1
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2025; 83:1819-1833. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Rass A, Eksteen C, Engelbrecht AM. Paracrine signalling in breast cancer: Insights into the tumour endothelial phenotype. Acta Histochem 2024; 126:152191. [PMID: 39216306 DOI: 10.1016/j.acthis.2024.152191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.
Collapse
Affiliation(s)
- Atarah Rass
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa.
| | - Carla Eksteen
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Simitian G, Virumbrales-Muñoz M, Sánchez-de-Diego C, Beebe DJ, Kosoff D. Microfluidics in vascular biology research: a critical review for engineers, biologists, and clinicians. LAB ON A CHIP 2022; 22:3618-3636. [PMID: 36047330 PMCID: PMC9530010 DOI: 10.1039/d2lc00352j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neovascularization, the formation of new blood vessels, has received much research attention due to its implications for physiological processes and diseases. Most studies using traditional in vitro and in vivo platforms find challenges in recapitulating key cellular and mechanical cues of the neovascularization processes. Microfluidic in vitro models have been presented as an alternative to these limitations due to their capacity to leverage microscale physics to control cell organization and integrate biochemical and mechanical cues, such as shear stress, cell-cell interactions, or nutrient gradients, making them an ideal option for recapitulating organ physiology. Much has been written about the use of microfluidics in vascular biology models from an engineering perspective. However, a review introducing the different models, components and progress for new potential adopters of these technologies was absent in the literature. Therefore, this paper aims to approach the use of microfluidic technologies in vascular biology from a perspective of biological hallmarks to be studied and written for a wide audience ranging from clinicians to engineers. Here we review applications of microfluidics in vascular biology research, starting with design considerations and fabrication techniques. After that, we review the state of the art in recapitulating angiogenesis and vasculogenesis, according to the hallmarks recapitulated and complexity of the models. Finally, we discuss emerging research areas in neovascularization, such as drug discovery, and potential future directions.
Collapse
Affiliation(s)
- Grigor Simitian
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - María Virumbrales-Muñoz
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cristina Sánchez-de-Diego
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Yuan W, Xia H, Xu Y, Xu C, Chen N, Shao C, Dai Z, Chen R, Tao A. The role of ferroptosis in endothelial cell dysfunction. Cell Cycle 2022; 21:1897-1914. [PMID: 35579940 DOI: 10.1080/15384101.2022.2079054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a form of iron-dependent cell death caused by an excessive accumulation of reactive oxygen species and lipid peroxidation. The importance of ferroptosis in the occurrence and progression of various diseases is gradually being recognized; however, the exact biological effects and potential mechanisms of endothelial cell ferroptosis remain unclear. The endothelium forms the innermost layer of the blood vessels and lymphatic vessels. It acts as an important functional interface, responds to various pathological stimuli and causes endothelial dysfunction. Here, we review recent findings to elucidate the role of ferroptosis in endothelial cells under different pathophysiologic settings.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Xia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chong Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Nan Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhiyin Dai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Aibin Tao
- Department of Cardiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
He MY, Halford MM, Liu R, Roy JP, Grant ZL, Coultas L, Thio N, Gilan O, Chan YC, Dawson MA, Achen MG, Stacker SA. Three-dimensional CRISPR screening reveals epigenetic interaction with anti-angiogenic therapy. Commun Biol 2021; 4:878. [PMID: 34267311 PMCID: PMC8282794 DOI: 10.1038/s42003-021-02397-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis underlies development, physiology and pathogenesis of cancer, eye and cardiovascular diseases. Inhibiting aberrant angiogenesis using anti-angiogenic therapy (AAT) has been successful in the clinical treatment of cancer and eye diseases. However, resistance to AAT inevitably occurs and its molecular basis remains poorly understood. Here, we uncover molecular modifiers of the blood endothelial cell (EC) response to a widely used AAT bevacizumab by performing a pooled genetic screen using three-dimensional microcarrier-based cell culture and CRISPR–Cas9. Functional inhibition of the epigenetic reader BET family of proteins BRD2/3/4 shows unexpected mitigating effects on EC survival and/or proliferation upon VEGFA blockade. Moreover, transcriptomic and pathway analyses reveal an interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs via the cell cycle regulator CDC25B phosphatase. Collectively, our findings provide insight into epigenetic regulation of the EC response to VEGFA blockade and may facilitate development of quality biomarkers and strategies for overcoming resistance to AAT. Through three-dimensional CRISPR screening, He et al. report that functional inhibition of BET family of proteins BRD2/3/4 shows mitigating effects on blood endothelial cell (EC) survival and/or proliferation upon VEGFA blockade. An interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs through CDC25B phosphatase, is potentially involved with EC resistance to anti-angiogenic therapy.
Collapse
Affiliation(s)
- Michael Y He
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael M Halford
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ruofei Liu
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - James P Roy
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe L Grant
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Gladstone Institutes, San Francisco, CA, USA
| | - Leigh Coultas
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Niko Thio
- Bioinformatics Core, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Omer Gilan
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Yih-Chih Chan
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia.,Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marc G Achen
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y, Yamada T, Takayama K. Tumor Neovascularization and Developments in Therapeutics. Cancers (Basel) 2019; 11:cancers11030316. [PMID: 30845711 PMCID: PMC6468754 DOI: 10.3390/cancers11030316] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Tumors undergo fast neovascularization to support the rapid proliferation of cancer cells. Vasculature in tumors, unlike that in wound healing, is immature and affects the tumor microenvironment, resulting in hypoxia, acidosis, glucose starvation, immune cell infiltration, and decreased activity, all of which promote cancer progression, metastasis, and drug resistance. This innate defect of tumor vasculature can however represent a useful therapeutic target. Angiogenesis inhibitors targeting tumor vascular endothelial cells important for angiogenesis have attracted attention as cancer therapy agents that utilize features of the tumor microenvironment. While angiogenesis inhibitors have the advantage of targeting neovascularization factors common to all cancer types, some limitations to their deployment have emerged. Further understanding of the mechanism of tumor angiogenesis may contribute to the development of new antiangiogenic therapeutic approaches to control tumor invasion and metastasis. This review discusses the mechanism of tumor angiogenesis as well as angiogenesis inhibition therapy with antiangiogenic agents.
Collapse
Affiliation(s)
- Yuki Katayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Junji Uchino
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yusuke Chihara
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Nobuyo Tamiya
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Koichi Takayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
7
|
Counting nuclei released from microcarrier-based cultures using pro-fluorescent nucleic acid stains and volumetric flow cytometry. Biotechniques 2017; 63:34-36. [PMID: 28701146 DOI: 10.2144/000114568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/12/2017] [Indexed: 11/23/2022] Open
Abstract
Counting nuclei released from intact cells is a convenient and reliable approach to assess cell density during microcarrier-based culture of adherent cells. However, commonly used methods for counting nuclei, such as crystal violet staining and quantification with a hemocytometer/automated imaging system or a Coulter counter, are imprecise, laborious and, limited in throughput. Here, we describe the use of high-affinity pro-fluorescent nucleic acid stains and volumetric flow cytometry for automated counting of nuclei released from cells attached to microcarriers with improved precision and high sample throughput. This simple procedure facilitates rapid and precise assessment of cell attachment, survival, and proliferation on microcarriers, and can provide information about the cell cycle, all without the need for cell detachment. Consequently, various microcarrier-based applications, from small-scale multi-factor experiments to large-scale functional genetic screens and clinical/industrial cultures, could be enhanced by this approach.
Collapse
|
8
|
Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacker SA, Fox SB. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment. Front Immunol 2016; 7:621. [PMID: 28066431 PMCID: PMC5168440 DOI: 10.3389/fimmu.2016.00621] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022] Open
Abstract
Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.
Collapse
Affiliation(s)
- Shona A Hendry
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Rae H Farnsworth
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre , Melbourne, VIC , Australia
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre , Melbourne, VIC , Australia
| | - Marc G Achen
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia; Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Steven A Stacker
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia; Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre , Melbourne, VIC , Australia
| |
Collapse
|