1
|
Xiong S. Gut-Microbiota-Driven Lipid Metabolism: Mechanisms and Applications in Swine Production. Metabolites 2025; 15:248. [PMID: 40278377 PMCID: PMC12029090 DOI: 10.3390/metabo15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: The gut microbiota plays a pivotal role in host physiology through metabolite production, with lipids serving as essential biomolecules for cellular structure, metabolism, and signaling. This review aims to elucidate the interactions between gut microbiota and lipid metabolism and their implications for enhancing swine production. Methods: We systematically analyzed current literature on microbial lipid metabolism, focusing on mechanistic studies on microbiota-lipid interactions, key regulatory pathways in microbial lipid metabolism, and multi-omics evidence (metagenomic/metabolomic) from swine models. Results: This review outlines the structural and functional roles of lipids in bacterial membranes and examines the influence of gut microbiota on the metabolism of key lipid classes, including cholesterol, bile acids, choline, sphingolipids, and fatty acids. Additionally, we explore the potential applications of microbial lipid metabolism in enhancing swine production performance. Conclusions: Our analysis establishes a scientific framework for microbiota-based strategies to optimize lipid metabolism. The findings highlight potential interventions to improve livestock productivity through targeted manipulation of gut microbial communities.
Collapse
Affiliation(s)
- Shuqi Xiong
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Liu T, Nie H, Huo Z, Yan X. The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110133. [PMID: 39870227 DOI: 10.1016/j.cbpc.2025.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum. The gene structure, protein structure, chromosome localization, and phylogenetic analysis of aminotransferase were conducted using bioinformatics. According to the gene structure and phylogenetic analysis of aminotransferase proteins, aminotransferase proteins can be categorized into class I and II, class III, and class V. RNA-seq data analysis showed that aminotransferase genes were differentially expressed at different developmental stages, tissues, and salinity stress. In addition, qPCR demonstrated that the expression levels of most aminotransferase genes increased significantly during salinity changes. We also measured the free amino acids content in the gills of R. philippinarum after 48 h of low and high salinity stress. The results indicated that the total free amino acids under low salinity stress (75.89 ± 3.31 mg/g) and high salinity stress (91.01 ± 3.31 mg/g) at 48 h were significantly decreased and increased compared with the control group (83.01 ± 3.12 mg/g), respectively. The results of this study provide a valuable reference for further research on the salinity adaptation of the aminotransferase gene in R. philippinarum.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
3
|
Ashley B, Mathew S, Sajjad M, Zhu Y, Novikovs N, Baslé A, Marles-Wright J, Campopiano DJ. Rational engineering of a thermostable α-oxoamine synthase biocatalyst expands the substrate scope and synthetic applicability. Commun Chem 2025; 8:78. [PMID: 40082705 PMCID: PMC11906848 DOI: 10.1038/s42004-025-01448-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Carbon-carbon bond formation is one of the key pillars of organic synthesis. Green, selective and efficient biocatalytic methods for such are therefore highly desirable. The α-oxoamine synthases (AOSs) are a class of pyridoxal 5'-phosphate (PLP)-dependent, irreversible, carbon-carbon bond-forming enzymes, which have been limited previously by their narrow substrate specificity and requirement of acyl-CoA thioester substrates. We recently characterized a thermophilic enzyme from Thermus thermophilus (ThAOS) with a much broader substrate scope and described its use in a chemo-biocatalytic cascade process to generate pyrroles in good yields and timescales. Herein, we report the structure-guided engineering of ThAOS to arrive at variants able to use a greatly expanded range of amino acid and simplified N-acetylcysteamine (SNAc) acyl-thioester substrates. The crystal structure of the improved ThAOS V79A variant with a bound PLP:L-penicillamine external aldimine ligand, provides insight into the properties of the engineered biocatalyst.
Collapse
Affiliation(s)
- Ben Ashley
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Sam Mathew
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Mariyah Sajjad
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Yaoyi Zhu
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Nikita Novikovs
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Marles-Wright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK.
| |
Collapse
|
4
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
5
|
Zhang DK, Song KY, Yan YQ, Zheng JT, Xu J, Da LT, Xu MJ. Structural and mechanistic investigations on CC bond forming α-oxoamine synthase allowing L-glutamate as substrate. Int J Biol Macromol 2024; 268:131696. [PMID: 38642679 DOI: 10.1016/j.ijbiomac.2024.131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Carbon‑carbon (C-C) bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase (AOS), named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with β-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.
Collapse
Affiliation(s)
- Dai-Ke Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Yuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ya-Qian Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jian-Ting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
6
|
Xie T, Dong F, Han G, Wu X, Liu P, Zhang Z, Zhong J, Niranjanakumari S, Gable K, Gupta SD, Liu W, Harrison PJ, Campopiano DJ, Dunn TM, Gong X. Collaborative regulation of yeast SPT-Orm2 complex by phosphorylation and ceramide. Cell Rep 2024; 43:113717. [PMID: 38285738 DOI: 10.1016/j.celrep.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular β-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular β-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianlong Zhong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peter J Harrison
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Zhou Y, Reynolds TB. Innovations in Antifungal Drug Discovery among Cell Envelope Synthesis Enzymes through Structural Insights. J Fungi (Basel) 2024; 10:171. [PMID: 38535180 PMCID: PMC10970773 DOI: 10.3390/jof10030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 11/11/2024] Open
Abstract
Life-threatening systemic fungal infections occur in immunocompromised patients at an alarming rate. Current antifungal therapies face challenges like drug resistance and patient toxicity, emphasizing the need for new treatments. Membrane-bound enzymes account for a large proportion of current and potential antifungal targets, especially ones that contribute to cell wall and cell membrane biosynthesis. Moreover, structural biology has led to a better understanding of the mechanisms by which these enzymes synthesize their products, as well as the mechanism of action for some antifungals. This review summarizes the structures of several current and potential membrane-bound antifungal targets involved in cell wall and cell membrane biosynthesis and their interactions with known inhibitors or drugs. The proposed mechanisms of action for some molecules, gleaned from detailed inhibitor-protein studeis, are also described, which aids in further rational drug design. Furthermore, some potential membrane-bound antifungal targets with known inhibitors that lack solved structures are discussed, as these might be good enzymes for future structure interrogation.
Collapse
Affiliation(s)
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
8
|
Mohassel P, Abdullah M, Eichler FS, Dunn TM. Serine Palmitoyltransferase (SPT)-related Neurodegenerative and Neurodevelopmental Disorders. J Neuromuscul Dis 2024; 11:735-747. [PMID: 38788085 PMCID: PMC11307022 DOI: 10.3233/jnd-240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Motor neuron diseases and peripheral neuropathies are heterogeneous groups of neurodegenerative disorders that manifest with distinct symptoms due to progressive dysfunction or loss of specific neuronal subpopulations during different stages of development. A few monogenic, neurodegenerative diseases associated with primary metabolic disruptions of sphingolipid biosynthesis have been recently discovered. Sphingolipids are a subclass of lipids that form critical building blocks of all cellular and subcellular organelle membranes including the membrane components of the nervous system cells. They are especially abundant within the lipid portion of myelin. In this review, we will focus on our current understanding of disease phenotypes in three monogenic, neuromuscular diseases associated with pathogenic variants in components of serine palmitoyltransferase, the first step in sphingolipid biosynthesis. These include hereditary sensory and autonomic neuropathy type 1 (HSAN1), a sensory predominant peripheral neuropathy, and two neurodegenerative disorders: juvenile amyotrophic lateral sclerosis affecting the upper and lower motor neurons with sparing of sensory neurons, and a complicated form of hereditary spastic paraplegia with selective involvement of the upper motor neurons and more broad CNS neurodegeneration. We will also review our current understanding of disease pathomechanisms, therapeutic approaches, and the unanswered questions to explore in future studies.
Collapse
Affiliation(s)
- Payam Mohassel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meher Abdullah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian S. Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
9
|
Mughram MHA, Kellogg GE, Wattenberg BW. Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi. Adv Biol Regul 2024; 91:101010. [PMID: 38135565 PMCID: PMC10922298 DOI: 10.1016/j.jbior.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
Collapse
Affiliation(s)
- Mohammed H Al Mughram
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
11
|
Jiang C, Peng M, Dai Z, Chen Q. Screening of Lipid Metabolism-Related Genes as Diagnostic Indicators in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2739-2754. [PMID: 38046983 PMCID: PMC10693249 DOI: 10.2147/copd.s428984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
Objective It has been observed that local and systemic disorders of lipid metabolism occur during the development of chronic obstructive pulmonary disease (COPD), but no specific mechanism has yet been identified. Methods The mRNA microarray dataset GSE76925 of COPD patients was downloaded from the Gene Expression Omnibus database and screened for differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from the Kyoto Encyclopedia of Genes and Genomes database and Molecular Signature Database. The DEGs were intersected with LMRGs to obtain differentially expressed lipid metabolism-related genes (DeLMRGs). GO enrichment analysis and KEGG pathway analysis were performed on DeLMRGs, and protein-protein interaction networks were constructed and screened to identify hub genes. The GSE8581 validation set and further ELISA experiments were used to validate key DeLMRG expression. Results Differential analysis of dataset GSE76925 identified 587 DEGs, of which 62 genes were up-regulated and 525 were down-regulated. Taking the intersection of 587 DEGs with 1102 LMRGs, 20 DeLMRGs were obtained, including 1 up-regulated gene and 19 down-regulated genes. 10 hub genes were screened by cytohubba plugin, including 9 down-regulated genes PLA2G4A, HPGDS, LEP, PTGES3, LEPR, PLA2G2D, MED21, SPTLC1 and BCHE, as well as the only up-regulated gene PLA2G7. Validation of the identified 10 DeLMRGs using the validation set GSE8581 revealed that BCHE and PLA2G7 expression levels differed between the two groups. We further constructed the ceRNA network of BCHE and PLA2G7. Cell experiments also showed that PLA2G7 expression was up-regulated and BCHE expression was down-regulated in CSE-treated RAW264.7 and THP-1 cells. Conclusion Based on a comprehensive bioinformatic analysis of lipid metabolism genes, we identified BCHE and PLA2G7 as potentially significant biomarkers of COPD. These biomarkers may represent promising targets for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
12
|
Koutsogiannis Z, Mina JG, Albus CA, Kol MA, Holthuis JM, Pohl E, Denny PW. Toxoplasma ceramide synthases: Gene duplication, functional divergence, and roles in parasite fitness. FASEB J 2023; 37:e23229. [PMID: 37795915 PMCID: PMC10946778 DOI: 10.1096/fj.202201603rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Toxoplasma gondii is an obligate, intracellular apicomplexan protozoan parasite of both humans and animals that can cause fetal damage and abortion and severe disease in the immunosuppressed. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localization and analyses of the Toxoplasma ceramide synthases TgCerS1 and TgCerS2. Interestingly, we observed that while TgCerS1 was a fully functional orthologue of the yeast ceramide synthase (Lag1p) capable of catalyzing the conversion of sphinganine to ceramide, in contrast TgCerS2 was catalytically inactive. Furthermore, genomic deletion of TgCerS1 using CRISPR/Cas-9 led to viable but slow-growing parasites indicating its importance but not indispensability. In contrast, genomic knock out of TgCerS2 was only accessible utilizing the rapamycin-inducible Cre recombinase system. Surprisingly, the results demonstrated that this "pseudo" ceramide synthase, TgCerS2, has a considerably greater role in parasite fitness than its catalytically active orthologue (TgCerS1). Phylogenetic analyses indicated that, as in humans and plants, the ceramide synthase isoforms found in Toxoplasma and other Apicomplexa may have arisen through gene duplication. However, in the Apicomplexa the duplicated copy is hypothesized to have subsequently evolved into a non-functional "pseudo" ceramide synthase. This arrangement is unique to the Apicomplexa and further illustrates the unusual biology that characterize these protozoan parasites.
Collapse
Affiliation(s)
| | - John G. Mina
- Department of BiosciencesDurham UniversityDurhamUK
| | | | - Matthijs A. Kol
- Molecular Cell Biology Division, Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany
| | - Joost C. M. Holthuis
- Molecular Cell Biology Division, Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany
| | - Ehmke Pohl
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | | |
Collapse
|
13
|
Yu H, Zhang L, Yang X, Bai Y, Chen X. Process Engineering and Glycosyltransferase Improvement for Short Route Chemoenzymatic Total Synthesis of GM1 Gangliosides. Chemistry 2023; 29:e202300005. [PMID: 36596720 PMCID: PMC10159885 DOI: 10.1002/chem.202300005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Large-scale synthesis of GM1, an important ganglioside in mammalian cells especially those in the nervous system, is needed to explore its therapeutic potential. Biocatalytic production is a promising platform for such a purpose. We report herein the development of process engineering and glycosyltransferase improvement strategies to advance chemoenzymatic total synthesis of GM1. Firstly, a new short route was developed for chemical synthesis of lactosylsphingosine from the commercially available Garner's aldehyde. Secondly, two glycosyltransferases including Campylobacter jejuni β1-4GalNAcT (CjCgtA) and β1-3-galactosyltransferase (CjCgtB) were improved on their soluble expression in E. coli and enzyme stability by fusing with an N-terminal maltose binding protein (MBP). Thirdly, the process for enzymatic synthesis of GM1 sphingosines from lactosylsphingosine was engineered by developing a multistep one-pot multienzyme (MSOPME) strategy without isolating intermediate glycosphingosines and by adding a detergent, sodium cholate, to the later enzymatic glycosylation steps. Installation of a desired fatty acyl chain to GM1 glycosphingosines led to the formation of target GM1 gangliosides. The combination of glycosyltransferase improvement with chemical and enzymatic process engineering represents a significant advance in obtaining GM1 gangliosides containing different sialic acid forms by total chemoenzymatic synthesis in a short route and with high efficiency.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
14
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
16
|
Clausmeyer L, Fröhlich F. Mechanisms of Nonvesicular Ceramide Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231208250. [PMID: 37859671 PMCID: PMC10583516 DOI: 10.1177/25152564231208250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Ceramides, as key components of cellular membranes, play essential roles in various cellular processes, including apoptosis, cell proliferation, and cell signaling. Ceramides are the precursors of all complex sphingolipids in eukaryotic cells. They are synthesized in the endoplasmic reticulum and are further processed at the Golgi apparatus. Therefore, ceramides have to be transported between these two organelles. In mammalian cells, the ceramide transfer protein forms a contact site between the ER and the trans-Golgi region and transports ceramide utilizing its steroidogenic acute regulatory protein-related lipid transfer domain. In yeast, multiple mechanisms of nonvesicular ceramide transport have been described. This involves the nuclear-vacuolar junction protein Nvj2, the yeast tricalbin proteins, and the lipocalin-like protein Svf1. This review aims to provide a comprehensive overview of nonvesicular ceramide transport mechanisms and their relevance in cellular physiology. We will highlight the physiological and pathological consequences of perturbations in nonvesicular ceramide transport and discuss future challenges in identifying and analyzing ceramide transfer proteins.
Collapse
Affiliation(s)
- Lena Clausmeyer
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
17
|
Hoefgen S, Bissell AU, Huang Y, Gherlone F, Raguž L, Beemelmanns C, Valiante V. Desaturation of the Sphingofungin Polyketide Tail Results in Increased Serine Palmitoyltransferase Inhibition. Microbiol Spectr 2022; 10:e0133122. [PMID: 36121228 PMCID: PMC9603476 DOI: 10.1128/spectrum.01331-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022] Open
Abstract
Serine palmitoyltransferase catalyzes the first step of the sphingolipid biosynthesis. Recently, sphingolipid homeostasis has been connected to several human diseases, making serine palmitoyltransferases an interesting therapeutic target. Known and efficient serine palmitoyltransferase-inhibitors are sphingofungins, a group of natural products isolated from fungi. To further characterize newly isolated sphingofungins, we designed an easy to use colorimetric serine palmitoyltransferase activity assay using FadD, which can be performed in 96-well plates. Because sphingofungins exert antifungal activitiy as well, we compared the in vitro assay results with an in vivo growth assay using Saccharomyces cerevisiae. The reported experiments showed differences among the assayed sphingofungins, highlighting an increase of activity based on the saturation levels of the polyketide tail. IMPORTANCE Targeting the cellular sphingolipid metabolism is often discussed as a potential approach to treat associated human diseases such as cancer and Alzheimer's disease. Alternatively, it is also a possible target for the development of antifungal compounds, which are direly needed. A central role is played by the serine palmitoyltransferase, which catalyzes the initial and rate limiting step of sphingolipid de novo synthesis and, as such, the development of inhibitory compounds for this enzyme is of interest. Our work here established an alternative approach for determining the activity of serine palmitoyltransferase adding another tool for the validation of its inhibition. We also determined the effect of different modifications to sphingofungins on their inhibitory activity against serine palmitoyltransferase, revealing important differences on said activity against enzymes of bacterial and fungal origin.
Collapse
Affiliation(s)
- Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Alexander U. Bissell
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Fabio Gherlone
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Luka Raguž
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
18
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
19
|
Glueck M, Koch A, Brunkhorst R, Ferreiros Bouzas N, Trautmann S, Schaefer L, Pfeilschifter W, Pfeilschifter J, Vutukuri R. The atypical sphingosine 1-phosphate variant, d16:1 S1P, mediates CTGF induction via S1P2 activation in renal cell carcinoma. FEBS J 2022; 289:5670-5681. [PMID: 35320610 DOI: 10.1111/febs.16446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator with numerous biological functions. The term 'S1P' mainly refers to the sphingolipid molecule with a long-chain sphingoid base of 18 carbon atoms, d18:1 S1P. The enzyme serine palmitoyltransferase catalyses the first step of the sphingolipid de novo synthesis using palmitoyl-CoA as the main substrate. After further reaction steps, d18:1 S1P is generated. However, also stearyl-CoA or myristoyl-CoA can be utilised by the serine palmitoyltransferase, which at the end of the S1P synthesis pathway, results in the production of d20:1 S1P and d16:1 S1P respectively. We measured these S1P homologues in mice and renal tissue of patients suffering from renal cell carcinoma (RCC). Our experiments highlight the relevance of d16:1 S1P for the induction of connective tissue growth factor (CTGF) in the human renal clear cell carcinoma cell line A498 and human RCC tissue. We show that d16:1 S1P versus d18:1 and d20:1 S1P leads to the highest CTGF induction in A498 cells via S1P2 signalling and that both d16:1 S1P and CTGF levels are elevated in RCC compared to adjacent healthy tissue. Our data indicate that d16:1 S1P modulates conventional S1P signalling by acting as a more potent agonist at the S1P2 receptor than d18:1 S1P. We suggest that elevated plasma levels of d16:1 S1P might play a pro-carcinogenic role in the development of RCC via CTGF induction.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | - Alexander Koch
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | | | - Nerea Ferreiros Bouzas
- Institute of Clinical Pharmacology, University Hospital and Goethe University Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, University Hospital and Goethe University Frankfurt, Germany
| | - Liliana Schaefer
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany.,Department of Neurology, Klinikum Lueneburg, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| |
Collapse
|
20
|
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 2022; 596:2345-2363. [PMID: 35899376 DOI: 10.1002/1873-3468.14457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
21
|
De Novo Sphingolipid Biosynthesis in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:31-46. [DOI: 10.1007/978-981-19-0394-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Cellular Organelles Involved in Hepatitis E Virus Infection. Pathogens 2021; 10:pathogens10091206. [PMID: 34578238 PMCID: PMC8469867 DOI: 10.3390/pathogens10091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately 20 million individuals annually. HEV can infect a wide range of mammalian and avian species, and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial attachment to egress. However, relatively little is known about the HEV life cycle, especially the functional role(s) of cellular organelles and their associated proteins at different stages of HEV infection. Here, we summarize current knowledge regarding the relation of HEV with the different cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which HEV infection is precisely regulated in infected cells and the modification of host cell organelles and their associated proteins upon HEV infection.
Collapse
|
23
|
Dingjan T, Futerman AH. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183701. [PMID: 34302797 DOI: 10.1016/j.bbamem.2021.183701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Sphingolipids can be differentiated from other membrane lipids by the distinctive chemistry of the sphingoid long chain base (LCB), which is generated by the condensation of an amino acid (normally but not always serine) and a fatty acyl CoA (normally palmitoyl CoA) by the pyridoxal phosphate-dependent enzyme, serine palmitoyl transferase (SPT). The first five carbon atoms of the sphingoid LCB, herein defined as the 'sphingoid motif', are largely responsible for the unique chemical and biophysical properties of sphingolipids since they can undergo a relatively large number (compared to other lipid species) of molecular interactions with other membrane lipids, via hydrogen-bonding, charge-pairing, hydrophobic and van der Waals interactions. These interactions are responsible, for instance, for the association of sphingolipids with cholesterol in the membrane lipid bilayer. Here, we discuss some of the unique properties of this sphingoid motif, and in addition to outlining how this structural motif drives intra-bilayer interactions, discuss the atomic details of the interactions with two critical players in the biosynthetic pathway, namely SPT, and the ceramide transport protein, CERT. In the former, the selectivity of sphingolipid synthesis relies on a hydrogen bond interaction between Lys379 of SPTLC2 and the l-serine sidechain hydroxyl moiety. In the latter, the entire sphingoid motif is stereoselectively recognized by a hydrogen-bonding network involving all three sphingoid motif heteroatoms. The remarkable selectivity of these interactions, and the subtle means by which these interactions are modified and regulated in eukaryotic cells raises a number of challenging questions about the generation of these proteins, and of their interactions with the sphingoid motif in evolutionary history.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
24
|
Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex. Nat Struct Mol Biol 2021; 28:229-231. [PMID: 33558763 DOI: 10.1038/s41594-021-00562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. Nat Struct Mol Biol 2021; 28:249-257. [PMID: 33558762 DOI: 10.1038/s41594-020-00553-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Human serine palmitoyltransferase (SPT) complex catalyzes the initial and rate-limiting step in the de novo biosynthesis of all sphingolipids. ORMDLs regulate SPT function, with human ORMDL3 being related to asthma. Here we report three high-resolution cryo-EM structures: the human SPT complex, composed of SPTLC1, SPTLC2 and SPTssa; the SPT-ORMDL3 complex; and the SPT-ORMDL3 complex bound to two substrates, PLP-L-serine (PLS) and a non-reactive palmitoyl-CoA analogue. SPTLC1 and SPTLC2 form a dimer of heterodimers as the catalytic core. SPTssa participates in acyl-CoA coordination, thereby stimulating the SPT activity and regulating the substrate selectivity. ORMDL3 is located in the center of the complex, serving to stabilize the SPT assembly. Our structural and biochemical analyses provide a molecular basis for the assembly and substrate selectivity of the SPT and SPT-ORMDL3 complexes, and lay a foundation for mechanistic understanding of sphingolipid homeostasis and for related therapeutic drug development.
Collapse
|
26
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Zhou T, Gao D, Li JX, Xu MJ, Xu J. Identification of an α-Oxoamine Synthase and a One-Pot Two-Step Enzymatic Synthesis of α-Amino Ketones. Org Lett 2020; 23:37-41. [PMID: 33284636 DOI: 10.1021/acs.orglett.0c03600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alb29, an α-oxoamine synthase involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072, was characterized and responsible for the incorporation of l-glutamate to acyl-coenzyme A substrates. Combined with Alb29 and Mgr36 (an acyl-coenzyme A ligase), a one-pot enzymatic system was established to synthesize seven α-amino ketones. When these α-amino ketones were fed into the alb29 knockout strain Δalb29, respectively, the albogrisin analogs with different side chains were observed.
Collapse
Affiliation(s)
- Ting Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Du Gao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jia-Xin Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
28
|
Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:762-774. [PMID: 33511334 PMCID: PMC7840151 DOI: 10.20517/cdr.2020.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of effective metabolic therapies.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
30
|
Kannan M, Davis DL, Suemitsu J, Oltorik CD, Wattenberg B. Preparation of HeLa Total Membranes and Assay of Lipid-inhibition of Serine Palmitoyltransferase Activity. Bio Protoc 2020; 10:e3656. [PMID: 33659326 DOI: 10.21769/bioprotoc.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/02/2022] Open
Abstract
Serine palmitoyltranferase (SPT) is a pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of de novo synthesis of sphingolipids. SPT activity is homeostatically regulated in response to increased levels of sphingolipids. This homeostatic regulation of SPT is mediated through small ER membrane proteins termed the ORMDLs. Here we describe a procedure to assay ORMDL dependent lipid inhibition of SPT activity. The assay of SPT activity using radiolabeled L-serine was developed from the procedure established by the Hornemann laboratory. The activity of SPT can also be measured using deuterated L-serine but it requires mass spectrometry, which consumes money, time and instrumentation. The ORMDL dependent lipid inhibition of SPT activity can be studied in both cells and in a cell free system. This assay procedure is applicable to any type of mammalian cell. Here we provide the detailed protocol to measure SPT activity in the presence of either short chain (C8-ceramide) or long chain ceramide (C24-ceramide). One of the greatest advantages of this protocol is the ability to test insoluble long chain ceramides. We accomplished this by generating long chain ceramide through endogenous ceramide synthase by providing exogenous sphingosine and 24:1 acyl CoA in HeLa cell membranes. This SPT assay procedure is simple and easy to perform and does not require sophisticated instruments.
Collapse
Affiliation(s)
- Muthukumar Kannan
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Deanna L Davis
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - John Suemitsu
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Christopher D Oltorik
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
31
|
Davis DL, Mahawar U, Pope VS, Allegood J, Sato-Bigbee C, Wattenberg BW. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J Lipid Res 2020; 61:505-522. [PMID: 32041816 DOI: 10.1194/jlr.ra120000627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.
Collapse
Affiliation(s)
- Deanna L Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Victoria S Pope
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
32
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
33
|
Zhu WK, Xu WH, Wang J, Huang YQ, Abudurexiti M, Qu YY, Zhu YP, Zhang HL, Ye DW. Decreased SPTLC1 expression predicts worse outcomes in ccRCC patients. J Cell Biochem 2019; 121:1552-1562. [PMID: 31512789 DOI: 10.1002/jcb.29390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Serine palmitoyltransferase, long chain base subunit 1 (SPTLC1) catalyzes the first step in sphingolipid synthesis and has been implicated in the progression of various cancers. However, its role in clear cell renal cell carcinoma (ccRCC) remains unclear. Here, we investigated the expression and prognostic value of SPTLC1 in ccRCC. METHODS Three ccRCC patient cohorts were studied. ccRCC and adjacent normal kidney tissue samples were obtained from 183 patients at the Fudan University Shanghai Cancer Center (FUSCC) and subjected to immunohistochemical staining and quantitative reverse-transcription polymerase chain reaction to evaluate SPTLC1 protein and messenger RNA (mRNA) expression. Two validation cohorts consisting of mRNA and clinicopathological data sets from patients with ccRCC were obtained from the Cancer Genome Atlas (TCGA, n = 429) and Oncomine (n = 178) databases. Associations between low and high SPTLC1 mRNA and protein expression and survival were evaluated using the Kaplan-Meier method and log-rank test. Independent prognostic factors were identified using univariate and multivariate Cox regression analysis. RESULTS SPTLC1 mRNA or protein were expressed at significantly lower levels in ccRCC tissues compared with normal kidney tissues in all three patient cohorts (P < .001). Low SPTLC1 expression was significantly associated with shorter overall survival in the FUSCC (P = .041) and Oncomine (P < .001) cohorts, and was significantly associated with shorter overall survival (P < .0001) and progression-free survival (P < .001) in the TCGA cohort. Bioinformatics analysis identified 10 genes significantly coregulated with SPTLC1 in ccRCC, most of which contributed to sphingomyelin metabolism (SPTLC2, SPTLC3, SPTSSA, SPTSSB, ORMDL1, ORMDL2, ORMDL3, ZDHHC9, GOLGA7B, and KDSR). Functional enrichment analysis predicted that SPTLC1 and its network play significant roles in inflammatory, hypoxia, and interferon gamma responses, and in allograft rejection pathways. CONCLUSION Low SPTLC1 expression is significantly associated with disease progression and poor survival in patients with ccRCC, suggesting that SPTLC1 may function as a tumor suppressor. Thus, SPTLC1 could be a potential new biomarker and/or therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Wen-Kai Zhu
- Institutes of Biomedical Science, Fudan University, Shanghai, China.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Qiang Huang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Harrison PJ, Gable K, Somashekarappa N, Kelly V, Clarke DJ, Naismith JH, Dunn TM, Campopiano DJ. Use of isotopically labeled substrates reveals kinetic differences between human and bacterial serine palmitoyltransferase. J Lipid Res 2019; 60:953-962. [PMID: 30792183 PMCID: PMC6495160 DOI: 10.1194/jlr.m089367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Isotope labels are frequently used tools to track metabolites through complex biochemical pathways and to discern the mechanisms of enzyme-catalyzed reactions. Isotopically labeled l-serine is often used to monitor the activity of the first enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT), as well as labeling downstream cellular metabolites. Intrigued by the effect that isotope labels may be having on SPT catalysis, we characterized the impact of different l-serine isotopologues on the catalytic activity of recombinant SPT isozymes from humans and the bacterium Sphingomonas paucimobilis Our data show that S. paucimobilis SPT activity displays a clear isotope effect with [2,3,3-D]l-serine, whereas the human SPT isoform does not. This suggests that although both human and S. paucimobilis SPT catalyze the same chemical reaction, there may well be underlying subtle differences in their catalytic mechanisms. Our results suggest that it is the activating small subunits of human SPT that play a key role in these mechanistic variations. This study also highlights that it is important to consider the type and location of isotope labels on a substrate when they are to be used in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Peter J Harrison
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom; Division of Structural Biology Wellcome Trust Centre for Human Genomics, Oxford OX3 7BN, United Kingdom; Research Complex at Harwell Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814-4799
| | | | - Van Kelly
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - David J Clarke
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - James H Naismith
- Division of Structural Biology Wellcome Trust Centre for Human Genomics, Oxford OX3 7BN, United Kingdom; Research Complex at Harwell Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom; The Rosalind Franklin Institute Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814-4799
| | - Dominic J Campopiano
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
| |
Collapse
|
35
|
Sphingolipid-dependent Dscam sorting regulates axon segregation. Nat Commun 2019; 10:813. [PMID: 30778062 PMCID: PMC6379420 DOI: 10.1038/s41467-019-08765-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Neurons are highly polarized cells with distinct protein compositions in axonal and dendritic compartments. Cellular mechanisms controlling polarized protein sorting have been described for mature nervous system but little is known about the segregation in newly differentiated neurons. In a forward genetic screen for regulators of Drosophila brain circuit development, we identified mutations in SPT, an evolutionary conserved enzyme in sphingolipid biosynthesis. Here we show that reduced levels of sphingolipids in SPT mutants cause axonal morphology defects similar to loss of cell recognition molecule Dscam. Loss- and gain-of-function studies show that neuronal sphingolipids are critical to prevent aggregation of axonal and dendritic Dscam isoforms, thereby ensuring precise Dscam localization to support axon branch segregation. Furthermore, SPT mutations causing neurodegenerative HSAN-I disorder in humans also result in formation of stable Dscam aggregates and axonal branch phenotypes in Drosophila neurons, indicating a causal link between developmental protein sorting defects and neuronal dysfunction. Little is known about the initial segregation of axonal and dendritic proteins during the differentiation of newly generated neurons. Here authors use a forward genetic screen to identify the role of sphingolipids in regulating the sub-cellular distribution of Dscam for neuronal patterning in Drosophila Mushroom Bodies
Collapse
|
36
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
37
|
Ren J, Saied EM, Zhong A, Snider J, Ruiz C, Arenz C, Obeid LM, Girnun GD, Hannun YA. Tsc3 regulates SPT amino acid choice in Saccharomyces cerevisiae by promoting alanine in the sphingolipid pathway. J Lipid Res 2018; 59:2126-2139. [PMID: 30154231 DOI: 10.1194/jlr.m088195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
The generation of most sphingolipids (SPLs) starts with condensation between serine and an activated long-chain fatty acid catalyzed by serine palmitoyltransferase (SPT). SPT can also use other amino acids to generate small quantities of noncanonical SPLs. The balance between serine-derived and noncanonical SPLs is pivotal; for example, hereditary sensory and autonomic neuropathy type I results from SPT mutations that cause an abnormal accumulation of alanine-derived SPLs. The regulatory mechanism for SPT amino acid selectivity and physiological functions of noncanonical SPLs are unknown. We investigated SPT selection of amino acid substrates by measuring condensation products of serine and alanine in yeast cultures and SPT use of serine and alanine in a TSC3 knockout model. We identified the Tsc3 subunit of SPT as a regulator of amino acid substrate selectivity by demonstrating its primary function in promoting alanine utilization by SPT and confirmed its requirement for the inhibitory effect of alanine on SPT utilization of serine. Moreover, we observed downstream metabolic consequences to Tsc3 loss: serine influx into the SPL biosynthesis pathway increased through Ypk1-depenedent activation of SPT and ceramide synthases. This Ypk1-dependent activation of serine influx after Tsc3 knockout suggests a potential function for deoxy-sphingoid bases in modulating Ypk1 signaling.
Collapse
Affiliation(s)
- Jihui Ren
- Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Essa M Saied
- Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany.,Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Aaron Zhong
- Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Justin Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Christian Ruiz
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Christoph Arenz
- Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Northport Veterans Affairs Medical Center, Northport, NY
| | - Geoffrey D Girnun
- Department of Pathology, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
38
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
39
|
Santra A, Li Y, Yu H, Slack TJ, Wang PG, Chen X. Highly efficient chemoenzymatic synthesis and facile purification of α-Gal pentasaccharyl ceramide Galα3nLc 4βCer. Chem Commun (Camb) 2018; 53:8280-8283. [PMID: 28695219 DOI: 10.1039/c7cc04090c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly efficient chemoenzymatic method for synthesizing glycosphingolipids using α-Gal pentasaccharyl ceramide as an example is reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient sequential one-pot multienzyme (OPME) reactions allowed glycosylation to be carried out in aqueous solutions. Facile C18 cartridge-based quick (<30 minutes) purification protocols were established using minimal amounts of green solvents (CH3CN and H2O). Simple acylation in the last step led to the formation of the target glycosyl ceramide in 4 steps with an overall yield of 57%.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, One shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Mina JGM, Denny PW. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis. Parasitology 2018; 145:134-147. [PMID: 28637533 PMCID: PMC5964470 DOI: 10.1017/s0031182017001081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.
Collapse
Affiliation(s)
- John G M Mina
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| | - P W Denny
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| |
Collapse
|
41
|
Sands SA, LeVine SM. Substrate reduction therapy for Krabbe's disease. J Neurosci Res 2017; 94:1261-72. [PMID: 27638608 DOI: 10.1002/jnr.23791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
Abstract
Krabbe's disease (KD) is a lysosomal storage disorder in which galactosylceramide, a major glycosphingolipid of myelin, and psychosine (galactose-sphingosine) cannot be adequately metabolized because of a deficiency in galactosylceramidase. Substrate reduction therapy (SRT) has been tested in preclinical studies. The premise of SRT is to reduce the synthesis of substrates that are not adequately digested so that the substrate burden is lowered, resulting in less accumulation of unmetabolized material. SRT is used for Gaucher's disease, in which inhibitors of the terminal biosynthetic step are used. Unfortunately, an inhibitor for the final step of galactosylceramide biosynthesis, i.e., UDP glycosyltransferase 8 (a.k.a. UDP-galactose ceramide galactosyltransferase), has not been found. Approaches that inhibit an earlier biosynthetic step or that lessen the substrate burden by other means, such as genetic manipulations, have been tested in the twitcher mouse model of KD. Either as a stand-alone therapy or in combination with other approaches, SRT slowed the disease course, indicating that this approach has potential therapeutic value. For instance, in individuals with adult-onset disease, SRT theoretically could lessen the production of substrates so that residual enzymatic activity could adequately manage the lower substrate burden. In more severe forms of disease, SRT theoretically could be part of a combination therapy. However, SRT has the potential to impair normal function by reducing the synthesis of galactosylceramide to levels that impede myelin function, or SRT could have other deleterious effects. Thus, multiple issues need to be resolved before this approach is ready for testing in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott A Sands
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
42
|
Jacquemyn J, Cascalho A, Goodchild RE. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep 2017; 18:1905-1921. [PMID: 29074503 DOI: 10.15252/embr.201643426] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER)-localized enzymes synthesize the vast majority of cellular lipids. The ER therefore has a major influence on cellular lipid biomass and balances the production of different lipid categories, classes, and species. Signals from outside and inside the cell are directed to ER-localized enzymes, and lipid enzyme activities are defined by the integration of internal, homeostatic, and external information. This allows ER-localized lipid synthesis to provide the cell with membrane lipids for growth, proliferation, and differentiation-based changes in morphology and structure, and to maintain membrane homeostasis across the cell. ER enzymes also respond to physiological signals to drive carbohydrates and nutritionally derived lipids into energy-storing triglycerides. In this review, we highlight some key regulatory mechanisms that control ER-localized enzyme activities in animal cells. We also discuss how they act in concert to maintain cellular lipid homeostasis, as well as how their dysregulation contributes to human disease.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ana Cascalho
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rose E Goodchild
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Mina JG, Thye JK, Alqaisi AQI, Bird LE, Dods RH, Grøftehauge MK, Mosely JA, Pratt S, Shams-Eldin H, Schwarz RT, Pohl E, Denny PW. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites. J Biol Chem 2017; 292:12208-12219. [PMID: 28578314 PMCID: PMC5519370 DOI: 10.1074/jbc.m117.792374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.
Collapse
Affiliation(s)
- John G Mina
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Julie K Thye
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Amjed Q I Alqaisi
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom; Biology Department, College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Louise E Bird
- Oxford Protein Production Facility UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Robert H Dods
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | | | - Jackie A Mosely
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven Pratt
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Hosam Shams-Eldin
- Institut für Virologie, Zentrum für Hygiene und Infektionsbiologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Ralph T Schwarz
- Institut für Virologie, Zentrum für Hygiene und Infektionsbiologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Ehmke Pohl
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom; Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Paul W Denny
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
44
|
Pharmacological characterization of synthetic serine palmitoyltransferase inhibitors by biochemical and cellular analyses. Biochem Biophys Res Commun 2016; 497:1171-1176. [PMID: 28042036 DOI: 10.1016/j.bbrc.2016.12.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
Human serine palmitoyltransferase (SPT) is a PLP-dependent enzyme residing in the endoplasmic reticulum. It catalyzes the synthesis of 3-ketodihydrosphingosine (3-KDS) from the substrates palmitoyl-CoA and l-serine. It is a rate-limiting enzyme for sphingolipid synthesis in cells. In the present study, we characterized and pharmacologically profiled a series of tetrahydropyrazolopyridine derivatives that potently inhibit human SPT enzymatic activity, including two cell-active derivatives and one fluorescent-labelled derivative. These SPT inhibitors exhibited dual inhibitory activities against SPT2 and SPT3. We used a fluorescent-labelled probe to molecularly assess the inhibitory mechanism and revealed its binding to the SPT2 or SPT3 subunit in the small subunit (ss) SPTa/SPT1/SPT2/or ssSPTa/SPT1/SPT3 functional complexes. One of the SPT inhibitors exhibited a significantly slow dissociation from the SPT complex. We confirmed that our SPT inhibitors suppressed ceramide content in non-small-cell lung cancer cell line, HCC4006, by performing a target engagement analysis. The potency of ceramide reduction correlated to that observed in a recombinant SPT2 enzyme assay. We thus elucidated and provided a fundamental understanding of the molecular mode of action of SPT inhibitors and developed potent, cell-active SPT inhibitors that can be used to clarify the biological function of SPT.
Collapse
|
45
|
Analysis of Sphingolipid Synthesis and Transport by Metabolic Labeling of Cultured Cells with [³H]Serine. Methods Mol Biol 2016; 1376:195-202. [PMID: 26552685 DOI: 10.1007/978-1-4939-3170-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Analysis of lipid biosynthesis by radioactive precursor incorporation provides information on metabolic rates and the identity of rate-limiting enzymes and transporters. The biosynthesis of sphingolipids in cultured cells is initiated in the endoplasmic reticulum (ER) by the formation of a sphingoid base from serine and palmitoyl-CoA. N-acylation of the sphingoid base produces ceramide, which is transported to the Golgi apparatus where phosphocholine or carbohydrate headgroups are added to form sphingomyelin (SM) and complex glycosphingolipids (GSLs), respectively. Herein is described a protocol to measure ceramide and SM biosynthesis in cultured cells based on [(3)H]serine incorporation at the first step in the pathway. The method can be used to assay the effect of pharmacological and genetic manipulations on ceramide synthesis and transport to the Golgi apparatus.
Collapse
|
46
|
Cai L, Oyeniran C, Biswas DD, Allegood J, Milstien S, Kordula T, Maceyka M, Spiegel S. ORMDL proteins regulate ceramide levels during sterile inflammation. J Lipid Res 2016; 57:1412-22. [PMID: 27313060 DOI: 10.1194/jlr.m065920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/21/2022] Open
Abstract
The bioactive sphingolipid metabolite, ceramide, regulates physiological processes important for inflammation and elevated levels of ceramide have been implicated in IL-1-mediated events. Although much has been learned about ceramide generation by activation of sphingomyelinases in response to IL-1, the contribution of the de novo pathway is not completely understood. Because yeast ORM1 and ORM2 proteins negatively regulate ceramide levels through inhibition of serine palmitoyltransferase, the first committed step in ceramide biosynthesis, we examined the functions of individual mammalian ORM orthologs, ORM (yeast)-like (ORMDL)1-3, in regulation of ceramide levels. In HepG2 liver cells, downregulation of ORMDL3 markedly increased the ceramide precursors, dihydrosphingosine and dihydroceramide, primarily from de novo biosynthesis based on [U-(13)C]palmitate incorporation into base-labeled and dual-labeled dihydroceramides, whereas downregulation of each isoform increased dihydroceramides [(13)C]labeled in only the amide-linked fatty acid. IL-1 and the IL-6 family cytokine, oncostatin M, increased dihydroceramide and ceramide levels in HepG2 cells and concomitantly decreased ORMDL proteins. Moreover, during irritant-induced sterile inflammation in mice leading to induction of the acute-phase response, which is dependent on IL-1, expression of ORMDL proteins in the liver was strongly downregulated and accompanied by increased ceramide levels in the liver and accumulation in the blood. Together, our results suggest that ORMDLs may be involved in regulation of ceramides during IL-1-mediated sterile inflammation.
Collapse
Affiliation(s)
- Lin Cai
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
47
|
Olson DK, Fröhlich F, Farese RV, Walther TC. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:784-792. [PMID: 26747648 DOI: 10.1016/j.bbalip.2015.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
Abstract
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- D K Olson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States; Department of Cell Biology, Yale School of Medicine, United States
| | - F Fröhlich
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States
| | - R V Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States; Department of Cell Biology, Harvard Medical School, United States; Broad Institute of Harvard and MIT, United States.
| | - T C Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States; Department of Cell Biology, Harvard Medical School, United States; Broad Institute of Harvard and MIT, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
48
|
Hu Y, Liu ZX, Fu N, Wu Q, Yang XF, Liu HL. Role of ceramide in hepatic lipid accumulation in rats with non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2015; 23:5196-5200. [DOI: 10.11569/wcjd.v23.i32.5196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the role of ceramide in hepatic lipid accumulation in rats with non-alcoholic fatty liver disease (NAFLD).
METHODS: Male SD animals were randomly divided into three groups: a control group, an NAFLD model group and a myriocin group. The NAFLD model group was fed a high-fat diet, the myriocin group was fed a high-fat diet and treated with myriocin, and the control group was fed a standard rodent diet only. After 12 wk, the liver tissues of rats in the three groups were measured for lipids levels, the extent of hepatic steatosis and ceramide levels by enzyme assay, HE staining and high performance liquid chromatography tandem mass spectrometry (HPLC/MS), respectively.
RESULTS: Compared with the control and myriocin groups, the levels of hepatic lipids, such as triglyceride and free fat acids, in the NAFLD model group were significantly increased (P < 0.05), and the extent of hepatic steatosis in the NAFLD model group was significantly higher as well (P < 0.05). Corresponding to lipid accumulation, the levels of ceramides in rat liver, mainly C24:0 and C16:0 ceramides, were significantly higher in the NAFLD model group than in the control group and myriocin group (P < 0.05).
CONCLUSION: Ceramide contributes to hepatic lipid accumulation in rats with NAFLD, and inhibition of ceramide synthesis can reduce the extent of hepatic steatosis.
Collapse
|
49
|
Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc Natl Acad Sci U S A 2015; 112:12962-7. [PMID: 26438849 DOI: 10.1073/pnas.1516733112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions.
Collapse
|
50
|
Duan J, Merrill AH. 1-Deoxysphingolipids Encountered Exogenously and Made de Novo: Dangerous Mysteries inside an Enigma. J Biol Chem 2015; 290:15380-15389. [PMID: 25947379 PMCID: PMC4505451 DOI: 10.1074/jbc.r115.658823] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The traditional backbones of mammalian sphingolipids are 2-amino, 1,3-diols made by serine palmitoyltransferase (SPT). Many organisms additionally produce non-traditional, cytotoxic 1-deoxysphingoid bases and, surprisingly, mammalian SPT biosynthesizes some of them, too (e.g. 1-deoxysphinganine from l-alanine). These are rapidly N-acylated to 1-deoxy-“ceramides” with very uncommon biophysical properties. The functions of 1-deoxysphingolipids are not known, but they are certainly dangerous as contributors to sensory and autonomic neuropathies when elevated by inherited SPT mutations, and they are noticeable in diabetes, non-alcoholic steatohepatitis, serine deficiencies, and other diseases. As components of food as well as endogenously produced, these substances are mysteries within an enigma.
Collapse
Affiliation(s)
- Jingjing Duan
- Schools of Biology and Chemistry & Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Alfred H Merrill
- Schools of Biology and Chemistry & Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332.
| |
Collapse
|