1
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
2
|
Rocha MA, Cardoso AL, Martins C, Mello MLS. Sodium valproate affects the expression of p16 INK4a and p21 WAFI/Cip1 cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 2024; 28:432. [PMID: 39049983 PMCID: PMC11268092 DOI: 10.3892/ol.2024.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
p16INK4a and p21WAF1/Cip1 are cyclin-dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus-induced cervical cancer, p16 INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21 WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16 INK4a and p21 WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription-quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16 INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16 INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16 INK4a and p21 WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
3
|
Ricarte M, Tagkalidou N, Bellot M, Bedrossiantz J, Prats E, Gomez-Canela C, Garcia-Reyero N, Raldúa D. Short- and Long-Term Neurobehavioral Effects of Developmental Exposure to Valproic Acid in Zebrafish. Int J Mol Sci 2024; 25:7688. [PMID: 39062930 PMCID: PMC11277053 DOI: 10.3390/ijms25147688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, anxiety, hyperactivity, and interest restricted to specific subjects. In addition to the genetic factors, multiple environmental factors have been related to the development of ASD. Animal models can serve as crucial tools for understanding the complexity of ASD. In this study, a chemical model of ASD has been developed in zebrafish by exposing embryos to valproic acid (VPA) from 4 to 48 h post-fertilization, rearing them to the adult stage in fish water. For the first time, an integrative approach combining behavioral analysis and neurotransmitters profile has been used for determining the effects of early-life exposure to VPA both in the larval and adult stages. Larvae from VPA-treated embryos showed hyperactivity and decreased visual and vibrational escape responses, as well as an altered neurotransmitters profile, with increased glutamate and decreased acetylcholine and norepinephrine levels. Adults from VPA-treated embryos exhibited impaired social behavior characterized by larger shoal sizes and a decreased interest for their conspecifics. A neurotransmitter analysis revealed a significant decrease in dopamine and GABA levels in the brain. These results support the potential predictive validity of this model for ASD research.
Collapse
Affiliation(s)
- Marina Ricarte
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Eva Prats
- Research and Development Center (CID-CSIC), 08034 Barcelona, Spain;
| | - Cristian Gomez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, MS 39762, USA;
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| |
Collapse
|
4
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
5
|
Farooqi SS, Naveed S, Qamar F, Sana A, Farooqi SH, Sabir N, Mansoor A, Sadia H. Phytochemical analysis, GC-MS characterization and antioxidant activity of Hordeum vulgare seed extracts. Heliyon 2024; 10:e27297. [PMID: 38509904 PMCID: PMC10950502 DOI: 10.1016/j.heliyon.2024.e27297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Barley scientifically known as Hordeum vulgare (HV) is a major grain crop. Over the course of time, great interest has been developed in the usage of barley, because of its various pharmacological activities. Current study is designed to determine the chemical constituents of Hordeum vulgare (HV) seed extract by GC-MS technique, and Invitro antioxidant assays i.e. 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) and 2-azino-bis(3-ethyl benzthiazoline-6-sulfonic acid) (ABTS) methods. GC-MS identified 16 non-polar compounds in the hexane extract of HV plant, which includes carboxylic acid (6.25%), fatty acid (37.5%), carboxylic acid amide derivative of fatty acid (6.25%), triterpinoids (18.75%), fat soluble vitamin (6.25%), phytosterol (6.25%), stigmastanes (6.25%), beta diketones (6.25%), and cycloartenol (6.25%) respectively. The major compound includes Hexadecanoic acid, methyl ester (6.84%), n-Hexadecanoic acid (8.58%), 9,12-Octadecanoic acid (Z,Z)-, Methyl Ester (8.04%), 9,12-Octadecadienoic acid (Z,Z) (57.01%), Lup-20(29)-en-3-one (3.57%), γ-Sitosterol (3.31%). Some constituents such as Lup-20(29)-en-3-one, campesterol and squalene were observed and were not previously reported. Total phenolic and total flavonoid content were determined using spectrophotometric technique and calculated as gallic acid equivalents GAE/g dry weight and rutin equivalent RE/g of dry weight respectively.The highest phenolic content exhibited by the acetone extract of HV seedsi.e. 0.0597 mg GAE/g while the highest flavonoid content exhibited by dichloromethane extract i.e. 0.09 mg RE/g and 0.25 mg QE/g of dry weight respectively. All the extracts showed significant antioxidant activity in DPPH and ABTS cation decolorization assays. Methanol and dichloromethane extract showed the highest DPPH radical scavenging activity i.e. 52.41% and 42.07% at the concentration of 100 mg/ml respectively. Moreover, the IC50 has been determined by the acetone and methanol extract of HV seeds. The high antioxidant activity of its seed extracts has made this plant pharmacologically important. Conclusively, there is a vast scope to further explore the active principals of barley so that more of its pharmacological properties can be identified.
Collapse
Affiliation(s)
- Saman Shahab Farooqi
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Safila Naveed
- Department of Pharmaceutical Chemistry, University of Karachi, Karachi, Pakistan
| | - Fatima Qamar
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Aisha Sana
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Shahab H. Farooqi
- Department of Mathematics, Jinnah University for Women, Karachi, Pakistan
| | - Neelam Sabir
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Asra Mansoor
- Department of Pharmaceutics, Jinnah University for Women, Karachi, Pakistan
| | - Halima Sadia
- Department of Pharmacy Practice, Jinnah University for Women, Karachi, Pakistan
| |
Collapse
|
6
|
Zhang M, Wang W, Ye Q, Fu Y, Li X, Yang K, Gao F, Zhou A, Wei Y, Tian S, Li S, Wei F, Shi W, Li WD. Histone deacetylase inhibitors VPA and WT161 ameliorate the pathological features and cognitive impairments of the APP/PS1 Alzheimer's disease mouse model by regulating the expression of APP secretases. Alzheimers Res Ther 2024; 16:15. [PMID: 38245771 PMCID: PMC10799458 DOI: 10.1186/s13195-024-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative neurological disorder. Recent studies have indicated that histone deacetylases (HDACs) are among the most prominent epigenetic therapy targets and that HDAC inhibitors have therapeutic effects on AD. Here, we identified sodium valproate (VPA), a pan-HDAC inhibitor, and WT161, a novel HDAC6 selective inhibitor, as potential therapeutic agents for AD. Underlying molecular mechanisms were investigated. METHODS A cellular model, N2a-APPswe, was established via lentiviral infection, and the APPswe/PSEN1dE9 transgenic mouse model was employed in the study. LC-MS/MS was applied to quantify the concentration of WT161 in the mouse brain. Western blotting, immunohistochemical staining, thioflavin-S staining and ELISA were applied to detect protein expression in cells, tissues, or serum. RNA interference was utilized to knockdown the expression of specific genes in cells. The cognitive function of mice was assessed via the nest-building test, novel object recognition test and Morris water maze test. RESULTS Previous studies have focused mainly on the impact of HDAC inhibitors on histone deacetylase activity. Our study discovered that VPA and WT161 can downregulate the expression of multiple HDACs, such as HDAC1 and HDAC6, in both AD cell and mouse models. Moreover, they also affect the expression of APP and APP secretases (BACE1, PSEN1, ADAM10). RNA interference and subsequent vitamin C induction further confirmed that the expression of APP and APP secretases is indeed regulated by HDAC1 and HDAC6, with the JNK pathway being the intermediate link in this regulatory process. Through the above pathways, VPA and WT161 effectively reduced Aβ deposition in both AD cell and mouse models and significantly improved cognitive function in AD mice. CONCLUSIONS In general, we have discovered that the HDAC6-JNK-APP secretases cascade is an important pathway for VPA and WT161 to exert their therapeutic effects on AD. Investigations into the safety and efficacy of VPA and WT161 were also conducted, providing essential preclinical evidence for assessing these two epigenetic drugs for the treatment of AD.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Prenatal Diagnostic Center, Yiwu Maternity and Children Hospital, Yiwu, 322000, China
| | - Wanyao Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qun Ye
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yun Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Xuemin Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ke Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Fan Gao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - An Zhou
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yonghui Wei
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Tian
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Fengjiang Wei
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wentao Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei-Dong Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
7
|
Ruyani SF, Sumarsono SH. Exposure to Valproic acid (VPA) resulted in alterations in the expression of angiogenic genes (NRP-1, VEGFA, VEGFR-2 and sFlt1) and histological modifications in the placenta of mice (Mus musculus). Reprod Toxicol 2023; 119:108405. [PMID: 37207908 DOI: 10.1016/j.reprotox.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Valproic acid (VPA), an anti-epileptic drug (AED), has been reported to exhibit anti-angiogenic properties. This study aimed to examine the impact of VPA on the expression of NRP-1 and additional angiogenic factors, as well as angiogenesis, in mouse placenta. Pregnant mice were divided into four groups: control (K), solvent control (KP), VPA treatment at a dose of 400 mg/kg body weight (BW) (P1), and VPA treatment at a dose of 600 mg/kg BW (P2). The mice were subjected to daily treatment via gavage from embryonic day (E) 9 to E14 and E9 to E16. Histological analysis was performed to evaluate Microvascular Density (MVD) and percentage of the placental labyrinth area. In addition, a comparative analysis of Neuropilin-1 (NRP-1), vascular endothelial growth factor (VEGFA), vascular endothelial growth factor receptor (VEGFR-2), and soluble (sFlt1) expression was conducted in relation to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The results of the MVD analysis and percentage of labyrinth area in the E14 and E16 placentas indicated that the treated groups were significantly lower than the control group. The relative expression levels of NRP-1, VEGFA, and VEGFR-2 in the treated groups were lower than those in the control group at E14 and E16. Meanwhile, the relative expression of sFlt1 in the treated groups at E16 was significantly higher than in the control group. Changes in the relative expression of these genes inhibit angiogenesis regulation in the mouse placenta, as evidenced by reduced MVD and a smaller percentage of the labyrinth area.
Collapse
Affiliation(s)
- Shyfa F Ruyani
- School of Life Sciences and Technology, Institut Teknologi Bandung, 10th Ganesa Street, Bandung, West Java 40132, Indonesia
| | - Sony Heru Sumarsono
- School of Life Sciences and Technology, Institut Teknologi Bandung, 10th Ganesa Street, Bandung, West Java 40132, Indonesia.
| |
Collapse
|
8
|
Yang X, Jiang Z, Jiang Y, Ling J, Dong L, Zou S, Chen R, Hu N. Determination of valproic acid and its six metabolites in human serum using LC-MS/MS and application to interaction with carbapenems in epileptic patients. Biomed Chromatogr 2023; 37:e5572. [PMID: 36520520 DOI: 10.1002/bmc.5572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Valproic acid (VPA) is a classic medication for several types of epilepsy and mood disorders, and some of its effectiveness and toxicity is associated with metabolites. Although many reports have reported the drug-drug interactions of VPA, no study has focused on the influence of carbapenems (CBPMs) on VPA's active metabolites. An LC-MS/MS method for determining VPA and its six metabolites (3-hydroxy valproic acid, 4-hydroxy valproic acid, 2-propyl-2-pentenoic acid, 2-propyl-4-pentenoic acid, 3-keto valproic acid, and 2-propylglutaric acid) in human serum was established and applied to evaluate the drug-drug interaction with CBPMs in epileptic patients. The stable isotope valproic acid-d6 was used as an internal standard. Analytes in serum samples (50 μl) were isolated using a Kinetex C18 column (3 × 100 mm, 2.6 μm) and detected via negative electrospray ionization after protein precipitation. It was linear (r > 0.99) over the calibration range for different analytes. The accuracy was 91.44-110.92%, and the precision was less than 9.98%. The matrix effect, recovery, and stability met the acceptance criteria. According to the data collected from 150 epileptic patients, the concentration-dose ratio for VPA and its metabolites decreased with CBPM polytherapy. This method is simple and rapid with great accuracy and precision. It is suitable for routine clinical analysis of VPA and its metabolites in human serum.
Collapse
Affiliation(s)
- Xuping Yang
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhenwei Jiang
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Jiang
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Ling
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lulu Dong
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Sulan Zou
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rong Chen
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Compliance with Prescribing and Dispensing Conditions for Valproate and Related Substances in Girls and Women of Childbearing Potential: A Survey of Community Pharmacists in France. Drug Saf 2023; 46:121-128. [PMID: 36287388 PMCID: PMC9607717 DOI: 10.1007/s40264-022-01234-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Prenatal exposure to valproate and related substances is associated with a risk of malformations and/or neurodevelopmental disorders. In France, prescription and dispensing conditions of oral valproate forms are subject to risk minimization measures for girls and women of childbearing potential with the aim to limit pregnancy under this treatment. These risk minimization measures were issued in 2015 and were strengthened in 2018. OBJECTIVE We aimed to evaluate compliance with prescription and dispensing conditions of valproate for oral administration: an annual prescription from a specialist and a signed risk acknowledgment form. METHODS Two prospective observational surveys were carried out between 2018 and 2020 on a representative sample of French community pharmacies. Data were collected from female patients aged 2-49 years presenting to one of the participating pharmacies with a valproate prescription. RESULTS In total, 1067 and 824 valproate prescriptions were analyzed in 2018 and 2020, respectively, the majority of which were for girls and women of childbearing potential (≥ 92%). The prescription and dispensing conditions for valproate were met in 42% of cases (95% confidence interval 39-45) in 2018 and in 47% of cases (95% confidence interval 43-50) in 2020. Compliance levels were higher for prescriptions from neurologists (≥ 60%) than from other prescribers (≤ 45%). CONCLUSIONS In France, the implementation of specific risk minimization measures for girls and women of childbearing potential with respect to oral valproate forms and related substances requires a stronger involvement of stakeholders. Increased awareness and compliance among healthcare professionals regarding risk minimization measures could limit prenatal exposure to valproate.
Collapse
|
10
|
Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022; 9:931475. [PMID: 35958418 PMCID: PMC9360326 DOI: 10.3389/fcvm.2022.931475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac hypertrophy is a key process in cardiac remodeling development, leading to ventricle enlargement and heart failure. Recently, studies show the complicated relation between cardiac hypertrophy and epigenetic modification. Post-translational modification of histone is an essential part of epigenetic modification, which is relevant to multiple cardiac diseases, especially in cardiac hypertrophy. There is a group of enzymes related in the balance of histone acetylation/deacetylation, which is defined as histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this review, we introduce an important enzyme family HDAC, a key regulator in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac hypertrophy. Under adverse stimuli such as pressure overload and calcineurin stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating inappropriate gene expression. HDAC III, also known as SIRTs, can interact not only to transcription factors, but also exist interaction mechanisms to other HDACs, such as HDAC IIa. We also present the latest progress of HDAC inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Dao Wen Wang,
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Li Ni,
| |
Collapse
|
11
|
Elsaid HH, Badary OA, Shouman SA, Elmazar M, El-Khatib AS. Enhanced antitumor activity of combined methotrexate and histone deacetylase inhibitor valproic acid on mammary cancer in vitro and in vivo. Can J Physiol Pharmacol 2022; 100:915-925. [PMID: 35679619 DOI: 10.1139/cjpp-2021-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) act as antiproliferative agents by promoting differentiation and inducing apoptosis. Valproic acid (VPA) is an HDACI that shows promising chemotherapeutic effect in several tumor cells. The present study aimed to investigate the inhibitory effect of VPA on the viability of mammary cancer cells and its enhancing effect with methotrexate (MTX) in vitro and in vivo. Treatment with VPA or MTX alone induced concentration-dependent cytotoxic effects in two breast cancer cell lines. VPA significantly increased the cytotoxicity of MTX 3 times against MCF7. VPA addition to MTX, however, did not produce any significant changes on MTX cytotoxicity against MDA-MB231. VPA (150 and 200 mg/kg) significantly inhibited the growth of IP and SC Ehrlich ascites carcinoma tumor mouse models and improved results were achieved for tumor inhibition when VPA was combined with MTX (1 and 2 mg/kg) in vivo. The antitumor activity was not associated with a significant increase in toxicity or mice mortality rate. All these findings suggest that the combination of MTX and VPA may have clinical and/or adjuvant therapeutic application in the treatment of mammary cancer.
Collapse
Affiliation(s)
- Hadia Hosny Elsaid
- The British University in Egypt, 120633, Department of Pharmacology and Biochemistry, El Shorouk, Cairo, Egypt;
| | - Osama A Badary
- The British University in Egypt, 120633, Department of Clinical Pharmacy Practice, El Shorouk, Cairo, Egypt;
| | - Samia A Shouman
- National Cancer Institute Cairo University, 68804, Cairo, Egypt;
| | - Mohey Elmazar
- The British University in Egypt, 120633, Department of Pharmacology and Biochemistry, Cairo,, Cairo, Egypt;
| | - Aiman S El-Khatib
- Cairo University Faculty of Pharmacy, 110154, Pharmacology and Toxicology, Cairo, Egypt;
| |
Collapse
|
12
|
Wang X, Qu M, Li Z, Long Y, Hong K, Li H. Valproic acid promotes the in vitro differentiation of human pluripotent stem cells into spermatogonial stem cell-like cells. Stem Cell Res Ther 2021; 12:553. [PMID: 34715904 PMCID: PMC8555208 DOI: 10.1186/s13287-021-02621-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background Studying human germ cell development and male infertility is heavily relied on mouse models. In vitro differentiation of human pluripotent stem cells into spermatogonial stem cell-like cells (SSCLCs) can be used as a model to study human germ cells and infertility. The current study aimed to develop the SSCLC induction protocol and assess the effects of the developed protocol on SSCLC induction. Methods We examined the effects of valproic acid (VPA), vitamin C (VC) and the combination of VPA and VC on the SSCLC induction efficiency and determined the expression of spermatogonial genes of differentiated cells. Haploid cells and cells expressed meiotic genes were also detected. RNA-seq analysis was performed to compare the transcriptome between cells at 0 and 12 days of differentiation and differently expressed genes were confirmed by RT-qPCR. We further evaluated the alteration in histone marks (H3K9ac and H3K27me3) at 12 days of differentiation. Moreover, the SSCLC induction efficiency of two hiPSC lines of non-obstructive azoospermia (NOA) patients was assessed using different induction protocols. Results The combination of low concentrations of VPA and VC in the induction medium was most effective to induce SSCLCs expressing several spermatogonial genes from human pluripotent stem cells at 12 days of differentiation. The high concentration of VPA was more effective to induce cells expressing meiotic genes and haploid cells. RNA-seq analysis revealed that the induction of SSCLC involved the upregulated genes in Wnt signaling pathway, and cells at 12 days of differentiation showed increased H3K9ac and decreased H3K27me3. Additionally, two hiPSC lines of NOA patients showed low SSCLC induction efficiency and decreased expression of genes in Wnt signaling pathway. Conclusions VPA robustly promoted the differentiation of human pluripotent stem cells into SSCLCs, which involved the upregulated genes in Wnt signaling pathway and epigenetic changes. hiPSCs from NOA patients showed decreased SSCLC induction efficiency and Wnt signaling pathway gene expression, suggesting that SSC depletion in azoospermia testes might be associated with inactivation of Wnt signaling pathway. Our developed SSCLC induction protocol provides a reliable tool and model to study human germ cell development and male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02621-1.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zili Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuting Long
- Wuhan Tongji Reproductive Hospital, Wuhan, 430013, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Wuhan Tongji Reproductive Hospital, Wuhan, 430013, China.
| |
Collapse
|
13
|
Pain E, Shinhmar S, Williams RSB. Using Dictyostelium to Advance Our Understanding of the Role of Medium Chain Fatty Acids in Health and Disease. Front Cell Dev Biol 2021; 9:722066. [PMID: 34589488 PMCID: PMC8473879 DOI: 10.3389/fcell.2021.722066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets have been utilized for many years to improve health, and as a dietary approach for the treatment of a range of diseases, where the mechanism of these low carbohydrate and high fat diets is widely considered to be through the production of metabolic products of fat breakdown, called ketones. One of these diets, the medium chain triglyceride ketogenic diet, involves high fat dietary intake in the form of medium chain fatty acids (MCFAs), decanoic and octanoic acid, and is commonly used in endurance and high intensity exercises but has also demonstrated beneficial effects in the treatment of numerous pathologies including drug resistant epilepsy, cancer, and diabetes. Recent advances, using Dictyostelium discoideum as a model, have controversially proposed several direct molecular mechanisms for decanoic acid in this diet, independent of ketone generation. Studies in this model have identified that decanoic acid reduces phosphoinositide turnover, diacylglycerol kinase (DGK) activity, and also inhibits the mechanistic target of rapamycin complex 1 (mTORC1). These discoveries could potentially impact the treatment of a range of disorders including epilepsy, cancer and bipolar disorder. In this review, we summarize the newly proposed mechanisms for decanoic acid, identified using D. discoideum, and highlight potential roles in health and disease treatment.
Collapse
Affiliation(s)
| | | | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
14
|
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. eLife 2021; 10:62147. [PMID: 34282726 PMCID: PMC8315794 DOI: 10.7554/elife.62147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.
Collapse
Affiliation(s)
- Sayali V Gore
- Department of Neuroscience, Brown University, Providence, United States
| | - Eric J James
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Jenn J Park
- Department of Neuroscience, Brown University, Providence, United States
| | - Andrea Berghella
- Department of Neuroscience, Brown University, Providence, United States
| | - Adrian C Thompson
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
15
|
Gropman AL. Epigenetics and pervasive developmental disorders. EPIGENETICS IN PSYCHIATRY 2021:519-552. [DOI: 10.1016/b978-0-12-823577-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Janković SM, Janković SV. Lessons learned from the discovery of sodium valproate and what has this meant to future drug discovery efforts? Expert Opin Drug Discov 2020; 15:1355-1364. [PMID: 32686964 DOI: 10.1080/17460441.2020.1795125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The discovery of the anticonvulsant properties of valproic acid and the development of valproic acid/valproate to market authorization for specific epilepsy types and syndromes, as well as their repurposing for other indications, are illustrative examples of both the strengths and weaknesses of drug development strategies. AREAS COVERED This review summarizes and interprets the development and repurposing history of valproic acid/valproate. The article is based on articles, including original studies and systematic reviews obtained from PubMed, Scopus, EBSCO, SCIndeks and Google Scholar databases. EXPERT OPINION Random screening and careful observation of the experimental effects of tested substances were crucial for discovering the anticonvulsant effects of valproic acid, while rational drug design and clinical observation strategies led to repurposing valproic acid and valproate for bipolar disorder maintenance treatmentand prevention of migraine attacks. Early planning and feasibility studies of future clinical trials are essential for obtaining marketing authorization of new substances or new indications of old anticonvulsants. Significant progress has been made recently toward understanding, treatment and prevention of hepatotoxicity caused by valproic acid/valproate, making its long-term administration safer. There are ongoing efforts to repurpose valproic acid/valproate for augmentation with antipsychotic drugs for the treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Snežana V Janković
- Faculty of Medical Sciences, University of Kragujevac , Kragujevac, Serbia
| |
Collapse
|
17
|
Nijhawan P, Behl T, Khullar G, Pal G, Kandhwal M, Goyal A. HDAC in obesity: A critical insight. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int J Mol Sci 2020; 21:ijms21103721. [PMID: 32466248 PMCID: PMC7279375 DOI: 10.3390/ijms21103721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
S-adenosylmethionine (SAMe) is involved in many transmethylation reactions in most living organisms and is also required in the synthesis of several substances such as monoamine neurotransmitters and the N-methyl-D-aspartate (NMDA) receptor. Due to its important role as an epigenetic modulator, we discuss in some length the process of DNA methylation and demethylation and the critical periods of epigenetic modifications in the embryo, fetus, and thereafter. We also discuss the effects of SAMe deficiency and the attempts to use SAMe for therapeutic purposes such as the treatment of major depressive disorder, Alzheimer disease, and other neuropsychiatric disorders. SAMe is an approved food additive and as such is also used during pregnancy. Yet, there seems to scanty data on the possible effects of SAMe on the developing embryo and fetus. Valproic acid (VPA) is a well-tolerated and effective antiepileptic drug that is also used as a mood stabilizer. Due to its high teratogenicity, it is contraindicated in pregnancy. A major mechanism of its action is histone deacetylase inhibition, and therefore, it acts as an epigenetic modulator, mainly on the brain. This prompted clinical trials using VPA for additional indications i.e., treating degenerative brain disease such as Alzheimer disease, dementia, HIV, and even cancer. Therefore, we discuss the possible effects of VPA and SAMe on the conceptus and early postnatally, during periods of susceptibility to epigenetic modifications. VPA is also used as an inducer of autistic-like behavior in rodents and was found by us to modify gene expression when administered during the first postnatal week but not when administered to the pregnant dams on day 12 of gestation. In contrast, SAMe modified gene expression when administered on day 12 of pregnancy but not postnatally. If administered together, VPA prevented the changes in gene expression induced by prenatal SAMe administration, and SAMe prevented the gene expression changes and autistic-like behavior induced by early postnatal VPA. It is concluded that both VPA and SAMe are powerful epigenetic modifiers with antagonistic actions on the brain that will probably be used in the future more extensively for the treatment of a variety of epigenetic diseases of the nervous system.
Collapse
|
19
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
20
|
Wang XD, Peng JB, Zhou CY, Que Q, Li HY, He Y, Yang H. Potential therapies for residual hepatoblastoma following incomplete ablation treatment in a nude mouse subcutaneous xenograft model based on lncRNA and mRNA expression profiles. Oncol Rep 2020; 43:1915-1927. [PMID: 32186781 PMCID: PMC7160554 DOI: 10.3892/or.2020.7545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor recurrence following radiofrequency ablation (RFA) treatment in liver cancer is an important factor affecting patient prognosis. Furthermore, the biological role of long non‑coding RNAs (lncRNAs) in residual hepatoblastoma (HB) tissues after RFA remains largely unknown. By using microarray technology, this study investigated the expression of lncRNAs and mRNAs among four pairs of HB tissues (incomplete ablation treatment and no treatment) in a nude mouse subcutaneous xenograft model. Subsequently, bioinformatics analysis was used to understand the functions and pathways of the identified mRNAs. Finally, a connectivity map (CMap) analysis was conducted to identify potential therapeutic strategies for residual HB tissues. Compared with the untreated nude mouse subcutaneous xenograft model, in the experimental group, a significant difference in the expression of 740 lncRNAs and 663 mRNAs was detected. Subsequently, bioinformatics analysis revealed that the differentially expressed mRNAs were significantly enriched in pathways associated with antigen processing, the presentation of endogenous antigens, the regulation of cellular metabolic processes, MAPK signaling and cell cycle regulation. Additionally, six compounds (valproic acid, metformin, tanespimycin, wortmannin, fulvestrant and MK‑886) were identified by CMap analysis as potential therapeutic agents for the treatment of residual HB tissues. These findings provide a novel insight into the pathogenesis of residual HB and potential therapeutic strategies for aggressive tumor recurrence following RFA treatment in patients with HB.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Bo Peng
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuan-Yang Zhou
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiao Que
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Yuan Li
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
21
|
de León P, Bustos MJ, Torres E, Cañas-Arranz R, Sobrino F, Carrascosa AL. Inhibition of Porcine Viruses by Different Cell-Targeted Antiviral Drugs. Front Microbiol 2019; 10:1853. [PMID: 31474954 PMCID: PMC6702965 DOI: 10.3389/fmicb.2019.01853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Antiviral compounds targeting cellular metabolism instead of virus components have become an interesting issue for preventing and controlling the spread of virus infection, either as sole treatment or as a complement of vaccination. Some of these compounds are involved in the control of lipid metabolism and/or membrane rearrangements. Here, we describe the effect of three of these cell-targeting antivirals: lauryl gallate (LG), valproic acid (VPA), and cerulenin (CRL) in the multiplication of viruses causing important porcine diseases. The results confirm the antiviral action in cultured cells of LG against African swine fever virus (ASFV), foot and mouth disease virus (FMDV), vesicular stomatitis virus (VSV), and swine vesicular disease virus (SVDV), as well as the inhibitory effect of VPA and CRL on ASFV infection. Other gallate esters have been also assayed for their inhibition of FMDV growth. The combined action of these antivirals has been also tested in ASFV infections, with some synergistic effects when LG and VPA were co-administered. Regarding the mode of action of the antivirals, experiments on the effect of the time of its addition in infected cell cultures indicated that the inhibition by VPA and CRL occurred at early times after ASFV infection, while LG inhibited a late step in FMDV infection. In all the cases, the presence of the antiviral reduced or abolished the induction of virus-specific proteins. Interestingly, LG also reduced mortality and FMDV load in a mouse model. The possible use of cell-targeted antivirals against porcine diseases is discussed.
Collapse
Affiliation(s)
- Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - María José Bustos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Torres
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel L Carrascosa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Praena B, Bello-Morales R, de Castro F, López-Guerrero JA. Amidic derivatives of valproic acid, valpromide and valnoctamide, inhibit HSV-1 infection in oligodendrocytes. Antiviral Res 2019; 168:91-99. [PMID: 31132386 DOI: 10.1016/j.antiviral.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious agent that can establish latency in neurons, and in some cases, viral retrograde transport results in infection of the central nervous system (CNS). Several antivirals have been identified with the ability to inhibit HSV-1 replication in human cells to a greater or lesser degree, most of which are nucleoside analogues that unfortunately exhibit teratogenic potential, embryotoxicity, carcinogenic or antiproliferative activities and resistances in immunocompromised patients, specially. In the present study, we assessed two amidic derivatives of valproic acid (VPA) - valpromide (VPD) and valnoctamide (VCD) - which are already used in clinic treatments, as feasible HSV-1 antivirals in glial cells. Both VPD and VCD have exhibited increased efficacy in bipolar disorders and as anticonvulsant drugs compared to VPA, while being less teratogenic and hepatotoxic. Cytotoxicity assays carried out in our laboratory showed that VPD and VCD were not toxic in a human oligodendroglioma cell line (HOG), at least at the concentrations established for human treatments. Infectivity assays showed a significant inhibition of HSV-1 infection in HOG cells after VPD and VCD treatment, being more pronounced in VPD-treated cells, comparable to the effects obtained with acyclovir. Furthermore, the same antiherpetic effects of VPD were observed in other oligodendrocytic cell lines and rat primary oligodendrocytes (OPCs), confirming the results obtained in HOG cells. Altogether, our results allow us to propose VPD as a potential antiherpetic drug that is able to act directly on oligodendrocytes of the CNS.
Collapse
Affiliation(s)
- B Praena
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Cantoblanco, Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain.
| | - R Bello-Morales
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Cantoblanco, Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | - J A López-Guerrero
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Cantoblanco, Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
23
|
Xiong W, Lu L, Zhang Y, Xiao Y, Gao H, Zhang M, Zhou D. Attenuation of retinal nerve fibre layer in people with epilepsy receiving valproate. Epilepsy Res 2019; 154:144-148. [PMID: 31151074 DOI: 10.1016/j.eplepsyres.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Valproate (VPA) is one of the most frequently used anti-epileptic drugs (AEDs) worldwide. Its effects in decreasing the retinal nerve fibre layer (RNFL) thickness remain debatable. We aimed to evaluate the effect of VPA usage on the RNFL in comparison with other AEDs and no AED usage in people with epilepsy (PWE). METHODS In this observational case-control study, PWE were enrolled and divided into three groups: PWE 1) receiving VPA monotherapy throughout their clinical course; 2) receiving an AED other than VPA as monotherapy; and 3) who never took any AED. RNFL thickness of the right eye was measured by optical coherence tomography (OCT). In each individual, disease-related information was recorded. RESULTS A total of 86 individuals (51 males; median age, 25 years) with an average epilepsy duration of 6.88 years were enrolled. No difference in the demographics except for sex was noted between the groups. The average RNFL thickness in 26 individuals who had received VPA (group I) was 93.73 ± 9.24 μm, which was significantly lower than the corresponding values for the 31 individuals who received other single AED regimens (group II; 99.71 ± 8.50 μm; p = 0.031) or the 29 individuals who never used any AED (group III; 102.79 ± 8.05 μm; p = 5.67 × 10-4), especially in the superior and inferior quadrants. The RNFL attenuation was significantly correlated with the epilepsy duration in groups II and III (r = 0.351, p = 0.006). However, no correlation between epilepsy duration, cumulative dosage of VPA, duration of treatment with VPA and RNFL thickness was found in group Ⅰ. CONCLUSION These preliminary findings suggest an association between VPA usage and reduction of retinal thickness in PWE, especially in the superior and inferior quadrants. Epilepsy itself might also be another risk factor for RNFL attenuation. Further studies need to confirm this finding and to unravel the underlying mechanism.
Collapse
Affiliation(s)
- Weixi Xiong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Lu Lu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yingfeng Xiao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Weeks KL. HDAC inhibitors and cardioprotection: Homing in on a mechanism of action. EBioMedicine 2019; 40:21-22. [PMID: 30639419 PMCID: PMC6413300 DOI: 10.1016/j.ebiom.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
25
|
Abstract
Mental disorders affect a high percentage of the general population and are associated with a significant burden. One major component of treatment for mental illnesses is pharmacotherapy. Various psychotropic medications are used in the treatment of psychiatric disorders and these are often associated with a plethora of side effects. The many side effects of psychotropic drugs can severely impair patients' quality of life and decrease their adherence to treatment. Among the relatively neglected and less-studied potential side effects of psychotropic drugs are impairment of sperm parameters and fertility problems among male patients. This article summarizes the data with regard to the effects of 6 widely used psychotropic drugs-lithium, valproate, haloperidol, olanzapine, imipramine, and fluoxetine-on sexual function and sperm parameters in male subjects. In general, the reviewed data suggest that these medications can be associated with sexual function problems and negative effects on sperm parameters among male subjects. It is important to note that most of the data are based on preclinical studies and nonrandomized clinical trials with relatively small sample sizes, so that it is not possible to draw unequivocal conclusions with regard to the clinical relevance of the findings. Prospective, randomized clinical trials are necessary to elucidate the effects of psychotropic drugs on men's sperm parameters and fertility indices per se.
Collapse
|
26
|
Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers (Basel) 2018; 10:cancers10120481. [PMID: 30513925 PMCID: PMC6315366 DOI: 10.3390/cancers10120481] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The liver executes versatile functions and is the chief organ for metabolism of toxicants/xenobiotics. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third foremost cause of cancer death worldwide. Oxidative stress is a key factor related with the development and progression of HCC. Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) is a cytosolic transcription factor, which regulates redox homeostasis by activating the expression of an array of antioxidant response element-dependent genes. Nrf2 displays conflicting roles in normal, healthy liver and HCC; in the former, Nrf2 offers beneficial effects, whereas in the latter it causes detrimental effects favouring the proliferation and survival of HCC. Sustained Nrf2 activation has been observed in HCC and facilitates its progression and aggressiveness. This review summarizes the role and mechanism(s) of action of Nrf2 dysregulation in HCC and therapeutic options that can be employed to modulate this transcription factor.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
27
|
Kelly E, Sharma D, Wilkinson CJ, Williams RSB. Diacylglycerol kinase (DGKA) regulates the effect of the epilepsy and bipolar disorder treatment valproic acid in Dictyostelium discoideum. Dis Model Mech 2018; 11:11/9/dmm035600. [PMID: 30135067 PMCID: PMC6176992 DOI: 10.1242/dmm.035600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Valproic acid (VPA) provides a common treatment for both epilepsy and bipolar disorder; however, common cellular mechanisms relating to both disorders have yet to be proposed. Here, we explore the possibility of a diacylglycerol kinase (DGK) playing a role in regulating the effect of VPA relating to the treatment of both disorders, using the biomedical model Dictyostelium discoideum. DGK enzymes provide the first step in the phosphoinositide recycling pathway, implicated in seizure activity. They also regulate levels of diacylglycerol (DAG), thereby regulating the protein kinase C (PKC) activity that is linked to bipolar disorder-related signalling. Here, we show that ablation of the single Dictyostelium dgkA gene results in reduced sensitivity to the acute effects of VPA on cell behaviour. Loss of dgkA also provides reduced sensitivity to VPA in extended exposure during development. To differentiate a potential role for this DGKA-dependent mechanism in epilepsy and bipolar disorder treatment, we further show that the dgkA null mutant is resistant to the developmental effects of a range of structurally distinct branched medium-chain fatty acids with seizure control activity and to the bipolar disorder treatment lithium. Finally, we show that VPA, lithium and novel epilepsy treatments function through DAG regulation, and the presence of DGKA is necessary for compound-specific increases in DAG levels following treatment. Thus, these experiments suggest that, in Dictyostelium, loss of DGKA attenuates a common cellular effect of VPA relating to both epilepsy and bipolar disorder treatments, and that a range of new compounds with this effect should be investigated as alternative therapeutic agents. This article has an associated First Person interview with the first author of the paper. Editor's choice: Here, using a tractable model system, Dictyostelium discoideum, we show that diacylglycerol kinase activity might contribute to the cellular mechanism of action of the epilepsy and bipolar disorder treatment, valproic acid.
Collapse
Affiliation(s)
- Elizabeth Kelly
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Devdutt Sharma
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
28
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
29
|
Griggs CA, Malm SW, Jaime-Frias R, Smith CL. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors. Toxicol Appl Pharmacol 2017; 339:110-120. [PMID: 29229235 DOI: 10.1016/j.taap.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage.
Collapse
Affiliation(s)
- Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Scott W Malm
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
30
|
Liu Y, Li S, Zhang Z, Lv Z, Jiang H, Tan X, Liu F. Effects of valproic acid on sympathetic activity and left ventricularmyocardial remodelling in rats during pressure overload. Turk J Med Sci 2017; 47:1651-1660. [PMID: 29152949 DOI: 10.3906/sag-1704-142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim: Pressure overload induces cardiac remodelling and results in heart failure. Enhanced sympathetic outflow participates in the development of cardiac remodelling for the duration of pressure overload as an independent factor. Valproic acid has recently been shown to reduce neuronal injury and have antiinflammatory and antiapoptotic effects as a histone deacetylase inhibitor. We speculate that the drug plays a specific role in alleviating cardiac remodelling by inhibiting sympathetic activity. Materials and methods: Surgery of partial abdominal aortic constriction was performed on male Sprague-Dawley rats. After 4 weeks, animal models of pressure overload were validated and then valproic acid (300 mg/kg) was administrated to rats once a day for the next 4 weeks. Experimental parameters were detected 4 weeks after validation. Results: The administration of valproic acid alleviated cardiomyocyte hypertrophy, myocardial interstitial fibrosis and left ventricular diastolic dysfunction caused by partial abdominal aortic constriction. Valproic acid reduced the levels of plasma and local norepinephrine, augmented concentrations of hypothalamic gamma-aminobutyric acid, and had no side effects on the hepatic and renal function of the animals. Conclusion: These results suggest that valproic acid may be a safe and effective therapeutic strategy for the inhibition of sympathetic outflow and cardiac remodelling.
Collapse
|
31
|
Ahangar N, Naderi M, Noroozi A, Ghasemi M, Zamani E, Shaki F. Zinc Deficiency and Oxidative Stress Involved in Valproic Acid Induced Hepatotoxicity: Protection by Zinc and Selenium Supplementation. Biol Trace Elem Res 2017; 179:102-109. [PMID: 28124216 DOI: 10.1007/s12011-017-0944-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Valproic acid (VPA) is an antiepileptic drug, which its usage is limited due to its hepatotoxicity. The present study was conducted to investigate the efficacy of zinc (Zn) and selenium (Se), necessary trace elements, against VPA-induced hepatotoxicity in Wistar rats. The animals were divided into five groups: control, VPA 200 mg/kg, VPA + Zn (100 mg/kg), VPA + Se (100 mg/kg), and VPA + Zn + Se. The administration of VPA for four consecutive weeks resulted in decrease in serum level of Zn in rats. Also, an increase in liver marker enzymes (ALT and AST) and also histological changes in liver tissue were shown after VPA administration. Oxidative stress was evident in VPA group by increased lipid peroxidation (LPO), protein carbonyl (PCO), glutathione (GSH) oxidation, and reducing total antioxidant capacity. Zn and Se (100 mg/kg) administration was able to protect against deterioration in liver enzyme, abrogated the histological change in liver tissue, and suppressed the increase in oxidative stress markers. Zn and combination of Zn plus Se treatment showed more protective effects than Se alone. These results imply that Zn and Se should be suggested as effective supplement products for the prevention of VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nematollah Ahangar
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maloos Naderi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolali Noroozi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zamani
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
32
|
Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons. Biochem Biophys Res Commun 2017; 491:291-295. [DOI: 10.1016/j.bbrc.2017.07.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
|
33
|
Schuetze KB, Stratton MS, Blakeslee WW, Wempe MF, Wagner FF, Holson EB, Kuo YM, Andrews AJ, Gilbert TM, Hooker JM, McKinsey TA. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts. J Pharmacol Exp Ther 2017; 361:140-150. [PMID: 28174211 PMCID: PMC5363768 DOI: 10.1124/jpet.116.237701] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development.
Collapse
Affiliation(s)
- Katherine B Schuetze
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Matthew S Stratton
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Weston W Blakeslee
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Michael F Wempe
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Florence F Wagner
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Edward B Holson
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Yin-Ming Kuo
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Andrew J Andrews
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Tonya M Gilbert
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Jacob M Hooker
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| | - Timothy A McKinsey
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, University of Colorado Denver, Aurora, Colorado (M.F.W.); Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts (F.F.W., E.B.H.); Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Y.-M.K., A.J.A.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts (T.M.G., J.M.H.)
| |
Collapse
|
34
|
Patrick NM, Griggs CA, Icenogle AL, Gilpatrick MM, Kadiyala V, Jaime-Frias R, Smith CL. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1. J Steroid Biochem Mol Biol 2017; 167:1-13. [PMID: 27645313 PMCID: PMC5444329 DOI: 10.1016/j.jsbmb.2016.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 01/23/2023]
Abstract
Small molecule inhibitors of lysine deacetylases (KDACs) are approved for clinical use in treatment of several diseases. Nuclear receptors, such as the glucocorticoid receptor (GR) use lysine acetyltransferases (KATs or HATs) and KDACs to regulate transcription through acetylation and deacetylation of protein targets such as histones. Previously we have shown that KDAC1 activity facilitates GR-activated transcription at about half of all cellular target genes. In the current study we examine the role of Class I KDACs in glucocorticoid-mediated repression of gene expression. Inhibition of KDACs through two structurally distinct Class I-selective inhibitors prevented dexamethasone (Dex)-mediated transcriptional repression in a gene-selective fashion. In addition, KDAC activity is also necessary to maintain repression. Steroid receptor coactivator 2 (SRC2), which is known to play a vital role in GR-mediated repression of pro-inflammatory genes, was found to be dispensable for repression of glucocorticoid target genes sensitive to KDAC inhibition. At the promoters of these genes, KDAC inhibition did not result in altered nucleosome occupancy or histone H3 acetylation. Surprisingly, KDAC inhibition rapidly induced a significant decrease in H3K4Me2 at promoter nucleosomes with no corresponding change in H3K4Me3, suggesting the activation of the lysine demethylase, LSD1/KDM1A. Depletion of LSD1 expression via siRNA restored Dex-mediated repression in the presence of KDAC inhibitors, suggesting that LSD1 activation at these gene promoters is incompatible with transcriptional repression. Treatment with KDAC inhibitors does not alter cellular levels of LSD1 or its association with Dex-repressed gene promoters. Therefore, we conclude that Class I KDACs facilitate Dex-induced transcriptional repression by suppressing LSD1 complex activity at selected target gene promoters. Rather than facilitating repression of transcription, LSD1 opposes it in these gene contexts.
Collapse
Affiliation(s)
- Nina M Patrick
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Ali L Icenogle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Maryam M Gilpatrick
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ, 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
35
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
36
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
37
|
Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, Booth CJ, Medzhitov R. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell 2016; 166:1512-1525.e12. [PMID: 27610573 DOI: 10.1016/j.cell.2016.07.026] [Citation(s) in RCA: 398] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so-called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here, we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, whereas blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sarah C Huen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Nephrology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harding H Luan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jean-Dominique Gallezot
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
38
|
Gamen E, Seeger W, Pullamsetti SS. The emerging role of epigenetics in pulmonary hypertension. Eur Respir J 2016; 48:903-17. [PMID: 27492834 DOI: 10.1183/13993003.01714-2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Epigenetics is usually defined as the study of changes in phenotype and gene expression not related to sequence alterations, but rather the chemical modifications of DNA and of its associated chromatin proteins. These modifications can be acquired de novo, being inherited, and represent the way in which genome and environment interact. Recent evidence points to the involvement of epigenetic changes in the pathogenesis of pulmonary hypertension, as they can partly explain how environmental and lifestyle factors can impose susceptibility to pulmonary hypertension and can explain the phenotypic alteration and maintenance of the disease state.In this article, we review the epigenetic regulatory mechanisms that are mediated by DNA methylation, the post-translational modifications of histone tails and noncoding RNAs in the pathogenesis of pulmonary hypertension. Furthermore, pharmacological interventions aimed at epigenetic regulators/modifiers and their outcomes in different cellular and preclinical rodent models are discussed. Lastly, the remaining challenges and future directions in which to explore epigenetic-based therapies in pulmonary hypertension are discussed.
Collapse
Affiliation(s)
- Elisabetta Gamen
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Werner Seeger
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
39
|
Fan HC, Lee HS, Chang KP, Lee YY, Lai HC, Hung PL, Lee HF, Chi CS. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int J Mol Sci 2016; 17:E1242. [PMID: 27490534 PMCID: PMC5000640 DOI: 10.3390/ijms17081242] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Herng-Shen Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, 813 Kaohsiung, Taiwan.
| | - Kai-Ping Chang
- Department of Pediatrics, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
- Faculty of Medicine, National Yang-Ming University, 112 Taipei, Taiwan.
| | - Hsin-Chuan Lai
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Kaohsiung Chang Gung Medical Center, 833 Kaohsiung, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, 407 Taichung, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| |
Collapse
|
40
|
Amino Acid Promoieties Alter Valproic Acid Pharmacokinetics and Enable Extended Brain Exposure. Neurochem Res 2016; 41:2797-2809. [DOI: 10.1007/s11064-016-1996-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/04/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
41
|
Arulmozhivarman G, Stöter M, Bickle M, Kräter M, Wobus M, Ehninger G, Stölzel F, Brand M, Bornhäuser M, Shayegi N. In Vivo Chemical Screen in Zebrafish Embryos Identifies Regulators of Hematopoiesis Using a Semiautomated Imaging Assay. ACTA ACUST UNITED AC 2016; 21:956-64. [DOI: 10.1177/1087057116644163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) generate all cell types of the blood and are crucial for homeostasis of all blood lineages in vertebrates. Hematopoietic stem cell transplantation (HSCT) is a rapidly evolving technique that offers potential cure for hematologic cancers, such as leukemia or lymphoma. HSCT may be autologous or allogenic. Successful HSCT depends critically on the abundance of engraftment-competent HSPCs, which are currently difficult to obtain in large numbers. Therefore, finding compounds that enhance either the number or the activity of HSPCs could improve prognosis for patients undergoing HSCT and is of great clinical interest. We developed a semiautomated screening method for whole zebrafish larvae using conventional liquid handling equipment and confocal microscopy. Applying this pipeline, we screened 550 compounds in triplicate for proliferation of HSPCs in vivo and identified several modulators of hematopoietic stem cell activity. One identified hit was valproic acid (VPA), which was further validated as a compound that expands and maintains the population of HSPCs isolated from human peripheral blood ex vivo. In summary, our in vivo zebrafish imaging screen identified several potential drug candidates with clinical relevance and could easily be further expanded to screen more compounds.
Collapse
Affiliation(s)
- Guruchandar Arulmozhivarman
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Stöter
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Kräter
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies, Cluster of Excellence, Bioinnovation Center, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nona Shayegi
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Frej AD, Clark J, Le Roy CI, Lilla S, Thomason PA, Otto GP, Churchill G, Insall RH, Claus SP, Hawkins P, Stephens L, Williams RSB. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Mol Cell Biol 2016; 36:1464-79. [PMID: 26951199 PMCID: PMC4859692 DOI: 10.1128/mcb.00039-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.
Collapse
Affiliation(s)
- Anna D Frej
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Jonathan Clark
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Caroline I Le Roy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Peter A Thomason
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Grant P Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Grant Churchill
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Phillip Hawkins
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Len Stephens
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
43
|
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol 2016; 138-140:19-35. [PMID: 26965387 DOI: 10.1016/j.pneurobio.2016.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.
Collapse
Affiliation(s)
- Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lindsay Falgoust
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jullie W Pan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Crespillo AJ, Praena B, Bello-Morales R, Lerma L, Vázquez-Calvo A, Martín-Acebes MA, Tabarés E, Sobrino F, López-Guerrero JA. Inhibition of herpes virus infection in oligodendrocyte cultured cells by valproic acid. Virus Res 2016; 214:71-9. [PMID: 26805038 DOI: 10.1016/j.virusres.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
Valproic acid (VPA) is a small fatty acid used for treatment of different neurologic diseases such as epilepsy, migraines or bipolar disorders. VPA modulates different processes of cell metabolism that can lead to alterations in susceptibility of several cell types to the infection of Human Immunodeficiency Virus (HIV), Epstein-Barr virus (EBV), as well as to exert an inhibitory effect on the replication of different enveloped viruses in cultured cells. Taken these data into account and the fact that HSV-1 has been involved in some neuropathies, we have characterized the effect of VPA on this herpesvirus infection of the differentiation/maturation-inducible human oligodendrocyte cell line HOG, which resulted more susceptible to VPA inhibition of virus growth after cell differentiation. In these cells, the role of VPA in virus entry was tackled. Incubation with VPA induced a slight but reproducible inhibition in the virus particles uptake mainly observed when the drug was added in the adsorption or early upon infection. In addition, transcription and expression of viral proteins were significantly downregulated in the presence of VPA. Remarkably, when the infective viral production was assessed, VPA dramatically blocked the detection of infectious HSV-1 particles. Herein, our results indicate that VPA treatment of HOG cells significantly reduces the effect of HSV-1 infection, virus entry and productivity without affecting cellular viability.
Collapse
Affiliation(s)
- A J Crespillo
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - B Praena
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - R Bello-Morales
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - L Lerma
- Universidad Autónoma de Madrid, Facultad de Medicina, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - A Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - M A Martín-Acebes
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - E Tabarés
- Universidad Autónoma de Madrid, Facultad de Medicina, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - F Sobrino
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - J A López-Guerrero
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
45
|
|
46
|
Balasubramanian D, Deng AX, Doudney K, Hampton MB, Kennedy MA. Valproic acid exposure leads to upregulation and increased promoter histone acetylation of sepiapterin reductase in a serotonergic cell line. Neuropharmacology 2015; 99:79-88. [DOI: 10.1016/j.neuropharm.2015.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 05/22/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023]
|
47
|
Zuckermann AME, La Ragione RM, Baines DL, Williams RSB. Valproic acid protects against haemorrhagic shock-induced signalling changes via PPARγ activation in an in vitro model. Br J Pharmacol 2015; 172:5306-17. [PMID: 26333042 PMCID: PMC5123713 DOI: 10.1111/bph.13320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Valproic acid (VPA), a widely used epilepsy and bipolar disorder treatment, provides acute protection against haemorrhagic shock-induced mortality in a range of in vivo models through an unknown mechanism. In the liver, this effect occurs with a concomitant protection against a decrease in GSK3β-Ser(9) phosphorylation. Here, we developed an in vitro model to investigate this protective effect of VPA and define a molecular mechanism. EXPERIMENTAL APPROACH The human hepatocarcinoma cell line (Huh7) was exposed to conditions occurring during haemorrhagic shock (hypoxia, hypercapnia and hypothermia) to investigate the changes in GSK3β-Ser(9) phosphorylation for a 4 h period following treatment with VPA, related congeners, PPAR agonists, antagonists and siRNA. KEY RESULTS Huh7 cells undergoing combined hypoxia, hypercapnia, and hypothermia reproduced the reduced GSK3β-Ser(9) phosphorylation shown in vivo during haemorrhagic shock, and this change was blocked by VPA. The protective effect occurred through upstream PTEN and Akt signalling, and prevented downstream β-catenin degradation while increasing histone 2/3 acetylation. This effect was reproduced by several VPA-related compounds with known PPARγ agonist activity, independent of histone deacetylase (HDAC) inhibitory activity. Specific pharmacological inhibition (by T0070907) or knockdown of PPARγ blocked the protective effect of VPA against these signalling changes and apoptosis. In addition, specific activation of PPARγ using ciglitazone reproduced the changes induced by VPA in haemorrhagic shock-like conditions. CONCLUSION AND IMPLICATIONS Changes in GSK3β-Ser(9) phosphorylation in in vivo haemorrhagic shock models can be modelled in vitro, and this has identified a role for PPARγ activation in the protective role of VPA.
Collapse
Affiliation(s)
- Alexandra M E Zuckermann
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Roberto M La Ragione
- School of Veterinary Medicine, University of Surrey, Guildford Surrey, GU2 7XH, UK
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| |
Collapse
|
48
|
Dreser N, Zimmer B, Dietz C, Sügis E, Pallocca G, Nyffeler J, Meisig J, Blüthgen N, Berthold MR, Waldmann T, Leist M. Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology 2015; 50:56-70. [PMID: 26238599 DOI: 10.1016/j.neuro.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
Functional assays, such as the "migration inhibition of neural crest cells" (MINC) developmental toxicity test, can identify toxicants without requiring knowledge on their mode of action (MoA). Here, we were interested, whether (i) inhibition of migration by structurally diverse toxicants resulted in a unified signature of transcriptional changes; (ii) whether statistically-identified transcript patterns would inform on compound grouping even though individual genes were little regulated, and (iii) whether analysis of a small group of biologically-relevant transcripts would allow the grouping of compounds according to their MoA. We analyzed transcripts of 35 'migration genes' after treatment with 16 migration-inhibiting toxicants. Clustering, principal component analysis and correlation analyses of the data showed that mechanistically related compounds (e.g. histone deacetylase inhibitors (HDACi), PCBs) triggered similar transcriptional changes, but groups of structurally diverse toxicants largely differed in their transcriptional effects. Linear discriminant analysis (LDA) confirmed the specific clustering of HDACi across multiple separate experiments. Similarity of the signatures of the HDACi trichostatin A and suberoylanilide hydroxamic acid to the one of valproic acid (VPA), suggested that the latter compound acts as HDACi when impairing neural crest migration. In conclusion, the data suggest that (i) a given functional effect (e.g. inhibition of migration) can be associated with highly diverse signatures of transcript changes; (ii) statistically significant grouping of mechanistically-related compounds can be achieved on the basis of few genes with small regulations. Thus, incorporation of mechanistic markers in functional in vitro tests may support read-across procedures, also for structurally un-related compounds.
Collapse
Affiliation(s)
- Nadine Dreser
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Bastian Zimmer
- Center for Stem Cell Biology, Sloan-Kettering Institute, New York City, NY, USA; Developmental Biology Program, Sloan-Kettering Institute, New York City, NY, USA.
| | - Christian Dietz
- Lehrstuhl für Bioinformatik und Information Mining, University of Konstanz, Konstanz, Germany
| | - Elena Sügis
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Giorgia Pallocca
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Johanna Nyffeler
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany; Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
| | - Michael R Berthold
- Lehrstuhl für Bioinformatik und Information Mining, University of Konstanz, Konstanz, Germany
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair of In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Williams RSB, Bate C. An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling. Neuropharmacology 2015; 101:566-75. [PMID: 26116815 DOI: 10.1016/j.neuropharm.2015.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic treatment, valproic acid (VPA). We show that amyloid-β (Aβ), isolated from patient tissue and thought to be the causative agent of Alzheimer's disease, caused the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine-string protein from cultured mouse neurons. Aβ-induced synapse damage was reduced by pre-treatment with physiologically relevant concentrations of VPA (10 μM) and a structural variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson's disease, and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, Aβ-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic damage that occurs during Alzheimer's and Parkinson's and prion diseases.
Collapse
Affiliation(s)
- Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK.
| |
Collapse
|
50
|
Cavasin MA, Stenmark KR, McKinsey TA. Emerging roles for histone deacetylases in pulmonary hypertension and right ventricular remodeling (2013 Grover Conference series). Pulm Circ 2015; 5:63-72. [PMID: 25992271 DOI: 10.1086/679700] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/30/2014] [Indexed: 01/14/2023] Open
Abstract
Reversible lysine acetylation has emerged as a critical mechanism for controlling the function of nucleosomal histones as well as diverse nonhistone proteins. Acetyl groups are conjugated to lysine residues in proteins by histone acetyltransferases and removed by histone deacetylases (HDACs), which are also commonly referred to as lysine deacetylases. Over the past decade, many studies have shown that HDACs play crucial roles in the control of left ventricular (LV) cardiac remodeling in response to stress. Small molecule HDAC inhibitors block pathological hypertrophy and fibrosis and improve cardiac function in various preclinical models of LV failure. Only recently have HDACs been studied in the context of right ventricular (RV) failure, which commonly occurs in patients who experience pulmonary hypertension (PH). Here, we review recent findings with HDAC inhibitors in models of PH and RV remodeling, propose next steps for this newly uncovered area of research, and highlight potential for isoform-selective HDAC inhibitors for the treatment of PH and RV failure.
Collapse
Affiliation(s)
- Maria A Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, Division of Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|