1
|
Yang M, Zhang X, Ding Y, Yang L, Ren W, Gao Y, Yao K, Zhou Y, Shao W. The Effect of Valine on the Synthesis of α-Casein in MAC-T Cells and the Expression and Phosphorylation of Genes Related to the mTOR Signaling Pathway. Int J Mol Sci 2025; 26:3179. [PMID: 40243924 PMCID: PMC11989714 DOI: 10.3390/ijms26073179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study utilized MAC-T cells cultured in vitro as a model to investigate the effects of varying concentrations of valine on α-casein synthesis and its underlying regulatory mechanisms. In this experiment, MAC-T cells were subjected to a 12 h starvation period, followed by the addition of valine in a range of concentrations (a total of seven concentrations: 0.000, 1.596, 3.192, 6.384, 12.768, 25.536, and 51.072 mM, as well as in 10% Fetal Bovine Serum). The suitable range of valine concentrations was determined using enzyme-linked immunosorbent assays (ELISAs). Real-time fluorescent quantitative PCR (RT-qPCR) and Western blot analyses were employed to evaluate the expression levels and phosphorylation states of the casein alpha s1 gene (CSN1S1), casein alpha s2 gene (CSN1S2) and mTOR signaling pathway-related genes. The functionality of the mTOR signaling pathway was further validated through rapamycin (100.000 nM) inhibition experiments. Results indicated that 1× Val (6.384 mM), 2× Val (12.768 mM), 4× Val (25.536 mM), and 8× Val (51.072 mM) significantly enhanced α-casein synthesis (p < 0.01). Within this concentration range, valine significantly upregulated the expression of CSN1S1, CSN1S2, and mTOR signaling pathway-related genes including the RagA gene (RRAGA), RagB gene (RRAGB), RagC gene (RRAGC), RagD gene (RRAGD), mTOR, raptor gene (RPTOR), and 4EBP1 gene (EIF4EBP1), eukaryotic initiation factor 4E (EIF4E), and S6 Kinase 1 (S6K1) (p < 0.01). Notably, the expression of the eukaryotic elongation factor 2 (EEF2) gene peaked at 1× Val (6.384 mM), while the expression of other genes reached their maximum at 4× Val (25.536 mM). Additionally, valine significantly increased the phosphorylation levels of mTOR, S6K1, 4E-binding protein-1 (4EBP1), ribosomal protein S6 (RPS6), and eEF2 (p < 0.01), with the highest phosphorylation levels of mTOR, S6K1, and RPS6 observed at 4× Val (25.536 mM). Rapamycin treatment significantly inhibited mTOR phosphorylation and α-casein synthesis (p < 0.01); however, the addition of 4× Val (25.536 mM) partially mitigated this inhibitory effect. In conclusion, valine promotes α-casein synthesis by activating the mTOR signaling pathway, with an optimal concentration of 4× Val (25.536 mM).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Shao
- Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Y.); (X.Z.); (Y.D.); (L.Y.); (W.R.); (Y.G.); (K.Y.); (Y.Z.)
| |
Collapse
|
2
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
3
|
Li X, Zhu H, Sun W, Yang X, Nie Q, Fang X. Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells. Cancer Cell Int 2021; 21:479. [PMID: 34503536 PMCID: PMC8427881 DOI: 10.1186/s12935-021-02121-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment, play an indispensable role in cancer initiation, progression, metastasis, and metabolism. The limitations of traditional treatments can be partly attributed to the lack of understanding of the role of the tumor stroma. For this reason, CAF targeting is gradually gaining attention, and many studies are trying to overcome the limitations of tumor treatment with CAF as a breakthrough. Glutamine (GLN) has been called a “nitrogen reservoir” for cancer cells because of its role in supporting anabolic processes such as fuel proliferation and nucleotide synthesis, but ammonia is a byproduct of the metabolism of GLN and other nitrogenous compounds. Moreover, in some studies, GLN has been reported as a fundamental nitrogen source that can support tumor biomass. In this review, we discuss the latest findings on the role of GLN and ammonia in the crosstalk between CAFs and cancer cells as well as the potential therapeutic implications of nitrogen metabolism.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongming Zhu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Weixuan Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xingru Yang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing Nie
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
4
|
Laufenberg LJ, Crowell KT, Lang CH. Alcohol Acutely Antagonizes Refeeding-Induced Alterations in the Rag GTPase-Ragulator Complex in Skeletal Muscle. Nutrients 2021; 13:1236. [PMID: 33918604 PMCID: PMC8070399 DOI: 10.3390/nu13041236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
The Ragulator protein complex is critical for directing the Rag GTPase proteins and mTORC1 to the lysosome membrane mediating amino acid-stimulated protein synthesis. As there is a lack of evidence on alcohol's effect on the Rag-Ragulator complex as a possible mechanism for the development of alcoholic skeletal muscle wasting, the aim of our study was to examine alterations in various protein-protein complexes in the Rag-Ragulator pathway produced acutely by feeding and how these are altered by alcohol under in vivo conditions. Mice (C57Bl/6; adult males) were fasted, and then provided rodent chow for 30 min ("refed") or remained food-deprived ("fasted"). Mice subsequently received ethanol (3 g/kg ethanol) or saline intraperitoneally, and hindlimb muscles were collected 1 h thereafter for analysis. Refeeding-induced increases in myofibrillar and sarcoplasmic protein synthesis, and mTOR and S6K1 phosphorylation, were prevented by alcohol. This inhibition was not associated with a differential rise in the intracellular leucine concentration or plasma leucine or insulin levels. Alcohol increased the amount of the Sestrin1•GATOR2 complex in the fasted state and prevented the refeeding-induced decrease in Sestrin1•GATOR2 seen in control mice. Alcohol antagonized the increase in the RagA/C•Raptor complex formation seen in the refed state. Alcohol antagonized the increase in Raptor with immunoprecipitated LAMPTOR1 (part of the Ragulator complex) after refeeding and decreased the association of RagC with LAMPTOR1. Finally, alcohol increased the association of the V1 domain of v-ATPase with LAMPTOR1 and prevented the refeeding-induced decrease in v-ATPase V1 with LAMPTOR1. Overall, these data demonstrate that acute alcohol intake disrupts multiple protein-protein complexes within the Rag-Ragulator complex, which are associated with and consistent with the concomitant decline in nutrient-stimulated muscle protein synthesis under in vivo conditions.
Collapse
Affiliation(s)
- Lacee J. Laufenberg
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA; (L.J.L.); (K.T.C.)
| | - Kristen T. Crowell
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA; (L.J.L.); (K.T.C.)
- Beth Israel Deaconess Medical Center, Department of Surgery, Boston, MA 02215, USA
| | - Charles H. Lang
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA; (L.J.L.); (K.T.C.)
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Predicting the Structure and Dynamics of Membrane Protein GerAB from Bacillus subtilis. Int J Mol Sci 2021; 22:ijms22073793. [PMID: 33917581 PMCID: PMC8038838 DOI: 10.3390/ijms22073793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus subtilis forms dormant spores upon nutrient depletion. Germinant receptors (GRs) in spore’s inner membrane respond to ligands such as L-alanine, and trigger spore germination. In B. subtilis spores, GerA is the major GR, and has three subunits, GerAA, GerAB, and GerAC. L-Alanine activation of GerA requires all three subunits, but which binds L-alanine is unknown. To date, how GRs trigger germination is unknown, in particular due to lack of detailed structural information about B subunits. Using homology modelling with molecular dynamics (MD) simulations, we present structural predictions for the integral membrane protein GerAB. These predictions indicate that GerAB is an α-helical transmembrane protein containing a water channel. The MD simulations with free L-alanine show that alanine binds transiently to specific sites on GerAB. These results provide a starting point for unraveling the mechanism of L-alanine mediated signaling by GerAB, which may facilitate early events in spore germination.
Collapse
|
6
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Effects of long-term feeding diets supplemented with Lactobacillus reuteri 1 on growth performance, digestive and absorptive function of the small intestine in pigs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
9
|
Kao M, Columbus DA, Suryawan A, Steinhoff-Wagner J, Hernandez-Garcia A, Nguyen HV, Fiorotto ML, Davis TA. Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E1072-84. [PMID: 27143558 PMCID: PMC4935142 DOI: 10.1152/ajpendo.00520.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) μmol HMB·kg body wt(-1)·day(-1) Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation.
Collapse
Affiliation(s)
- Michelle Kao
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Adriana Hernandez-Garcia
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Li YH, Li FN, Wu L, Liu YY, Wei HK, Li TJ, Tan BE, Kong XF, Wu F, Duan YH, Oladele OA, Yin YL. Reduced dietary protein level influences the free amino acid and gene expression profiles of selected amino acid transceptors in skeletal muscle of growing pigs. J Anim Physiol Anim Nutr (Berl) 2016; 101:96-104. [PMID: 27045856 DOI: 10.1111/jpn.12514] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/12/2016] [Indexed: 12/22/2022]
Abstract
This study was conducted to evaluate the effect of reduced dietary protein level on growth performance, muscle mass weight, free amino acids (FAA) and gene expression profile of selected amino acid transceptors in different fibre type of skeletal muscle tissues (longissimus dorsi, psoas major, biceps femoris) of growing pigs. A total of 18 cross-bred growing pigs (Large White × Landrace × Duroc) with initial body weight (9.57 ± 0.67 kg) were assigned into three dietary treatments: 20% crude protein (CP) diet (normal recommended, NP), 17% CP diet (low protein, LP) and 14% CP diet (very low protein, VLP). The results indicated improved feed-to-gain ratio was obtained for pigs fed LP and NP diets (p < 0.01), while the pigs fed VLP diet showed the worst growth performance (p < 0.01). There was no significant difference in the weights of longissimus dorsi and psoas major muscle between LP and NP groups (p > 0.05). Majority of the determined FAA concentration of LP group were greater than or equal to those of NP group in both longissimus dorsi and psoas major muscle (p < 0.01). Further, the mRNA expression levels of sodium-coupled neutral amino acid transceptor 2, L-type amino acid transceptor 1 and proton-assisted amino acid transceptors 2 were higher in skeletal muscle tissue in LP group compared to those of the pigs fed NP or VLP diet. These results suggested that reduced dietary protein level (3 points of percentage less than recommended level) would upregulate the mRNA expression of amino acid transceptors to enhance the absorption of FAA in skeletal muscle of growing pigs. There seems to be a relationship between response of AA transceptors to the dietary protein level in skeletal muscle tissue of different fibre type. To illustrate the underlying mechanisms will be beneficial to animal nutrition.
Collapse
Affiliation(s)
- Y H Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - F N Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - L Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y Y Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - H K Wei
- College of Animal Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - T J Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - B E Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - X F Kong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - F Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y H Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - O A Oladele
- Animal Nutrition Department, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Y L Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
11
|
Eckert JJ, Velazquez MA, Fleming TP. Cell signalling during blastocyst morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:1-21. [PMID: 25956293 DOI: 10.1007/978-1-4939-2480-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blastocyst morphogenesis is prepared for even before fertilisation. Information stored within parental gametes can influence both maternal and embryonic gene expression programmes after egg activation at fertilisation. A complex network of intrinsic, cell-cell mediated and extrinsic, embryo-environment signalling mechanisms operates throughout cleavage, compaction and cavitation. These signalling events not only ensure developmental progression, cell differentiation and lineage allocation to inner cell mass (embryo proper) and trophectoderm (future extraembryonic lineages) but also provide a degree of developmental plasticity ensuring survival in prevailing conditions by adaptive responses. Indeed, many cellular functions including differentiation, metabolism, gene expression and gene expression regulation are subject to plasticity with short- or long-term consequences even into adult life. The interplay between intrinsic and extrinsic signals impacting on blastocyst morphogenesis is becoming clearer. This has been best studied in the mouse which will be the focus of this chapter but translational significance to human and domestic animal embryology will be a focus in future years.
Collapse
Affiliation(s)
- Judith J Eckert
- Human Development and Health, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | | | | |
Collapse
|
12
|
Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn J, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519:477-81. [PMID: 25561175 PMCID: PMC4376665 DOI: 10.1038/nature14107] [Citation(s) in RCA: 518] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/20/2014] [Indexed: 12/23/2022]
Abstract
Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H(+)-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator-RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.
Collapse
Affiliation(s)
- Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lorena Pochini
- Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, Arcavacata di Rende, Italy
| | - Taras Stasyk
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Michele Galluccio
- Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, Arcavacata di Rende, Italy
| | - Richard K. Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elena L. Rudashevskaya
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Przemyslaw A. Filipek
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Leonhard X. Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Claudine Kraft
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cesare Indiveri
- Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, Arcavacata di Rende, Italy
| | - Lukas A. Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
13
|
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5:532. [PMID: 25386178 PMCID: PMC4209874 DOI: 10.3389/fimmu.2014.00532] [Citation(s) in RCA: 838] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacology, Institute of Medical Sciences, Faculty of Medical Sciences, Siksha 'O' Anusandhan University , Bhubaneshwar , India
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center, Johannes Gutenberg University , Mainz , Germany ; Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
14
|
Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5535-56. [PMID: 25114014 DOI: 10.1093/jxb/eru320] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.
Collapse
Affiliation(s)
- Réjane Pratelli
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
15
|
Wheatley SM, El-Kadi SW, Suryawan A, Boutry C, Orellana RA, Nguyen HV, Davis SR, Davis TA. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of β-hydroxy-β-methylbutyrate. Am J Physiol Endocrinol Metab 2014; 306:E91-9. [PMID: 24192287 PMCID: PMC4520576 DOI: 10.1152/ajpendo.00500.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 μmol·kg body wt(-1)·h(-1) for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation.
Collapse
Affiliation(s)
- Scott M Wheatley
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dickinson JM, Rasmussen BB. Amino acid transporters in the regulation of human skeletal muscle protein metabolism. Curr Opin Clin Nutr Metab Care 2013; 16:638-44. [PMID: 24100668 PMCID: PMC4164966 DOI: 10.1097/mco.0b013e3283653ec5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW To highlight recent research on amino acid sensing and signaling and the role of amino acid transporters in the regulation of human skeletal muscle protein metabolism. RECENT FINDINGS The mechanisms that sense amino acid availability and activate mechanistic target of rapamycin complex 1 signaling and protein synthesis are emerging, with multiple new proteins and intracellular amino acid sensors recently identified. Amino acid transporters have a role in the delivery of amino acids to these intracellular sensors and new findings provide further support for amino acid transporters as possible extracellular amino acid sensors. There is growing evidence in human skeletal muscle that amino acid transporter expression is dynamic and responsive to various stimuli, indicating amino acid transporters may have a unique role in the regulation of human skeletal muscle adaptation. SUMMARY There is a clear need to further examine the role of amino acid transporters in human skeletal muscle and their link to cellular amino acid sensing and signaling in the control of protein metabolism. A better understanding of amino acid transport and transporters will allow us to optimize nutritional strategies to accelerate muscle health and improve outcomes for clinical populations.
Collapse
Affiliation(s)
- Jared M Dickinson
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
17
|
Schmitt KC, Rothman RB, Reith MEA. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther 2013; 346:2-10. [PMID: 23568856 PMCID: PMC3684841 DOI: 10.1124/jpet.111.191056] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/02/2013] [Indexed: 01/20/2023] Open
Abstract
The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein-coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders.
Collapse
Affiliation(s)
- Kyle C Schmitt
- Department of Neurosurgery, New York University School of Medicine, 455 First Ave., Public Health Laboratories (8th Floor), New York, New York 10016, USA.
| | | | | |
Collapse
|
18
|
Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 2013; 304:E789-99. [PMID: 23403946 PMCID: PMC3625782 DOI: 10.1152/ajpendo.00015.2013] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asparagine synthetase (ASNS) catalyzes the conversion of aspartate and glutamine to asparagine and glutamate in an ATP-dependent reaction. The enzyme is ubiquitous in its organ distribution in mammals, but basal expression is relatively low in tissues other than the exocrine pancreas. Human ASNS activity is highly regulated in response to cell stress, primarily by increased transcription from a single gene located on chromosome 7. Among the genomic elements that control ASNS transcription is the C/EBP-ATF response element (CARE) within the promoter. Protein limitation or an imbalanced dietary amino acid composition activate the ASNS gene through the amino acid response (AAR), a process that is replicated in cell culture through limitation for any single essential amino acid. Endoplasmic reticulum stress also increases ASNS transcription through the PERK-eIF2-ATF4 arm of the unfolded protein response (UPR). Both the AAR and UPR lead to increased synthesis of ATF4, which binds to the CARE and induces ASNS transcription. Elevated expression of ASNS protein is associated with resistance to asparaginase therapy in childhood acute lymphoblastic leukemia and may be a predictive factor in drug sensitivity for certain solid tumors as well. Activation of the GCN2-eIF2-ATF4 signaling pathway, leading to increased ASNS expression appears to be a component of solid tumor adaptation to nutrient deprivation and/or hypoxia. Identifying the roles of ASNS in fetal development, tissue differentiation, and tumor growth may reveal that ASNS function extends beyond asparagine biosynthesis.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
19
|
Eckert JJ, Porter R, Watkins AJ, Burt E, Brooks S, Leese HJ, Humpherson PG, Cameron IT, Fleming TP. Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS One 2012; 7:e52791. [PMID: 23300778 PMCID: PMC3531326 DOI: 10.1371/journal.pone.0052791] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD), is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5), notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs) including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery.
Collapse
Affiliation(s)
- Judith J. Eckert
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Richard Porter
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Adam J. Watkins
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Elizabeth Burt
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Suzanne Brooks
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Henry J. Leese
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Iain T. Cameron
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Tom P. Fleming
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Coppola G, Geschwind D, Vogel Z. Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol 2012; 165:2512-28. [PMID: 21542829 DOI: 10.1111/j.1476-5381.2011.01461.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. However, the underlying mechanisms are largely unknown. We previously showed that the psychoactive cannabinoid Δ(9) -tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signalling pathways. EXPERIMENTAL APPROACH To characterize the transcriptional effects of CBD and THC, we treated BV-2 microglial cells with these compounds and performed comparative microarray analysis using the Illumina MouseRef-8 BeadChip platform. Ingenuity Pathway Analysis was performed to identify functional subsets of genes and networks regulated by CBD and/or THC. KEY RESULTS Overall, CBD altered the expression of many more genes; from the 1298 transcripts found to be differentially regulated by the treatments, 680 gene probe sets were up-regulated by CBD and 58 by THC, and 524 gene products were down-regulated by CBD and only 36 by THC. CBD-specific gene expression profile showed changes associated with oxidative stress and glutathione depletion, normally occurring under nutrient limiting conditions or proteasome inhibition and involving the GCN2/eIF2α/p8/ATF4/CHOP-TRIB3 pathway. Furthermore, CBD-stimulated genes were shown to be controlled by nuclear factors known to be involved in the regulation of stress response and inflammation, mainly via the (EpRE/ARE)-Nrf2/ATF4 system and the Nrf2/Hmox1 axis. CONCLUSIONS AND IMPLICATIONS These observations indicated that CBD, but much less than THC, induced a cellular stress response in microglial cells and suggested that this effect could underlie its anti-inflammatory activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Ana Juknat
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Neufeld TP. Autophagy and cell growth--the yin and yang of nutrient responses. J Cell Sci 2012; 125:2359-68. [PMID: 22649254 DOI: 10.1242/jcs.103333] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a response to nutrient deprivation and other cell stresses, autophagy is often induced in the context of reduced or arrested cell growth. A plethora of signaling molecules and pathways have been shown to have opposing effects on cell growth and autophagy, and results of recent functional screens on a genomic scale support the idea that these processes might represent mutually exclusive cell fates. Understanding the ways in which autophagy and cell growth relate to one another is becoming increasingly important, as new roles for autophagy in tumorigenesis and other growth-related phenomena are uncovered. This Commentary highlights recent findings that link autophagy and cell growth, and explores the mechanisms underlying these connections and their implications for cell physiology and survival. Autophagy and cell growth can inhibit one another through a variety of direct and indirect mechanisms, and can be independently regulated by common signaling pathways. The central role of the mammalian target of rapamycin (mTOR) pathway in regulating both autophagy and cell growth exemplifies one such mechanism. In addition, mTOR-independent signaling and other more direct connections between autophagy and cell growth will also be discussed.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids 2012; 45:523-30. [PMID: 22643846 DOI: 10.1007/s00726-012-1326-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/15/2012] [Indexed: 01/22/2023]
Abstract
Previously we demonstrated that the insulin- and amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the System L transporters (LAT1 and LAT2), and the proton-assisted amino acid transporters (PAT1 and PAT2) have crucial roles in the activation of mTORC1 and that the abundance of amino acid transporters is positively correlated with their activation. This study aimed to determine the effect of the post-prandial rise in insulin and amino acids on the abundance or activation of SNAT2, SNAT3, LAT1, LAT2, PAT1, and PAT2 and whether the response is modified by development. Overnight fasted 6- and 26-day-old pigs were infused for 2 h with saline (Control) or with insulin or amino acids to achieve fed levels while amino acids or insulin, respectively, as well as glucose were maintained at fasting levels. The abundance of SNAT2, SNAT3, LAT1, LAT2, PAT1, and PAT2 was higher in muscle of 6- compared with 26-day-old pigs. The abundance of the PAT2-mTOR complex was greater in 6- than in 26-day-old pigs, consistent with the higher activation of mTORC1. Neither insulin nor amino acids altered amino acid transporter or PAT2-mTOR complex abundance. In conclusion, the amino acid transporters, SNAT 2/3, LAT 1/2, and PAT1/2, likely have important roles in the enhanced amino acid-induced activation of mTORC1 in skeletal muscle of the neonate.
Collapse
|
23
|
Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 2012; 3:295-306. [PMID: 22585903 PMCID: PMC3649461 DOI: 10.3945/an.112.001891] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammals exhibit multiple adaptive mechanisms that sense and respond to fluctuations in dietary nutrients. Consumption of reduced total dietary protein or a protein diet that is deficient in 1 or more of the essential amino acids triggers wide-ranging changes in feeding behavior and gene expression. At the level of individual cells, dietary protein deficiency is manifested as amino acid (AA) deprivation, which activates the AA response (AAR). The AAR is composed of a collection of signal transduction pathways that terminate in specific transcriptional programs designed to catalyze adaptation to the nutrient stress or, ultimately, undergo apoptosis. Independently of the AAR, endoplasmic reticulum stress activates 3 signaling pathways, collectively referred to as the unfolded protein response. The transcription factor activating transcription factor 4 is one of the terminal transcriptional mediators for both the AAR and the unfolded protein response, leading to a significant degree of overlap with regard to the target genes for these stress pathways. Over the past 5 y, research has revealed that the basic leucine zipper superfamily of transcription factors plays the central role in the AAR. Formation of both homo- and heterodimers among the activating transcription factor, CCAAT enhancer-binding protein, and FOS/JUN families of basic leucine zipper proteins forms the nucleus of a highly integrated transcription factor network that determines the initiation, magnitude, and duration of the cellular response to dietary protein or AA limitation.
Collapse
|
24
|
Deldicque L, Bertrand L, Patton A, Francaux M, Baar K. ER stress induces anabolic resistance in muscle cells through PKB-induced blockade of mTORC1. PLoS One 2011; 6:e20993. [PMID: 21698202 PMCID: PMC3116857 DOI: 10.1371/journal.pone.0020993] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/17/2011] [Indexed: 12/31/2022] Open
Abstract
Background Anabolic resistance is the inability to increase protein synthesis in response to an increase in amino acids following a meal. One potential mediator of anabolic resistance is endoplasmic reticulum (ER) stress. The purpose of the present study was to test whether ER stress impairs the response to growth factors and leucine in muscle cells. Methods Muscle cells were incubated overnight with tunicamycin or thapsigargin to induce ER stress and the activation of the unfolded protein response, mTORC1 activity at baseline and following insulin and amino acids, as well as amino acid transport were determined. Results ER stress decreased basal phosphorylation of PKB and S6K1 in a dose-dependent manner. In spite of the decrease in basal PKB phosphorylation, insulin (10–50 nM) could still activate both PKB and S6K1. The leucine (2.5–5 mM)-induced phosphorylation of S6K1 on the other hand was repressed by low concentrations of both tunicamycin and thapsigargin. To determine the mechanism underlying this anabolic resistance, several inhibitors of mTORC1 activation were measured. Tunicamycin and thapsigargin did not change the phosphorylation or content of either AMPK or JNK, both increased TRB3 mRNA expression and thapsigargin increased REDD1 mRNA. Tunicamycin and thapsigargin both decreased the basal phosphorylation state of PRAS40. Neither tunicamycin nor thapsigargin prevented phosphorylation of PRAS40 by insulin. However, since PKB is not activated by amino acids, PRAS40 phosphorylation remained low following the addition of leucine. Blocking PKB using a specific inhibitor had the same effect on both PRAS40 and leucine-induced phosphorylation of S6K1. Conclusion ER stress induces anabolic resistance in muscle cells through a PKB/PRAS40-induced blockade of mTORC1.
Collapse
Affiliation(s)
- Louise Deldicque
- Université catholique de Louvain, Institute of Neuroscience, Research Group in Muscle and Exercise Physiology, Louvain-la-Neuve, Belgium
- Research Centre for Exercise and Health, Department of Biomedical Kinesiology, K.U. Leuven, Leuven, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Woluwe-Saint-Lambert, Belgium
| | - Amy Patton
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, California, United States of America
| | - Marc Francaux
- Université catholique de Louvain, Institute of Neuroscience, Research Group in Muscle and Exercise Physiology, Louvain-la-Neuve, Belgium
| | - Keith Baar
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Woolf PJ, Fu LL, Basu A. vProtein: identifying optimal amino acid complements from plant-based foods. PLoS One 2011; 6:e18836. [PMID: 21526128 PMCID: PMC3081312 DOI: 10.1371/journal.pone.0018836] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Indispensible amino acids (IAAs) are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online at http://www.foodwiki.com/vprotein.
Collapse
Affiliation(s)
- Peter J Woolf
- Foodwiki, Ann Arbor, Michigan, United States of America.
| | | | | |
Collapse
|
26
|
Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM, Vigna SR, Grant AO, Liddle RA. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol 2011; 300:G528-37. [PMID: 21183662 PMCID: PMC3074989 DOI: 10.1152/ajpgi.00387.2010] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.
Collapse
Affiliation(s)
- Yu Wang
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Rashmi Chandra
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Leigh Ann Samsa
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Barry Gooch
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Brian E. Fee
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - J. Michael Cook
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Steven R. Vigna
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Augustus O. Grant
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Rodger A. Liddle
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| |
Collapse
|
27
|
Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J Bacteriol 2011; 193:2261-7. [PMID: 21378181 DOI: 10.1128/jb.01397-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In various diseases amino acid imbalances occur which have been described especially in the 1980s of the last century. It was noted that some of these imbalances may exert specific negative physiological effects. However, mainly because of economic reasons, no real attempts have been made to develop special amino acid solutions for disease processed associated with amino acid imbalances to restore normal amino acid concentrations. RECENT FINDINGS A recent study performed in the fruit-fly Drosophila indicated that modifying the amino acid supply may influence both lifespan and fecundity. It was shown that adding amino acids but not carbohydrates or fat to a restricted diet decreases lifespan. In contrast, administration of certain amino acids especially of methionine increased fecundity without decreasing lifespan. It is known that dietary restriction can decrease fecundity at the cost of a prolonged lifespan. SUMMARY Recent investigations revealed that amino acids are powerful molecules in mediating cell signalling. Therefore, it can be hypothesized that the severe amino acid imbalances as observed in uraemia or liver failure may exert a relevant impact on various physiologic processes and on organ function. The recent results described in Drosophila should stimulate a new research area on the effect of amino acid supply in various disease processes.
Collapse
Affiliation(s)
- Erich Roth
- Department of Surgery, Division of Nephrology, Vienna General Hospital, Vienna, Austria.
| | | |
Collapse
|
29
|
The 2009 ESPEN Sir David Cuthbertson. Citrulline: A new major signaling molecule or just another player in the pharmaconutrition game? Clin Nutr 2010; 29:545-51. [DOI: 10.1016/j.clnu.2010.07.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 02/05/2023]
|
30
|
Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 2009; 20:436-43. [PMID: 19800252 PMCID: PMC3587693 DOI: 10.1016/j.tem.2009.05.008] [Citation(s) in RCA: 465] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 01/28/2023]
Abstract
Mammals respond to dietary nutrient fluctuations; for example, deficiency of dietary protein or an imbalance of essential amino acids activates an amino acid response (AAR) signal transduction pathway, consisting of detection of uncharged tRNA by the GCN2 kinase, eIF2alpha phosphorylation and ATF4 expression. In concert with heterodimerization partners, ATF4 activates specific genes via a CCAAT-enhancer binding protein-activating transcription factor response element (CARE). This review outlines the ATF4-dependent transcriptional mechanisms associated with the AAR, focusing on progress during the past 5 years. Recent evidence suggests that maternal nutrient deprivation not only has immediate metabolic effects on the fetus, but also triggers gene expression changes in adulthood, possibly through epigenetic mechanisms. Therefore, understanding the transcriptional programs initiated by amino acid limitation is crucial and timely.
Collapse
Affiliation(s)
- Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Box 100245, University of Florida, Gainesville, Florida 32610-0245, USA.
| | | | | |
Collapse
|
31
|
Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E. Structure and mechanism of a Na+-independent amino acid transporter. Science 2009; 325:1010-4. [PMID: 19608859 PMCID: PMC2851542 DOI: 10.1126/science.1176088] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amino acid, polyamine, and organocation (APC) transporters are secondary transporters that play essential roles in nutrient uptake, neurotransmitter recycling, ionic homeostasis, and regulation of cell volume. Here, we present the crystal structure of apo-ApcT, a proton-coupled broad-specificity amino acid transporter, at 2.35 angstrom resolution. The structure contains 12 transmembrane helices, with the first 10 consisting of an inverted structural repeat of 5 transmembrane helices like the leucine transporter LeuT. The ApcT structure reveals an inward-facing, apo state and an amine moiety of lysine-158 located in a position equivalent to the sodium ion site Na2 of LeuT. We propose that lysine-158 is central to proton-coupled transport and that the amine group serves the same functional role as the Na2 ion in LeuT, thus demonstrating common principles among proton- and sodium-coupled transporters.
Collapse
Affiliation(s)
- Paul L Shaffer
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
32
|
Thevelein JM, Voordeckers K. Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol 2009; 26:2407-14. [PMID: 19651853 DOI: 10.1093/molbev/msp168] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The discovery of nutrient transceptors, transporter-like proteins with a receptor function, suggests that receptors for chemical signals may have been derived in evolution from nutrient transporters. Several examples are now available of nutrient transporters with an additional nutrient signaling function, nutrient receptors with a transporter-like sequence and structure but without transport capacity, and G protein-coupled receptors (GPCRs) that have nutrients as ligands. Recent results have revealed that transceptor signaling requires a specific ligand-induced conformational change, which indicates that transceptors function in a similar way as regular receptors. Advanced bioinformatic analysis for detection of homology in distantly related proteins identifies the nontransporting glucose transceptor Rgt2 as the closest homologue of the glucose-sensing GPCR Gpr1 in yeast. This supports an intermediate position for nutrient transceptors in evolution, between nutrient transporters and classical receptors for chemical signals.
Collapse
Affiliation(s)
- Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Leuven-Heverlee, Flanders, Belgium.
| | | |
Collapse
|
33
|
mTOR: dissecting regulation and mechanism of action to understand human disease. Biochem Soc Trans 2009; 37:213-6. [PMID: 19143634 DOI: 10.1042/bst0370213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mTOR (mammalian target of rapamycin) is a highly conserved serine/threonine protein kinase that has roles in cell metabolism, cell growth and cell survival. Although it has been known for some years that mTOR acts as a hub for inputs from growth factors (in particular insulin and insulin-like growth factors), nutrients and cellular stresses, some of the mechanisms involved are still poorly understood. Recent work has implicated mTOR in a variety of important human pathologies, including cancer, Type 2 diabetes and neurodegenerative disorders, heightening interest and accelerating progress in dissecting out the control and functions of mTOR.
Collapse
|