1
|
Keijzer N, Priyanka A, Stijf-Bultsma Y, Fish A, Gersch M, Sixma TK. Variety in the USP deubiquitinase catalytic mechanism. Life Sci Alliance 2024; 7:e202302533. [PMID: 38355287 PMCID: PMC10867860 DOI: 10.26508/lsa.202302533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The ubiquitin-specific protease (USP) family of deubiquitinases (DUBs) controls cellular ubiquitin-dependent signaling events. This generates therapeutic potential, with active-site inhibitors in preclinical and clinical studies. Understanding of the USP active site is primarily guided by USP7 data, where the catalytic triad consists of cysteine, histidine, and a third residue (third critical residue), which polarizes the histidine through a hydrogen bond. A conserved aspartate (fourth critical residue) is directly adjacent to this third critical residue. Although both critical residues accommodate catalysis in USP2, these residues have not been comprehensively investigated in other USPs. Here, we quantitatively investigate their roles in five USPs. Although USP7 relies on the third critical residue for catalysis, this residue is dispensable in USP1, USP15, USP40, and USP48, where the fourth critical residue is vital instead. Furthermore, these residues vary in importance for nucleophilic attack. The diverging catalytic mechanisms of USP1 and USP7 are independent of substrate and retained in cells for USP1. This unexpected variety of catalytic mechanisms in this well-conserved protein family may generate opportunities for selective targeting of individual USPs.
Collapse
Affiliation(s)
- Niels Keijzer
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anu Priyanka
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yvette Stijf-Bultsma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
2
|
Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ, Kim EE. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol 2023; 6:970. [PMID: 37740002 PMCID: PMC10516900 DOI: 10.1038/s42003-023-05345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Collapse
Affiliation(s)
- Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Min Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yeonji Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunah Choo
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
3
|
Ren Y, Yang J, Ding Z, Zheng M, Qiu L, Tang A, Huang D. NFE2L3 drives hepatocellular carcinoma cell proliferation by regulating the proteasome-dependent degradation of ISGylated p53. Cancer Sci 2023; 114:3523-3536. [PMID: 37350063 PMCID: PMC10475773 DOI: 10.1111/cas.15887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Nuclear factor erythroid 2-like 3 (NFE2L3) is a member of the cap 'n' collar basic-region leucine zipper (CNC-bZIP) transcription factor family that plays a vital role in modulating oxidation-reduction steady-state and proteolysis. Accumulating evidence suggests that NFE2L3 participates in cancer development; however, little is known about the mechanism by which NFE2L3 regulates hepatocellular carcinoma (HCC) cell growth. Here, we confirmed that NFE2L3 promotes HCC cell proliferation by acting as a transcription factor, which directly induces the expression of proteasome and interferon-stimulated gene 15 (ISG15) to enhance the proteasome-dependent degradation of ISGylated p53. Post-translational ISGylation abated the stability of p53 and facilitated HCC cell growth. In summary, we uncovered the pivotal role of NFE2L3 in promoting HCC cell proliferation during proteostasis. This finding may provide a new target for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yonggang Ren
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Research Center of Clinical Medical SciencesAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jing Yang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Zhiran Ding
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Menghua Zheng
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐Sen UniversityShenzhenChina
| | - Aifa Tang
- Shenzhen Luohu Hospital GroupThe Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dandan Huang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| |
Collapse
|
4
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
5
|
Guo Y, Cui S, Chen Y, Guo S, Chen D. Ubiquitin specific peptidases and prostate cancer. PeerJ 2023; 11:e14799. [PMID: 36811009 PMCID: PMC9939025 DOI: 10.7717/peerj.14799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 02/18/2023] Open
Abstract
Protein ubiquitination is an important post-translational modification mechanism, which regulates protein stability and activity. The ubiquitination of proteins can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific proteases (USPs), the largest DUB subfamily, can regulate cellular functions by removing ubiquitin(s) from the target proteins. Prostate cancer (PCa) is the second leading type of cancer and the most common cause of cancer-related deaths in men worldwide. Numerous studies have demonstrated that the development of PCa is highly correlated with USPs. The expression of USPs is either high or low in PCa cells, thereby regulating the downstream signaling pathways and causing the development or suppression of PCa. This review summarized the functional roles of USPs in the development PCa and explored their potential applications as therapeutic targets for PCa.
Collapse
Affiliation(s)
- Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
6
|
Sánchez-Bellver L, Férriz-Gordillo A, Carrillo-Pz M, Rabanal L, Garcia-Gonzalo FR, Marfany G. The Deubiquitinating Enzyme USP48 Interacts with the Retinal Degeneration-Associated Proteins UNC119a and ARL3. Int J Mol Sci 2022; 23:ijms232012527. [PMID: 36293380 PMCID: PMC9603860 DOI: 10.3390/ijms232012527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Férriz-Gordillo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marc Carrillo-Pz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Rabanal
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc R. Garcia-Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
- DBGen Ocular Genomics, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Luo ZJ, Li H, Yang L, Kang B, Cai T. Exome sequencing revealed USP9X and COL2A1 mutations in a large family with multiple epiphyseal dysplasia. Bone 2022; 163:116508. [PMID: 35907616 DOI: 10.1016/j.bone.2022.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Diagnosis of rare skeletal diseases is based primarily on clinical phenotype and radiographic analysis. Genetic etiology of these heterogeneous diseases remains largely unknown. Here, we report the identification of two genomic mutations using exome sequencing from patients with multiple epiphyseal dysplasia (MED) of an unusual family in autosomal dominant and X-linked inheritance. A dominant mutation (c.2224G > A; p.Gly687Ser) in the known causal COL2A1 gene was identified in three patients with MED, deformed femoral heads and vertebral dysplasia. Furthermore, a hemizygous mutation (c.2830G > A; p.Ala944Thr) in the USP9X gene was identified in the fourth patient with short stature, MED, deformed femoral head, thoracic and lumbar platyspondyly, right ankle condyle dysplasia, and subchondral sclerosis. This is the first identification of an X-linked candidate causative gene in a patient with MED, suggesting a new clinical entity. Our findings shed a new light on the role of USP9X in MED-associated disorders.
Collapse
Affiliation(s)
- Zhuo-Jing Luo
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongzhuo Li
- Department of Orthopedics, Heping Hospital Attached to Changzhi Medical College, Changzhi, China
| | - Liu Yang
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, Ye XM, Yang Z, Yang H, Liu Y, Yang MM, Wang YH, Shi XM, Liu D, Tu PF, Zeng KW. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. SCIENCE ADVANCES 2022; 8:eabo0789. [PMID: 35947662 PMCID: PMC9365288 DOI: 10.1126/sciadv.abo0789] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Chen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ming Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| |
Collapse
|
9
|
Zhou L, Ouyang T, Li M, Hong T, Mhs A, Meng W, Zhang N. Ubiquitin-Specific Peptidase 7: A Novel Deubiquitinase That Regulates Protein Homeostasis and Cancers. Front Oncol 2021; 11:784672. [PMID: 34869041 PMCID: PMC8640129 DOI: 10.3389/fonc.2021.784672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-Specific Peptidase 7 (USP7), or herpes virus-associated protease (HAUSP), is the largest family of the deubiquitinating enzymes (DUBs). Recent studies have shown that USP7 plays a vital role in regulating various physiological and pathological processes. Dysregulation of these processes mediated by USP7 may contribute to many diseases, such as cancers. Moreover, USP7 with aberrant expression levels and abnormal activity are found in cancers. Therefore, given the association between USP7 and cancers, targeting USP7 could be considered as an attractive and potential therapeutic approach in cancer treatment. This review describes the functions of USP7 and the regulatory mechanisms of its expression and activity, aiming to emphasize the necessity of research on USP7, and provide a better understanding of USP7-related biological processes and cancer.
Collapse
Affiliation(s)
- Lin Zhou
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alriashy Mhs
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Xiang L, Zeng Q, Liu J, Xiao M, He D, Zhang Q, Xie D, Deng M, Zhu Y, Liu Y, Bo H, Liu X, Zhou M, Xiong W, Zhou Y, Zhou J, Li X, Cao K. MAFG-AS1/MAFG positive feedback loop contributes to cisplatin resistance in bladder urothelial carcinoma through antagonistic ferroptosis. Sci Bull (Beijing) 2021; 66:1773-1788. [PMID: 36654385 DOI: 10.1016/j.scib.2021.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
Though promoting ferroptosis can reduce cisplatin resistance in tumor cells, ferroptosis and cisplatin resistance in bladder urothelial carcinoma (BUC) following long non-coding RNAs (lncRNAs) is largely unknown. Here, we found the highly expressed lncRNA MAF transcription factor G antisense RNA 1 (MAFG-AS1) in BUC, and its inhibition increased the sensitivity of BUC cells to cisplatin by promoting ferroptosis. Mechanically, binding to iron chaperone poly(rC)-binding protein 2 (PCBP2) facilitated the recruitments of MAFG-AS1 to deubiquitinase ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5), thus stabilizing PCBP2 protein itself. Then PCBP2 was confirmed to interact with ferroportin 1 (FPN1), an iron export protein, leading to inhibition of ferroptosis. Moreover, the expression of MAFG-AS1 was regulated by the transcriptional factor MAFG. Interestingly, MAFG-AS1 stimulated MAFG transcription by recruiting histone acetyltransferase p300 (EP300) to promote the histone 3 at lysine 27 (H3K27ac) at genomic locus of MAFG, forming a MAFG-AS1/MAFG positive feedback loop. In patient samples, higher expression of MAFG-AS1 and MAFG in BUC tissues was significantly correlated with T status and N status, such that MAFG-AS1, MAFG, and the combination of the two were independent prognostic indicators and chemotherapy sensitivity predictive biomarkers for BUC patients. These findings suggest that inhibition of MAFG-AS1 and MAFG can increase the sensitivity of BUC cells to cisplatin through promoting ferroptosis, indicating the novel chemotherapy sensitivity biomarkers and therapeutic target for BUC.
Collapse
Affiliation(s)
- Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yan Liu
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410083, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Wei Xiong
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiaohui Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
11
|
USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun 2021; 22:12-23. [PMID: 33824497 DOI: 10.1038/s41435-021-00125-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023]
Abstract
The covalent post-translational modification of proteins by ubiquitination not only influences protein stability and half-life, but also several aspects of protein function including enzymatic activity, sub-cellular localization, and interactions with binding partners. Protein ubiquitination status is determined by the action of large families of ubiquitin ligases and deubiquitinases, whose combined activities regulate many physiological and cellular pathways. The Ubiquitin Specific Protease (USP) family is one of 8 subfamilies of deubiquitinating enzymes composed of more than 50 members. Recent studies have shown that USP15 plays a critical role in regulating many aspects of immune and inflammatory function of leukocytes in response to a broad range of infectious and autoimmune insults and following tissue damage. USP15 regulated pathways reviewed herein include TLR signaling, RIG-I signaling, NF-kB, and IRF3/IRF7-dependent transcription for production of pro-inflammatory cytokines and type I interferons. In addition, USP15 has been found to regulate pathways implicated in tumor onset and progression such as p53, and TGF-β signaling, but also influences the leukocytes-determined immune and inflammatory microenvironment of tumors to affect progression and outcome. Hereby reviewed are recent studies of USP15 in model cell lines in vitro, and in mutant mice in vivo with reference to available human clinical datasets.
Collapse
|
12
|
Lin HC, Kuan Y, Chu HF, Cheng SC, Pan HC, Chen WY, Sun CY, Lin TH. Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21. Int J Biol Macromol 2021; 176:490-497. [PMID: 33582217 DOI: 10.1016/j.ijbiomac.2021.02.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Disulfiram is a promising repurposed drug that, combining with radiation and chemotherapy, exhibits effective anticancer activities in several preclinical models. The cellular metabolites of disulfiram have been established, however, the intracellular targets of disulfiram remain largely unexplored. We have previously reported that disulfiram suppresses the coronaviral papain-like proteases through attacking their zinc-finger domains, suggesting an inhibitory function potentially on other proteases with similar catalytic structures. Ubiquitin-specific proteases (USPs) share a highly-conserved zinc-finger subdomain that structurally similar to the papain-like proteases and are attractive anticancer targets as upregulated USPs levels are found in a variety of tumors. Here, we report that disulfiram functions as a competitive inhibitor for both USP2 and USP21, two tumor-related deubiquitinases. In addition, we also observed a synergistic inhibition of USP2 and USP21 by disulfiram and 6-Thioguanine (6TG), a clinical drug for acute myeloid leukemia. Kinetic analyses revealed that both drugs exhibited a slow-binding mechanism, moderate inhibitory parameters, and a synergistically inhibitory effect on USP2 and USP21, suggesting the potential combinatory use of these two drugs for USPs-related tumors. Taken together, our study provides biochemical evidence for repurposing disulfiram and 6TG as a combinatory treatment in clinical applications.
Collapse
Affiliation(s)
- Hsin-Cheng Lin
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ying Kuan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Acedemia Sinica, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsu-Feng Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Chun Cheng
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Yi Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Acedemia Sinica, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Ta-Hsien Lin
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
13
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
14
|
Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochem J 2020; 477:4295-4312. [PMID: 33094816 DOI: 10.1042/bcj20200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.
Collapse
|
15
|
Sun J, Shen D, Zheng Y, Ren H, Liu H, Chen X, Gao Y. USP8 Inhibitor Suppresses HER-2 Positive Gastric Cancer Cell Proliferation and Metastasis via the PI3K/AKT Signaling Pathway. Onco Targets Ther 2020; 13:9941-9952. [PMID: 33116578 PMCID: PMC7547803 DOI: 10.2147/ott.s271496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Referring to global cancer statistics, the incidence of gastric cancer (GC) was ranked sixth; however, detailed mechanisms underlying its development were not thoroughly investigated. Previous studies have reported that inhibition of ubiquitin-specific peptidase 8 (USP8) induced degradation of several receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR), embryonic stem cells (ESCs), etc. Nevertheless, the regulation of HER-2 by USP8 and the molecular mechanisms controlling their role in the pathogenesis of GC remain unknown. Patients and Methods A total of 69 patients with histologically confirmed GC were recruited to satisfy the purpose of this study. Initially, tumor samples and GC cell lines were used to detect USP8 and HER-2 levels. Next, MTT and colony formation assays were applied to analyze cell proliferation capability. Cell migration and invasion ability were examined by transwell assays. To examine related mRNA and protein expressions, Western blot assays and quantitative real-time PCR (qRT-PCR) were performed. Immunofluorescence was used to detect the effect of USP8 inhibitor on GC cells. Finally, in vivo experiments were used to examine the effect of USP8 inhibitor. Results Patients with USP8 high-expression tumors have shown worse overall survival while opposite results found in patients with low USP8 expressions. Regarding disease prognosis, patients with low expression of USP8 and HER-2 were performed better prognosis, whereas those with overexpression of USP8 and HER-2 shown poor prognosis. USP8 inhibitor significantly inhibited HER-2 positive cell NCI-N87 proliferation and metastasis. In addition, USP8 stabilizes HER-2, preventing it from ubiquitin proteasome-mediated degradation. In vivo studies confirmed that the USP8 inhibitor inhibited HER-2 positive cell NCI-N87 tumor growth. However, it did not affect the HER2-negative cell MGC-803. Careful investigation unraveled that the USP8 inhibitor significantly inhibited NCI-N87 cell proliferation and metastasis via phosphatidylinositol-3-kinases/protein-serine-threonine kinase (PI3K/AKT) pathway. Conclusion The USP8 inhibited HER-2 positive GC cell proliferation and migration in vivo and in vitro and probably served as a novel potential therapeutic biomarker for HER-2 positive GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dandan Shen
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yichao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongmei Ren
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaoping Chen
- Department of Hepatic Surgery of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
16
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem 2020; 15:907-932. [PMID: 32324951 PMCID: PMC7264561 DOI: 10.1002/cmdc.202000223] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection is spreading at an alarming rate and has created an unprecedented health emergency around the globe. There is no effective vaccine or approved drug treatment against COVID-19 and other pathogenic coronaviruses. The development of antiviral agents is an urgent priority. Biochemical events critical to the coronavirus replication cycle provided a number of attractive targets for drug development. These include, spike protein for binding to host cell-surface receptors, proteolytic enzymes that are essential for processing polyproteins into mature viruses, and RNA-dependent RNA polymerase for RNA replication. There has been a lot of ground work for drug discovery and development against these targets. Also, high-throughput screening efforts have led to the identification of diverse lead structures, including natural product-derived molecules. This review highlights past and present drug discovery and medicinal-chemistry approaches against SARS-CoV, MERS-CoV and COVID-19 targets. The review hopes to stimulate further research and will be a useful guide to the development of effective therapies against COVID-19 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Medicinal Chemistry and Molecular PharmacolgyPurdue UniversityWest LafayetteIN 47907USA
| | - Margherita Brindisi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Excellence of PharmacyUniversity of Naples Federico II80131NaplesItaly
| | - Dana Shahabi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
| | | | - Andrew D. Mesecar
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Biological SciencesPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
18
|
Cho J, Park J, Shin SC, Jang M, Kim JH, Kim EE, Song EJ. USP47 Promotes Tumorigenesis by Negative Regulation of p53 through Deubiquitinating Ribosomal Protein S2. Cancers (Basel) 2020; 12:E1137. [PMID: 32370049 PMCID: PMC7281321 DOI: 10.3390/cancers12051137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
p53 is activated in response to cellular stresses such as DNA damage, oxidative stress, and especially ribosomal stress. Although the regulations of p53 by E3 ligase and deubiquitinating enzymes (DUBs) have been described, the cellular roles of DUB associated with ribosomal stress have not been well studied. In this study, we report that Ubiquitin Specific Protease 47 (USP47) functions as an important regulator of p53. We show that ubiquitinated ribosomal protein S2 (RPS2) by Mouse double minute 2 homolog (MDM2) is deubiquitinated by USP47. USP47 inhibits the interaction between RPS2 and MDM2 thereby alleviating RPS2-mediated suppression of MDM2 under normal conditions. However, dissociation of USP47 leads to RPS2 binding to MDM2, which is required for the suppression of MDM2, consequently inducing up-regulation of the p53 level under ribosomal stress. Finally, we show that depletion of USP47 induces p53 and therefore inhibits cell proliferation, colony formation, and tumor progression in cancer cell lines and a mouse xenograft model. These findings suggest that USP47 could be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 02841, Korea;
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea;
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Jae-Hong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 02841, Korea;
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Geng L, Chen X, Zhang M, Luo Z. Ubiquitin-specific protease 14 promotes prostate cancer progression through deubiquitinating the transcriptional factor ATF2. Biochem Biophys Res Commun 2020; 524:16-21. [DOI: 10.1016/j.bbrc.2019.12.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 10/25/2022]
|
20
|
Zhu Q, Ding N, Wei S, Li P, Wani G, He J, Wani AA. USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage. Cell Cycle 2019; 19:124-141. [PMID: 31775559 DOI: 10.1080/15384101.2019.1695996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cockayne syndrome group B (CSB) protein participates in transcription-coupled nucleotide excision repair. The stability of CSB is known to be regulated by ubiquitin-specific protease 7 (USP7). Yet, whether USP7 acts as a deubiquitinating enzyme for CSB is not clear. Here, we demonstrate that USP7 deubiquitinates CSB to maintain its levels after ultraviolet (UV)-induced DNA damage. While both CSB and UV-stimulated scaffold protein A (UVSSA) exhibit a biphasic decrease and recovery upon UV irradiation, only CSB recovery depends on USP7, which physically interacts with and deubiquitinates CSB. Meanwhile, CSB overexpression stabilizes UVSSA, but decrease UVSSA's presence in nuclease-releasable/soluble chromatin, and increase the presence of ubiquitinated UVSSA in insoluble chromatin alongside CSB-ubiquitin conjugates. Remarkably, CSB overexpression also decreases CSB association with USP7 and UVSSA in soluble chromatin. UVSSA exists in several ubiquitinated forms, of which mono-ubiquitinated form and other ubiquitinated UVSSA forms are detectable upon 6xHistidine tag-based purification. The ubiquitinated UVSSA forms, however, are not cleavable by USP7 in vitro. Furthermore, USP7 disruption does not affect RNA synthesis but decreases the recovery of RNA synthesis following UV exposure. These results reveal a role of USP7 as a CSB deubiquitinating enzyme for fine-tuning the process of TC-NER in human cells.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Ding
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shengcai Wei
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ping Li
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gulzar Wani
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jinshan He
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Altaf A Wani
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH, USA.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Peterson BG, Glaser ML, Rapoport TA, Baldridge RD. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 2019; 8:50903. [PMID: 31713515 PMCID: PMC6914336 DOI: 10.7554/elife.50903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex. Just like factories make mistakes when producing products, cells make mistakes when producing proteins. In cells, a compartment called the endoplasmic reticulum is where about one third of all proteins are produced, and where new proteins undergo quality control. Damaged or misfolded proteins are removed by a process called endoplasmic reticulum-associated degradation (ERAD for short), because if damaged proteins accumulate, cells become stressed. One type of ERAD is driven by a protein called Hrd1. Together with other components, Hrd1 labels damaged proteins with a ubiquitin tag that acts as a flag for degradation. Hrd1 has a paradoxical feature, however. To be active, Hrd1 tags itself with ubiquitin but this also makes it more prone to becoming degraded. How does Hrd1 remain active while avoiding its own degradation? To address this question, Peterson et al. forced budding yeast cells to produce high levels of 23 different enzymes that remove ubiquitin tags. One of these enzymes, called Ubp1, was able remove the ubiquitin tag from Hrd1, though it had not been seen in the ERAD pathway before. Further experiments also showed that Ubp1 was able to regulate Hrd1 activity, making Ubp1 a regulator of Hrd1 dependent protein quality control. Without protein quality control, damaged proteins can contribute to various diseases. ERAD is a common quality control system for proteins, present in many different species, ranging from yeast to animals. Therefore, understanding how ERAD works in budding yeast may also increase understanding of how human cells deal with damaged proteins.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Morgan L Glaser
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
22
|
Liu B, Chen J, Zhang S. Emerging role of ubiquitin-specific protease 14 in oncogenesis and development of tumor: Therapeutic implication. Life Sci 2019; 239:116875. [PMID: 31676235 DOI: 10.1016/j.lfs.2019.116875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Ubiquitin (Ub) is a small protein that can be attached to substrate proteins to direct their degradation via the proteasome. Deubiquitinating enzymes (DUBs) reverse this process by removing ubiquitin from its substrate protein. Over the past few decades, ubiquitin-specific protease 14 (USP14), a member of the DUBs, has emerged as an important player in various types of cancers. In this article, we review and summarize biological function of USP14 in tumorigenesis and multiple signaling pathways. To determine its role in cancer, we analyzed USP14 gene expression across a panel of tumors, and discussed that it could serve as a novel bio-marker in several types of cancer. And recent contributions indicated that USP14 has been shown to act as a tumor-promoting gene via the AKT, NF-κB, MAPK pathways etc. Besides, drugs targeting USP14 have shown potential anti-tumor effect and clinical significance. We focus on recent studies that explore the link between USP14 and cancer, and further discuss USP14 as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Bing Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiangping Chen
- School of International Studies, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
23
|
Das T, Kim EE, Song EJ. Phosphorylation of USP15 and USP4 Regulates Localization and Spliceosomal Deubiquitination. J Mol Biol 2019; 431:3900-3912. [PMID: 31330151 DOI: 10.1016/j.jmb.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023]
Abstract
Deubiquitinating enzymes have key roles in diverse cellular processes whose enzymatic activities are regulated by different mechanisms including post-translational modification. Here, we show that USP15 is phosphorylated, and its localization and activity are dependent on the phosphorylation status. Nuclear-cytoplasmic fractionation and mass spectrometric analysis revealed that Thr149 and Thr219 of human USP15, which is conserved among different species, are phosphorylated in the cytoplasm. The phosphorylation status of USP15 at these two positions alters the interaction with its partner protein SART3, consequently leading to its nuclear localization and deubiquitinating activity toward the substrate PRP31. Treatment of cells with purvalanol A, a cyclin-dependent kinase inhibitor, results in nuclear translocation of USP15. USP4, another deubiquitinating enzyme with a high sequence homology and domain structure as USP15, also showed purvalanol A-dependent changes in activity and localization. Collectively, our data suggest that modifications of USP15 and USP4 by phosphorylation are important for the regulation of their localization required for cellular function in the spliceosome.
Collapse
Affiliation(s)
- Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea 03760.
| |
Collapse
|
24
|
Zhu J, Huang G, Hua X, Li Y, Yan H, Che X, Tian Z, Liufu H, Huang C, Li J, Xu J, Dai W, Huang H, Huang C. CD44s is a crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human bladder cancer (BC) cells. Oncogene 2019; 38:3301-3315. [PMID: 30635654 PMCID: PMC7112719 DOI: 10.1038/s41388-018-0664-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
Over half a million US residents are suffering with bladder cancer (BC), which costs a total $4 billion in treatment annually. Although recent studies report that autophagy-related gene 7 (ATG7) is overexpressed in BCs, the regulatory effects of ATG7 on cancer stem-like phenotypes and invasion have not been explored yet. Current studies demonstrated that the deficiency of ATG7 by its shRNA dramatically reduced sphere formation and invasion in vitro, as well as lung metastasis in vivo in human invasive BC cells. Further studies indicated that the knockdown of ATG7 attenuated the expression of CD44 standard (CD44s), while ectopic introduction of CD44s, was capable of completely restoring sphere formation, invasion, and lung metastasis in T24T(shATG7) cells. Mechanistic studies revealed that ATG7 overexpression stabilized CD44s proteins accompanied with upregulating USP28 proteins. Upregulated USP28 was able to bind to CD44s and remove the ubiquitin group from CD44s' protein, resulting in the stabilization of CD44s protein. Moreover, ATG7 inhibition stabilized AUF1 protein and thereby reduced tet1 mRNA stability and expression, which was able to demethylate usp28 promoter, reduced USP28 expression, finally promoting CD44s degradation. In addition, CD44s was defined to inhibit degradation of RhoGDIβ, which in turn promotes BC invasion. Our results demonstrate that CD44s is a key ATG7 downstream regulator of the sphere formation, invasion, and lung metastasis of BCs, providing significant insight into understanding the BC invasions, metastasis, and stem-like properties.
Collapse
Affiliation(s)
- Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Grace Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
- Summer Intern from Northern Highlands Regional High School, 298 Hillside Ave, Allendale, NJ, 07401, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xun Che
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Huating Liufu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Wei Dai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
25
|
USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst) 2019; 76:30-39. [PMID: 30807924 DOI: 10.1016/j.dnarep.2019.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Turnover of cellular proteins is regulated by Ubiquitin Proteasome System (UPS). Components of this pathway, including the proteasome, ubiquitinating enzymes and deubiquitinating enzymes, are highly specialized and tightly regulated. In this mini-review we focus on the de-ubiquitinating enzyme USP7, and summarize latest advances in understanding its structure, substrate specificity and relevance to human cancers. There is increasing interest in UPS components as targets for cancer therapy and here we also overview the recent progress in the development of small molecule inhibitors that target USP7.
Collapse
|
26
|
UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Proc Natl Acad Sci U S A 2018; 115:E11642-E11650. [PMID: 30487212 DOI: 10.1073/pnas.1808731115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The best-known function of ubiquitin-like (UBL) domains in proteins is to enable their binding to 26S proteasomes. The proteasome-associated deubiquitinating enzyme Usp14/UBP6 contains an N-terminal UBL domain and is an important regulator of proteasomal activity. Usp14 by itself represses multiple proteasomal activities but, upon binding a ubiquitin chain, Usp14 stimulates these activities and promotes ubiquitin-conjugate degradation. Here, we demonstrate that Usp14's UBL domain alone mimics this activation of proteasomes by ubiquitin chains. Addition of this UBL domain to purified 26S proteasomes stimulated the same activities inhibited by Usp14: peptide entry and hydrolysis, protein-dependent ATP hydrolysis, deubiquitination by Rpn11, and the degradation of ubiquitinated and nonubiquitinated proteins. Thus, the binding of Usp14's UBL (apparently to Rpn1's T2 site) seems to mediate the activation of proteasomes by ubiquitinated substrates. However, the stimulation of these various activities was greater in proteasomes lacking Usp14 than in wild-type particles and thus is a general response that does not involve some displacement of Usp14. Furthermore, the UBL domains from hHR23 and hPLIC1/UBQLN1 also stimulated peptide hydrolysis, and the expression of hHR23A's UBL domain in HeLa cells stimulated overall protein degradation. Therefore, many UBL-containing proteins that bind to proteasomes may also enhance allosterically its proteolytic activity.
Collapse
|
27
|
Biray Avci C, Goker Bagca B, Tetik Vardarli A, Saydam G, Gunduz C. Epigenetic modifications in chronic myeloid leukemia cells through ruxolitinib treatment. J Cell Biochem 2018; 120:4555-4563. [PMID: 30260022 DOI: 10.1002/jcb.27744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
Abstract
Chronic myeloid leukemia is a clonal malignancy of hematopoietic stem cell that is characterized by the occurrence of t(9;22)(q34;q11.2) translocation, named Philadelphia chromosome. Ruxolitinib is a powerful Janus tyrosine kinase 1 and 2 inhibitor that is used for myelofibrosis treatment. DNA-histone connection mediates a wide range of genes that code methylation, demethylation, acetylation, deacetylation, ubiquitination, and phosphorylation enzymes. Epigenetic modifications regulate chromatin compactness, which plays pivotal roles in critical biological processes including the transcriptional activity and cell proliferation as well as various pathological mechanisms, including CML. This study is aimed to determine the alterations of the expression levels of epigenetic modification-related genes after ruxolitinib treatment. Total RNA was isolated from K-562 cells treated with the IC50 value of ruxolitinib and untreated K-562 control cells. A reverse transcription procedure was performed for complementary DNA synthesis, and gene expressions were detected by real-time polymerase chain reaction compared with the untreated cells. Ruxolitinib treatment caused a significant alteration in the expression levels of epigenetic regulation-related genes in K-562 cells. Our novel results suggested that ruxolitinib has inhibitor effects on epigenetic modification-regulator genes.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Asli Tetik Vardarli
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Guray Saydam
- Department of Internal Medicine, Division of Haematology, Medical Faculty, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| |
Collapse
|
28
|
Small proline-rich protein 2B drives stress-dependent p53 degradation and fibroblast proliferation in heart failure. Proc Natl Acad Sci U S A 2018; 115:E3436-E3445. [PMID: 29581288 DOI: 10.1073/pnas.1717423115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Heart disease is associated with the accumulation of resident cardiac fibroblasts (CFs) that secrete extracellular matrix (ECM), leading to the development of pathological fibrosis and heart failure. However, the mechanisms underlying resident CF proliferation remain poorly defined. Here, we report that small proline-rich protein 2b (Sprr2b) is among the most up-regulated genes in CFs during heart disease. We demonstrate that SPRR2B is a regulatory subunit of the USP7/MDM2-containing ubiquitination complex. SPRR2B stimulates the accumulation of MDM2 and the degradation of p53, thus facilitating the proliferation of pathological CFs. Furthermore, SPRR2B phosphorylation by nonreceptor tyrosine kinases in response to TGF-β1 signaling and free-radical production potentiates SPRR2B activity and cell cycle progression. Knockdown of the Sprr2b gene or inhibition of SPRR2B phosphorylation attenuates USP7/MDM2 binding and p53 degradation, leading to CF cell cycle arrest. Importantly, SPRR2B expression is elevated in cardiac tissue from human heart failure patients and correlates with the proliferative state of patient-derived CFs in a process that is reversed by insulin growth factor-1 signaling. These data establish SPRR2B as a unique component of the USP7/MDM2 ubiquitination complex that drives p53 degradation, CF accumulation, and the development of pathological cardiac fibrosis.
Collapse
|
29
|
Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res 2017; 149:58-74. [PMID: 29128390 PMCID: PMC7113668 DOI: 10.1016/j.antiviral.2017.11.001] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
The multi-domain non-structural protein 3 (Nsp3) is the largest protein encoded by the coronavirus (CoV) genome, with an average molecular mass of about 200 kD. Nsp3 is an essential component of the replication/transcription complex. It comprises various domains, the organization of which differs between CoV genera, due to duplication or absence of some domains. However, eight domains of Nsp3 exist in all known CoVs: the ubiquitin-like domain 1 (Ubl1), the Glu-rich acidic domain (also called “hypervariable region”), a macrodomain (also named “X domain”), the ubiquitin-like domain 2 (Ubl2), the papain-like protease 2 (PL2pro), the Nsp3 ectodomain (3Ecto, also called “zinc-finger domain”), as well as the domains Y1 and CoV-Y of unknown functions. In addition, the two transmembrane regions, TM1 and TM2, exist in all CoVs. The three-dimensional structures of domains in the N-terminal two thirds of Nsp3 have been investigated by X-ray crystallography and/or nuclear magnetic resonance (NMR) spectroscopy since the outbreaks of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003 as well as Middle-East Respiratory Syndrome coronavirus (MERS-CoV) in 2012. In this review, the structures and functions of these domains of Nsp3 are discussed in depth. Nonstructural protein 3 (∼200 kD) is a multifunctional protein comprising up to 16 different domains and regions. Nsp3 binds to viral RNA, nucleocapsid protein, as well as other viral proteins, and participates in polyprotein processing. The papain-like protease of Nsp3 is an established target for new antivirals. Through its de-ADP-ribosylating, de-ubiquitinating, and de-ISGylating activities, Nsp3 counteracts host innate immunity. Structural data are available for the N-terminal two thirds of Nsp3, but domains in the remainder are poorly characterized.
Collapse
|
30
|
Kim RQ, Sixma TK. Regulation of USP7: A High Incidence of E3 Complexes. J Mol Biol 2017; 429:3395-3408. [DOI: 10.1016/j.jmb.2017.05.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
|
31
|
Ubiquitin-Specific Protease 2 Modulates the Lipopolysaccharide-Elicited Expression of Proinflammatory Cytokines in Macrophage-like HL-60 Cells. Mediators Inflamm 2017; 2017:6909415. [PMID: 29138532 PMCID: PMC5613470 DOI: 10.1155/2017/6909415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated the regulatory roles of USP2 in mRNA accumulation of proinflammatory cytokines in macrophage-like cells after stimulation with a toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Human macrophage-like HL-60 cells, mouse macrophage-like J774.1 cells, and mouse peritoneal macrophages demonstrated negative feedback to USP2 mRNA levels after LPS stimulation, suggesting that USP2 plays a significant role in LPS-stimulated macrophages. USP2 knockdown (KD) by short hairpin RNA in HL-60 cells promoted the accumulation of transcripts for 25 of 104 cytokines after LPS stimulation. In contrast, limited induction of cytokines was observed in cells forcibly expressing the longer splice variant of USP2 (USP2A), or in peritoneal macrophages isolated from Usp2a transgenic mice. An ubiquitin isopeptidase-deficient USP2A mutant failed to suppress LPS-induced cytokine expression, suggesting that protein ubiquitination contributes to USP2-mediated cytokine repression. Although USP2 deficiency did not accelerate TNF receptor-associated factor (TRAF) 6-nuclear factor-κB (NF-κB) signaling, it increased the DNA binding ratio of the octamer binding transcription factor (Oct)-1 to Oct-2 in TNF, CXCL8, CCL4, and IL6 promoters. USP2 decreased nuclear Oct-2 protein levels in addition to decreasing the polyubiquitination of Oct-1. In summary, USP2 modulates proinflammatory cytokine induction, possibly through modification of Oct proteins, in macrophages following TLR4 activation.
Collapse
|
32
|
Daniel E, Newell-Price J. Recent advances in understanding Cushing disease: resistance to glucocorticoid negative feedback and somatic USP8 mutations. F1000Res 2017; 6:613. [PMID: 28529722 PMCID: PMC5414817 DOI: 10.12688/f1000research.10968.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Cushing’s disease is a rare disease with a characteristic phenotype due to significant hypercortisolism driven by over-secretion of adrenocorticotropic hormone and to high morbidity and mortality if untreated. It is caused by a corticotroph adenoma of the pituitary, but the exact mechanisms leading to tumorigenesis are not clear. Recent advances in molecular biology such as the discovery of somatic mutations of the ubiquitin-specific peptidase 8 (
USP8) gene allow new insights into the pathogenesis, which could be translated into exciting and much-needed therapeutic applications.
Collapse
Affiliation(s)
- Eleni Daniel
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - John Newell-Price
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
33
|
The Regulations of Deubiquitinase USP15 and Its Pathophysiological Mechanisms in Diseases. Int J Mol Sci 2017; 18:ijms18030483. [PMID: 28245560 PMCID: PMC5372499 DOI: 10.3390/ijms18030483] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) play a critical role in ubiquitin-directed signaling by catalytically removing the ubiquitin from substrate proteins. Ubiquitin-specific protease 15 (USP15), a member of the largest subfamily of cysteine protease DUBs, contains two conservative cysteine (Cys) and histidine (His) boxes. USP15 harbors two zinc-binding motifs that are essential for recognition of poly-ubiquitin chains. USP15 is grouped into the same category with USP4 and USP11 due to high degree of homology in an N-terminal region consisting of domains present in ubiquitin-specific proteases (DUSP) domain and ubiquitin-like (UBL) domain. USP15 cooperates with COP9 signalosome complex (CSN) to maintain the stability of cullin-ring ligase (CRL) adaptor proteins by removing the conjugated ubiquitin chains from RBX1 subunit of CRL. USP15 is also implicated in the stabilization of the human papillomavirus type 16 E6 oncoprotein, adenomatous polyposis coli, and IκBα. Recently, reports have suggested that USP15 acts as a key regulator of TGF-β receptor-signaling pathways by deubiquitinating the TGF-β receptor itself and its downstream transducers receptor-regulated SMADs (R-SMADs), including SMAD1, SMAD2, and SMAD3, thus activating the TGF-β target genes. Although the importance of USP15 in pathologic processes remains ambiguous so far, in this review, we endeavor to summarize the literature regarding the relationship of the deubiquitinating action of USP15 with the proteins involved in the regulation of Parkinson’s disease, virus infection, and cancer-related signaling networks.
Collapse
|
34
|
Saito N, Kimura S, Miyamoto T, Fukushima S, Amagasa M, Shimamoto Y, Nishioka C, Okamoto S, Toda C, Washio K, Asano A, Miyoshi I, Takahashi E, Kitamura H. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep 2017; 9:322-329. [PMID: 28956020 PMCID: PMC5614627 DOI: 10.1016/j.bbrep.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 12/24/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
We previously reported that ubiquitin-specific protease (USP) 2 in macrophages down-regulates genes associated with metabolic diseases, suggesting a putative anti-diabetic role for USP2 in macrophages. In this study, we evaluate this role at both cellular and individual levels. Isolated macrophages forcibly expressing Usp2a, a longer splicing variant of USP2, failed to modulate the insulin sensitivity of 3T3-L1 adipocytes. Similarly, macrophage-selective overexpression of Usp2a in mice (Usp2a transgenic mice) had a negligible effect on insulin sensitivity relative to wild type littermates following a three-month high-fat diet. However, Usp2a transgenic mice exhibited fewer M1 macrophages in their mesenteric adipose tissue. Following a six-month high-fat diet, Usp2a transgenic mice exhibited a retarded progression of insulin resistance in their skeletal muscle and liver, and an improvement in insulin sensitivity at an individual level. Although conditioned media from Usp2a-overexpressing macrophages did not directly affect the insulin sensitivity of C2C12 myotubes compared to media from control macrophages, they did increase the insulin sensitivity of C2C12 cells after subsequent conditioning with 3T3-L1 cells. These results indicate that macrophage USP2A hampers obesity-elicited insulin resistance via an adipocyte-dependent mechanism. USP2A controls macrophage population in mesenteric adipose tissue during obesity. Overexpression of USP2A in macrophages retards progression of insulin resistance. Overexpression of USP2A in macrophages represses high-fat diet-induced obesity. Macrophage USP2A controls insulin sensitivity of muscle dependent on adipocytes.
Collapse
Key Words
- DMEM, Dulbecco's modified Eagle medium
- Diabetes
- ELISA, enzyme-linked immunosorbent assay
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HFD, high-fat diet
- HOMA-IR, homeostatic model assessment as an index of insulin resistance
- IL, interleukin
- IR, insulin receptor
- IRS, insulin receptor substrate
- Insulin
- KD, knock down
- KO, knockout
- Macrophage
- NCD, normal chow diet
- NEFA, nonesterified fatty acid
- Obesity
- PDK, phosphoinositide-dependent kinase
- PI3K, phosphatidylinositol 3-phosphate kinase
- SOCS, suppressor of cytokine signaling
- T2DM, type 2 diabetes mellitus
- Tg, transgenic
- USP
- USP, ubiquitin-specific protease
- pAkt, phosphorylated Akt
- pIRβ, phosphorylated insulin receptor β chain
Collapse
Affiliation(s)
- Natsuko Saito
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, and Laboratory of Animal Therapeutics, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Department of Functional Morphology, Graduate School of Medical Sciences, Hokkaido University, Kita15, Nishi7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tomomi Miyamoto
- Department of Comparative and Experimental Medicine, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Sanae Fukushima
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Misato Amagasa
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, and Laboratory of Animal Therapeutics, Japan
| | - Yoshinori Shimamoto
- Department of Veterinary Science, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Chieko Nishioka
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Chitoku Toda
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8063, USA
| | - Kohei Washio
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, and Laboratory of Animal Therapeutics, Japan
| | - Atsushi Asano
- Laboratory of Laboratory Animal, Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ichiro Miyoshi
- Department of Comparative and Experimental Medicine, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Eiki Takahashi
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, and Laboratory of Animal Therapeutics, Japan.,Laboratory of Histology and Cytology, Department of Functional Morphology, Graduate School of Medical Sciences, Hokkaido University, Kita15, Nishi7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.,Department of Comparative and Experimental Medicine, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
35
|
Tencer AH, Liang Q, Zhuang Z. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes. Biochemistry 2016; 55:4708-19. [PMID: 27501351 DOI: 10.1021/acs.biochem.6b00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deubiquitinating enzymes (DUBs) are responsible for reversing mono- and polyubiquitination of proteins and play essential roles in numerous cellular processes. Close to 100 human DUBs have been identified and are classified into five families, with the ubiquitin-specific protease (USP) family being the largest (>50 members). The binding of ubiquitin (Ub) to USP is strikingly different from that observed for the DUBs in the ubiquitin C-terminal hydrolase (UCH) and ovarian tumor domain protease (OTU) families. We generated a panel of mutant ubiquitins and used them to probe the ubiquitin's interaction with a number of USPs. Our results revealed a remarkable divergence of USP-Ub interactions among the USP catalytic domains. Our double-mutant cycle analysis targeting the ubiquitin residues located in the tip, the central body, and the tail of ubiquitin also demonstrated different crosstalk among the USP-Ub interactions. This work uncovered intriguing divergence in the ubiquitin-binding mode in the USP family DUBs and raised the possibility of targeting the ubiquitin-binding hot spots on USPs for selective inhibition of USPs by small molecule antagonists.
Collapse
Affiliation(s)
- Adam H Tencer
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Qin Liang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| |
Collapse
|
36
|
MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability. Acta Pharmacol Sin 2016; 37:889-97. [PMID: 27063215 DOI: 10.1038/aps.2016.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022]
Abstract
AIM MicroRNAs play pivotal roles in regulation of both innate and adaptive immune responses. In the present study, we investigated the effects of microRNA-124 (miR-124) on production of the pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-treated mouse macrophages. METHODS Mouse macrophage cell line RAW264.7 was stimulated with LPS (100 ng/mL). The levels of miR-124 and TNF-α mRNA were evaluated using q-PCR. ELISA and Western blotting were used to detect TNF-α protein level in cell supernatants and cells, respectively. 3'-UTR luciferase reporter assays were used to analyze the targets of miR-124. For in vivo experiments, mice were injected with LPS (30 mg/kg, ip). RESULTS LPS stimulation significantly increased the mRNA level of miR-124 in RAW264.7 macrophages in vitro and mice in vivo. In RAW264.7 macrophages, knockdown of miR-124 with miR-124 inhibitor dose-dependently increased LPS-stimulated production of TNF-α protein and prolonged the half-life of TNF-α protein, but did not change TNF-α mRNA levels, whereas overexpression of miR-124 with miR-124 mimic produced the opposite effects. Furthermore, miR-124 was found to directly target two components of deubiquitinating enzymes: ubiquitin-specific proteases (USP) 2 and 14. Knockdown of USP2 or USP14 accelerated protein degradation of TNF-α, and abolished the effect of miR-124 on TNF-α protein stability. CONCLUSION miR-124, targeting USP2 and USP14, negatively regulates LPS-induced TNF-α production in mouse macrophages, suggesting miR-124 as a new therapeutic target in inflammation-related diseases.
Collapse
|
37
|
Park JK, Das T, Song EJ, Kim EE. Structural basis for recruiting and shuttling of the spliceosomal deubiquitinase USP4 by SART3. Nucleic Acids Res 2016; 44:5424-37. [PMID: 27060135 PMCID: PMC4914101 DOI: 10.1093/nar/gkw218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/21/2016] [Indexed: 12/23/2022] Open
Abstract
Squamous cell carcinoma antigen recognized by T-cells 3 (SART3) is a U4/U6 recycling factor as well as a targeting factor of USP4 and USP15. However, the details of how SART3 recognizes these deubiquitinases and how they get subsequently translocated into the nucleus are not known. Here, we present the crystal structures of the SART3 half-a-tetratricopeptide (HAT) repeat domain alone and in complex with the domain present in ubiquitin-specific protease (DUSP)-ubiquitin-like (UBL) domains of ubiquitin specific protease 4 (USP4). The 12 HAT repeats of SART3 are in two sub-domains (HAT-N and HAT-C) forming a dimer through HAT-C. USP4 binds SART3 at the opposite surface of the HAT-C dimer interface utilizing the β-structured linker between the DUSP and the UBL domains. The binding affinities of USP4 and USP15 to SART3 are 0.9 μM and 0.2 μM, respectively. The complex structure of SART3 nuclear localization signal (NLS) and importin-α reveals bipartite binding, and removal of SART3 NLS prevents the entry of USP4 (and USP15) into the nucleus and abrogates the subsequent deubiquitinase activity of USP4.
Collapse
Affiliation(s)
- Joon Kyu Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| |
Collapse
|
38
|
Reijnders M, Zachariadis V, Latour B, Jolly L, Mancini G, Pfundt R, Wu K, van Ravenswaaij-Arts C, Veenstra-Knol H, Anderlid BM, Wood S, Cheung S, Barnicoat A, Probst F, Magoulas P, Brooks A, Malmgren H, Harila-Saari A, Marcelis C, Vreeburg M, Hobson E, Sutton V, Stark Z, Vogt J, Cooper N, Lim J, Price S, Lai A, Domingo D, Reversade B, Gecz J, Gilissen C, Brunner H, Kini U, Roepman R, Nordgren A, Kleefstra T, Kleefstra T. De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. Am J Hum Genet 2016; 98:373-81. [PMID: 26833328 DOI: 10.1016/j.ajhg.2015.12.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
39
|
Masoumi KC, Marfany G, Wu Y, Massoumi R. Putative role of SUMOylation in controlling the activity of deubiquitinating enzymes in cancer. Future Oncol 2016; 12:565-74. [PMID: 26777062 DOI: 10.2217/fon.15.320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) are specialized proteins that can recognize ubiquitinated proteins, and after direct interaction, deconjugate monomeric or polymeric ubiquitin chains, thus changing the fate of the substrates. This process is instrumental in mediating or changing downstream signaling pathways. Beside mutations and alterations in their expression levels, the activity and stability of deubiquitinating enzymes is vital for their function. SUMOylations consist of the conjugation of the small peptide SUMO to protein substrates which is very similar to ubiquitination in the mechanistic and machinery required. In this review, we will focus on how SUMOylation can regulate DUB enzymatic activity, stability or DUB interaction with partners and substrates, in cancer. Furthermore, we will discuss the impact of these recent findings in the identification of new potential tools for efficient anticancer treatment strategies.
Collapse
Affiliation(s)
- Katarzyna C Masoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| | - Gemma Marfany
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Institut de Biomedicina (IBUB), Universitat de Barcelona, 08007 Barcelona, Spain.,CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Yingli Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| |
Collapse
|
40
|
Abstract
This review examines the small molecules described over the past decade as inhibitors of any of the approximately 100 human deubiquitinating enzymes (DUBs). Structures from patent publications as well as from the primary literature are included. Inhibitors of two viral DUBs are also described since these proteases share structural similarity with one of the human DUB sub-families. The structure, function and disease associations of certain DUBs are presented. The evolution of the screening assays used to identify and characterise new inhibitors is discussed. Several emerging trends in the series are highlighted and the ‘drug-likeness’ of the various inhibitors is analysed. Large pharmaceutical company collaborations have drawn attention to this field, and these recent advances are discussed in the context of the wider range of therapeutically important DUB targets.
Collapse
Affiliation(s)
- Mark Kemp
- MISSION Therapeutics, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
41
|
Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, Kong C, Li B, Peng C, Wong CCL, Hou F, Zhang Y. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS One 2015; 10:e0145023. [PMID: 26678539 PMCID: PMC4683056 DOI: 10.1371/journal.pone.0145023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Mixed lineage leukemia 5 (MLL5) protein is a trithorax family histone 3 lysine 4 (H3K4) methyltransferase that regulates diverse biological processes, including cell cycle progression, hematopoiesis and cancer. The mechanisms by which MLL5 protein stability is regulated have remained unclear to date. Here, we showed that MLL5 protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin-specific protease 7 (USP7). Depletion of OGT in cells led to a decrease in the MLL5 protein level through ubiquitin/proteasome-dependent proteolytic degradation, whereas ectopic expression of OGT protein suppressed MLL5 ubiquitylation. We further identified deubiquitinase USP7 as a novel MLL5-associated protein using mass spectrometry. USP7 stabilized the MLL5 protein through direct binding and deubiquitylation. Loss of USP7 induced degradation of MLL5 protein. Conversely, overexpression of USP7, but not a catalytically inactive USP7 mutant, led to decreased ubiquitylation and increased MLL5 stability. Co-immunoprecipitation and co-immunostaining assays revealed that MLL5, OGT and USP7 interact with each other to form a stable ternary complex that is predominantly located in the nucleus. In addition, upregulation of MLL5 expression was correlated with increased expression of OGT and USP7 in human primary cervical adenocarcinomas. Our results collectively reveal a novel molecular mechanism underlying regulation of MLL5 protein stability and provide new insights into the functional interplay among O-GlcNAc transferase, deubiquitinase and histone methyltransferase.
Collapse
Affiliation(s)
- Xiaodan Ding
- Department of Immunology, Nanjing Medical University, Jiangsu, China
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Red House Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- * E-mail: (WJ); (YZ)
| | - Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lulu Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Institute of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Xiaoling Wan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiujie Yuan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xizi Wang
- College of life science, Sun Yet-Sen University, Guangzhou, China
| | - Miao Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jun Chen
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jing Yang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Kong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catherine C. L. Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fajian Hou
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (WJ); (YZ)
| |
Collapse
|
42
|
Ham SJ, Lee SY, Song S, Chung JR, Choi S, Chung J. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity. J Biol Chem 2015; 291:1803-1816. [PMID: 26631732 DOI: 10.1074/jbc.m115.687319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/06/2022] Open
Abstract
Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis.
Collapse
Affiliation(s)
- Su Jin Ham
- From the Interdisciplinary Graduate Program in Genetic Engineering,; National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Soo Young Lee
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Saera Song
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Ju-Ryung Chung
- School of Biological Sciences, Seoul National University, Seoul 51-742, Republic of Korea
| | - Sekyu Choi
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Jongkyeong Chung
- From the Interdisciplinary Graduate Program in Genetic Engineering,; National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and; School of Biological Sciences, Seoul National University, Seoul 51-742, Republic of Korea.
| |
Collapse
|
43
|
Harrison JS, Jacobs TM, Houlihan K, Van Doorslaer K, Kuhlman B. UbSRD: The Ubiquitin Structural Relational Database. J Mol Biol 2015; 428:679-687. [PMID: 26392143 DOI: 10.1016/j.jmb.2015.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022]
Abstract
The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd.
Collapse
Affiliation(s)
- Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tim M Jacobs
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Houlihan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Koenraad Van Doorslaer
- DNA Tumor Virus Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Pozhidaeva AK, Mohni KN, Dhe-Paganon S, Arrowsmith CH, Weller SK, Korzhnev DM, Bezsonova I. Structural Characterization of Interaction between Human Ubiquitin-specific Protease 7 and Immediate-Early Protein ICP0 of Herpes Simplex Virus-1. J Biol Chem 2015. [PMID: 26224631 DOI: 10.1074/jbc.m115.664805] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that prevents protein degradation by removing polyubiquitin chains from its substrates. It regulates the stability of a number of human transcription factors and tumor suppressors and plays a critical role in the development of several types of cancer, including prostate and small cell lung cancer. In addition, human USP7 is targeted by several viruses of the Herpesviridae family and is required for effective herpesvirus infection. The USP7 C-terminal region (C-USP7) contains five ubiquitin-like domains (UBL1-5) that interact with several USP7 substrates. Although structures of the USP7 C terminus bound to its substrates could provide vital information for understanding USP7 substrate specificity, no such data has been available to date. In this work we have demonstrated that the USP7 ubiquitin-like domains can be studied in isolation by solution NMR spectroscopy, and we have determined the structure of the UBL1 domain. Furthermore, we have employed NMR and viral plaque assays to probe the interaction between the C-USP7 and HSV-1 immediate-early protein ICP0 (infected cell protein 0), which is essential for efficient lytic infection and virus reactivation from latency. We have shown that depletion of the USP7 in HFF-1 cells negatively affects the efficiency of HSV-1 lytic infection. We have also found that USP7 directly binds ICP0 via its C-terminal UBL1-2 domains and mapped the USP7-binding site for ICP0. Therefore, this study represents a first step toward understanding the molecular mechanism of C-USP7 specificity toward its substrates and may provide the basis for future development of novel antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Alexandra K Pozhidaeva
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Kareem N Mohni
- the Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sirano Dhe-Paganon
- the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, and
| | - Cheryl H Arrowsmith
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sandra K Weller
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Dmitry M Korzhnev
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Irina Bezsonova
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030,
| |
Collapse
|
45
|
Cai JB, Shi GM, Dong ZR, Ke AW, Ma HH, Gao Q, Shen ZZ, Huang XY, Chen H, Yu DD, Liu LX, Zhang PF, Zhang C, Hu MY, Yang LX, Shi YH, Wang XY, Ding ZB, Qiu SJ, Sun HC, Zhou J, Shi YG, Fan J. Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology 2015; 61:1603-1614. [PMID: 25557975 DOI: 10.1002/hep.27682] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED The prognosis for hepatocellular carcinoma (HCC) remains dismal in terms of overall survival (OS), and its molecular pathogenesis has not been completely defined. Here, we report that expression of deubiquitylase ubiquitin-specific protease 7 (USP7) is higher in human HCC tissues than in matched peritumoral tissues. Ectopic USP7 expression promotes growth of HCC cells in vivo and in vitro. Mechanistically, USP7 overexpression fosters HCC cell growth by forming a complex with and stabilizing thyroid hormone receptor-interacting protein 12 (TRIP12), which induces constitutive p14(ARF) ubiquitination. Clinically, USP7 overexpression is significantly correlated with a malignant phenotype, including larger tumor size, multiple tumor, poor differentiation, elevated alpha-fetoprotein, and microvascular invasion. Moreover, overexpression of USP7 and/or TRIP12 correlates with shorter OS and higher cumulative recurrence rates of HCC. CONCLUSION USP7 stabilizes TRIP12 by deubiquitination, thus constitutively inactivating p14(ARF) and promoting HCC progression. This represents a novel marker for predicting prognosis and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol 2015; 89:4907-17. [PMID: 25694594 DOI: 10.1128/jvi.00338-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.
Collapse
|
47
|
Seneci P. Targeting Proteasomal Degradation of Soluble, Misfolded Proteins. CHEMICAL MODULATORS OF PROTEIN MISFOLDING AND NEURODEGENERATIVE DISEASE 2015. [PMCID: PMC7150093 DOI: 10.1016/b978-0-12-801944-3.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter deals with small molecule modulators of the ubiquitin–proteasome system (UPS). They are designed to restore its impaired capacity to dispose of soluble, dysfunctional protein copies, and to fight its pathological impairment in proteinopathies in general and in tauopathies in particular. Two specific molecular targets belonging to the U-box E3 ligase family (C-terminus of Hsc70 interacting protein, CHIP) and to the proteasome-associated cysteine protease DUB family (USP14) are selected for their putative role against NDDs and tauopathies. The limited available structural information for the two targets, and for their interactions with members of UPS-driven protein complexes, is described. A small number of known modulators for each target (or even for structurally related targets, possibly to provide translatable examples) are portrayed in terms of their biological profile, and of their development potential as disease-modifying drugs against NDDs.
Collapse
|
48
|
Bailey-Elkin BA, Knaap RCM, Johnson GG, Dalebout TJ, Ninaber DK, van Kasteren PB, Bredenbeek PJ, Snijder EJ, Kikkert M, Mark BL. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J Biol Chem 2014; 289:34667-82. [PMID: 25320088 PMCID: PMC4263872 DOI: 10.1074/jbc.m114.609644] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human
pathogen that was first isolated in 2012. MERS-CoV replication depends in part
on a virus-encoded papain-like protease (PLpro) that cleaves the
viral replicase polyproteins at three sites releasing non-structural protein 1
(nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV
PLpro was recently shown to be a deubiquitinating enzyme (DUB)
and to possess deISGylating activity, as previously reported for other
coronaviral PLpro domains, including that of severe acute respiratory
syndrome coronavirus. These activities have been suggested to suppress host
antiviral responses during infection. To understand the molecular basis for
ubiquitin (Ub) recognition and deconjugation by MERS-CoV PLpro, we
determined its crystal structure in complex with Ub. Guided by this structure,
mutations were introduced into PLpro to specifically disrupt Ub
binding without affecting viral polyprotein cleavage, as determined using an in
trans nsp3↓4 cleavage assay. Having developed a
strategy to selectively disable PLpro DUB activity, we were able to
specifically examine the effects of this activity on the innate immune response.
Whereas the wild-type PLpro domain was found to suppress
IFN-β promoter activation, PLpro variants specifically
lacking DUB activity were no longer able to do so. These findings directly
implicate the DUB function of PLpro, and not its proteolytic activity
per se, in the inhibition of IFN-β promoter
activity. The ability to decouple the DUB activity of PLpro from its
role in viral polyprotein processing now provides an approach to further dissect
the role(s) of PLpro as a viral DUB during MERS-CoV infection.
Collapse
Affiliation(s)
- Ben A Bailey-Elkin
- From the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - Robert C M Knaap
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Garrett G Johnson
- From the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - Tim J Dalebout
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dennis K Ninaber
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Puck B van Kasteren
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Peter J Bredenbeek
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Eric J Snijder
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- the Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian L Mark
- From the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| |
Collapse
|
49
|
Harper S, Gratton HE, Cornaciu I, Oberer M, Scott D, Emsley J, Dreveny I. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains. Biochemistry 2014; 53:2966-78. [PMID: 24724799 PMCID: PMC4020902 DOI: 10.1021/bi500116x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/31/2014] [Indexed: 12/17/2022]
Abstract
The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.
Collapse
Affiliation(s)
- Stephen Harper
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Hayley E. Gratton
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Irina Cornaciu
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - Monika Oberer
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - David
J. Scott
- School
of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Ingrid Dreveny
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
50
|
Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014; 23:344-53. [PMID: 24403057 DOI: 10.1002/pro.2415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a reversible post-translational modification that plays a dynamic role in regulating most eukaryotic processes. Deubiquitinating enzymes (DUBs), which hydrolyze the isopeptide or peptide linkages joining ubiquitin to substrate lysines or N-termini, therefore play a key role in ubiquitin signaling. Cells employ multiple mechanisms to regulate DUB activity and thus ensure the appropriate biological response. Recent structural studies have shed light on several different mechanisms by which DUB activity and specificity is regulated.
Collapse
Affiliation(s)
- Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|