- S J Picco
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET, UNLP-CONICET), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), Argentina
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The p53 tumor suppressor is a transcription factor that contains a single zinc ion near its DNA binding interface. Zn(2+) is required for site-specific DNA binding and proper transcriptional activation. In addition to its functional significance, zinc plays a dominant role in determining whether p53 folds productively or misfolds. Insufficient zinc and excess zinc cause p53 to misfold by distinct mechanisms which both result in functional loss. The zinc-binding status of p53 in the cell is impacted significantly by the presence of tumorigenic mutations and by metal ion homeostasis. This review discusses mechanisms by which zinc modulates folding and misfolding of p53, how improper metal binding and release leads to loss of function and cancer, and how misfolding can be rescued by metallochaperones.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
39
|
Karol N, Brodski C, Bibi Y, Kaisman T, Forberg M, Hershfinkel M, Sekler I, Silverman WF. Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010; 224:567-74. [DOI: 10.1002/jcp.22168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Abstract
Compounds that bind metals such as copper and zinc have many biological activities, including the ability to induce apoptosis in cancer cells. Although some of these compounds have been considered to act as chelators of metals, decreasing their bioavailability, others increase intracellular metal concentrations. We review recent work regarding the recognition of the biological effects of metal ionophores with different structures, particularly with regard to their actions upon cancer cells focusing on dithiocarbamates, pyrithione, and the 8-hydroxyquinoline derivative, clioquinol. We provide a biologically based classification of metal-binding compounds that allows an experimental distinction between chelators and ionophores that can be readily used by biologists, which may lead to further study and classification of metal-binding drugs. Metal ionophores may kill cancer cells by a number of mechanisms, including lysosomal disruption and proteasome inhibition, and likely others. Because some of these compounds have been safely administered to animals and humans, they have the potential to become clinically useful anticancer agents.
Collapse
Affiliation(s)
- Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | |
Collapse
|