1
|
Golla R, Jaiswal S, Jayan A, Cheemanapalli S. Transcriptomic analysis of human castration-resistant prostate cancer: Insights into novel therapeutic strategies. Comput Biol Chem 2025; 118:108459. [PMID: 40250330 DOI: 10.1016/j.compbiolchem.2025.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/20/2025]
Abstract
Prostate cancer is a major cause of cancer-related deaths in men worldwide. Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer; however, disease progression to castration-resistant prostate cancer (CRPC) presents a significant therapeutic challenge. In this study, we employed transcriptomic analysis to investigate key genetic drivers of CRPC and identify novel therapeutic targets. Using RNA-seq data and bioinformatics tools, we identified differentially expressed genes (DEGs) associated with tumor progression, cytoskeletal dynamics, and immune modulation, including COL3A1, MYH4, FN1, ACTN1, and CALR. Functional enrichment analysis revealed significant involvement of actin-myosin filament sliding, calcium signaling, androgen receptor signaling, immune evasion, and metabolic pathways, underscoring their roles in CRPC progression and treatment resistance. Additionally, molecular docking studies demonstrated strong binding interactions between key CRPC-related genes (ABCC4 and FOLH1) and potential therapeutic ligands, including flutamide and N-acetyl glucosamine (NAG), highlighting their therapeutic potential in overcoming drug resistance. These findings provide novel insights into the molecular landscape of CRPC and support the development of precision-targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Ramanjaneyulu Golla
- Dept. of Biochemistry, School of Allied Health Science, REVA University, Bangalore 560063, India.
| | - Sneha Jaiswal
- Dept. of Biochemistry, School of Allied Health Science, REVA University, Bangalore 560063, India
| | - Anaswara Jayan
- Dept. of Biochemistry, School of Allied Health Science, REVA University, Bangalore 560063, India
| | - Srinivasulu Cheemanapalli
- Survey of Medicinal Plants Unit, CCRAS - Regional Ayurveda Research Institute, Itanagar, Arunachal Pradesh, India
| |
Collapse
|
2
|
Cai J, Jiang Y, Chen P, Liang J, Zhang Y, Yuan R, Fan H, Zhong Y, Cai J, Cheng S, Zhang Y. TBC1D1 represses glioma progression by altering the integrity of the cytoskeleton. Aging (Albany NY) 2024; 16:431-444. [PMID: 38189823 PMCID: PMC10817367 DOI: 10.18632/aging.205377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Glioma is one of the most aggressive malignant brain tumors and is characterized by invasive growth and poor prognosis. TBC1D1, a member of the TBC family, is associated with the development of various malignancies. However, the role of TBC1D1 in glioma-genesis remains unclear. METHODS The effect of TBC1D1 on the prognosis of glioma patients and related influencing factors were analyzed in the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. Expression of TBC1D1 in glioma cell lines was detected by western blotting. Cell viability and proliferation were measured by EdU and Colony formation assays, respectively. Transwell and wound healing assays were performed to determine the cell migration and invasion capacities. Immunofluorescence was used to observe actin morphology in the cytoskeleton. RESULTS We discovered that high TBC1D1 expression in gliomas led to poor prognosis. Downregulation of TBC1D1 in glioma cells significantly inhibited multiple important functions, such as proliferation, migration, and invasion. We further demonstrated that the tumor-inhibitory effect of TBC1D1 might occur through the P-LIMK/cofilin pathway, destroying the cytoskeletal structure and affecting the depolymerization of F-actin, thereby inhibiting glioma migration. CONCLUSION TBC1D1 affects the balance and integrity of the actin cytoskeleton via cofilin, thereby altering the morphology and aggressiveness of glioma cells. This study provides a new perspective on its role in tumorigenesis, thereby identifying a potential therapeutic target for the treatment of gliomas.
Collapse
Affiliation(s)
- Jiahong Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yong’an Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Jiawei Liang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Raorao Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Hengyi Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yuefei Zhong
- Department of Neurology, Shang Rao GuangXin District People’s Hospital, Shangrao 334100, Jiangxi, China
| | - Jianhui Cai
- Department of Neurosurgery, Nanchang County People’s Hospital, Nanchang 330200, Jiangxi, China
| | - Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| |
Collapse
|
3
|
Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L, Colombo G, Woodford MR, Mollapour M, Bourboulia D. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Rep 2023; 42:112539. [PMID: 37243593 PMCID: PMC10569185 DOI: 10.1016/j.celrep.2023.112539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Matteo Castelli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Luca Torielli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
4
|
Ou C, He X, Liu Y, Zhang X. lncRNA cytoskeleton regulator RNA (CYTOR): Diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis 2023; 10:415-429. [PMID: 37223495 PMCID: PMC10201560 DOI: 10.1016/j.gendis.2021.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of non-coding RNA (ncRNA), that have been studied extensively in the field of tumor research in recent years. In the case of tumor-associated lncRNAs, lncRNA cytoskeleton regulator RNA (CYTOR) displays extensive functions in tumorigenesis, including invasion, metastasis, malignant proliferation, glycolysis, and inflammatory response. Moreover, the dysregulation of CYTOR is closely related to clinicopathological characteristics, such as tumor stage, lymph node metastasis and infiltration, and poor prognosis of tumor patients. In this review, we provide a novel strategy to summarize the biological functions and clinical value of CYTOR in tumors through an overview of the literature combined with gene set enrichment analysis. A deeper understanding of the role of CYTOR in tumorigenesis may provide new diagnostic, prognostic and therapeutic markers for human tumors.
Collapse
Affiliation(s)
- Chunlin Ou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Changsha, Hunan 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Changsha, Hunan 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, China
| |
Collapse
|
5
|
Diaz-Valencia JD, Estrada-Abreo LA, Rodríguez-Cruz L, Salgado-Aguayo AR, Patiño-López G. Class I Myosins, molecular motors involved in cell migration and cancer. Cell Adh Migr 2022; 16:1-12. [PMID: 34974807 PMCID: PMC8741282 DOI: 10.1080/19336918.2021.2020705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023] Open
Abstract
Class I Myosins are a subfamily of motor proteins with ATPase activity and a characteristic structure conserved in all myosins: A N-Terminal Motor Domain, a central Neck and a C terminal Tail domain. Humans have eight genes for these myosins. Class I Myosins have different functions: regulate membrane tension, participate in endocytosis, exocytosis, intracellular trafficking and cell migration. Cell migration is influenced by many cellular components including motor proteins, like myosins. Recently has been reported that changes in myosin expression have an impact on the migration of cancer cells, the formation of infiltrates and metastasis. We propose that class I myosins might be potential markers for future diagnostic, prognostic or even as therapeutic targets in leukemia and other cancers.Abbreviations: Myo1g: Myosin 1g; ALL: Acute Lymphoblastic Leukemia, TH1: Tail Homology 1; TH2: Tail Homology 2; TH3: Tail Homology 3.
Collapse
Affiliation(s)
- Juan D. Diaz-Valencia
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| | - Laura A. Estrada-Abreo
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Leonor Rodríguez-Cruz
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Alfonso R. Salgado-Aguayo
- Rheumatic Diseases Laboratory, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Genaro Patiño-López
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
6
|
Wang Y, Zhang J, Zhang X, Zhang H, Cao X, Hu T, Lin J, Tang X, Chen X, Jiang Y, Yan X, Zhuang H, Luo P, Shen L. Study on the Mechanism of Arsenic-Induced Lung Injury Based on SWATH Proteomics Technology. Biol Trace Elem Res 2022:10.1007/s12011-022-03466-2. [PMID: 36333559 DOI: 10.1007/s12011-022-03466-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Chronic arsenic poisoning is a global health problem that affects millions of people, and studies have found that long-term ingestion of arsenic-containing compounds can lead to lung damage, but the exact mechanism is unknown. In this study, Sprague-Dawley (SD) rats were used as the research object, and the proteomic analysis method based on sequential window acquisition of all theoretical fragment ions (SWATH) was used to detect the changes in the expression levels of related proteins in the lung tissue of arsenic-exposed rats, and to explore the mechanism of arsenic compound-induced lung injury. The results showed that arsenic exposure resulted in the abnormal expression of collagen type III and proteins involved in metabolic, immune, and cellular processes, leading to the dysfunction of important pathways associated with these proteins, resulting in lung injury. It suggested that the underlying mechanism of arsenic-induced lung injury may be related to oxidative stress, immune injury, cell junction, and collagen type III. This result provides a new research idea for revealing the mechanism of lung injury caused by arsenic exposure.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jun Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Yuxuan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
McMillan SN, Scarff CA. Cryo-electron microscopy analysis of myosin at work and at rest. Curr Opin Struct Biol 2022; 75:102391. [DOI: 10.1016/j.sbi.2022.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
|
8
|
Detection of Myosin 1g Overexpression in Pediatric Leukemia by Novel Monoclonal Antibodies. Int J Mol Sci 2022; 23:ijms23073912. [PMID: 35409272 PMCID: PMC8999415 DOI: 10.3390/ijms23073912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Myosin 1g (Myo1g) is a mechanoenzyme associated with actin filaments, expressed exclusively in hematopoietic cells, and involved in various cellular functions, including cell migration, adhesion, and membrane trafficking. Despite the importance of Myo1g in distinct functions, there is currently no monoclonal antibody (mAb) against Myo1g. mAbs are helpful tools for the detection of specific antigens in tumor cells and other tissues. The development of mAbs against targeted dysregulated molecules in cancer cells remains a crucial tool for aiding in the diagnosis and the treatment of patients. Using hybridoma technology, we generated a panel of hybridomas specific for Myo1g. ELISA, immunofluorescence, and Western blot assay results revealed the recognition of Myo1g by these novel monoclonal antibodies in normal and transformed T and B cells. Here, we report the development and application of new monoclonal antibodies against Myo1g for their potential use to detect its overexpression in acute lymphoblastic leukemia (ALL) patients.
Collapse
|
9
|
Estrada-Abreo LA, Rodríguez-Cruz L, Garfias-Gómez Y, Araujo-Cardenas JE, Antonio-Andrés G, Salgado-Aguayo AR, Orozco-Ruiz D, Torres-Nava JR, Díaz-Valencia JD, Huerta-Yépez S, Patiño-López G. High expression of Myosin 1g in pediatric acute lymphoblastic leukemia. Oncotarget 2021; 12:1937-1945. [PMID: 34548909 PMCID: PMC8448507 DOI: 10.18632/oncotarget.28055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the most frequent cancer in pediatric population. Although the treatment has improved and almost 85% of the children are cured about 20% suffer relapse, therefore finding molecules that participate in the pathogenesis of the disease for the identification of relapse and patients at risk is an urgent unmet need. Class I myosins are molecular motors involved in membrane tension, endocytosis, phagocytosis and cell migration and recently they have been shown important for development and aggressiveness of diverse cancer types, however Myo1g an hematopoietic specific myosin has not been studied in cancer so far. We evaluated the expression of Myo1g by qRT-PCR, Immunocytochemistry and Immunofluorescence in a cohort of 133 ALL patients and correlated the expression at diagnosis and after treatment with clinical features and treatment outcomes. We found high expression levels of Myo1g in Peripheral Blood Mononuclear Cells (PBMCs) from patients with ALL at diagnosis and those levels decreased after complete remission; furthermore, we found an increase in Myo1g expression on patients with 9:22 translocation and those who relapse. This study show that Myo1g is over expressed in ALL and that may participate in the pathogenesis of the disease specially in high-risk patients.
Collapse
Affiliation(s)
- Laura A Estrada-Abreo
- Immunology and Proteomics Laboratory, Hospital Infantil de México Federico Gómez, México City, México.,Cell Biology and Flow Cytometry Laboratory, Department of Health Sciences, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Leonor Rodríguez-Cruz
- Cell Biology and Flow Cytometry Laboratory, Department of Health Sciences, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Yanelly Garfias-Gómez
- Immunology and Proteomics Laboratory, Hospital Infantil de México Federico Gómez, México City, México
| | - Janeth E Araujo-Cardenas
- Immunology and Proteomics Laboratory, Hospital Infantil de México Federico Gómez, México City, México
| | - Gabriela Antonio-Andrés
- Oncologic Diseases Research Unit, Hospital Infantil de México Federico Gómez, México City, México
| | - Alfonso R Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, National Institute of Respiratory Diseases, Ismael Cosío Villegas, México City, México
| | | | | | - Juan D Díaz-Valencia
- Immunology and Proteomics Laboratory, Hospital Infantil de México Federico Gómez, México City, México
| | - Sara Huerta-Yépez
- Oncologic Diseases Research Unit, Hospital Infantil de México Federico Gómez, México City, México
| | - Genaro Patiño-López
- Immunology and Proteomics Laboratory, Hospital Infantil de México Federico Gómez, México City, México
| |
Collapse
|
10
|
Sun B, Qu R, Fan T, Yang Y, Jiang X, Khan AU, Zhou Z, Zhang J, Wei K, Ouyang J, Dai J. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 2021; 26:15. [PMID: 33858321 PMCID: PMC8048231 DOI: 10.1186/s11658-021-00259-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.
Collapse
Affiliation(s)
- Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jingliao Zhang
- Department of Foot and Ankle Surgery, Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
12
|
Ouyang Z, Zhao S, Yao S, Wang J, Cui Y, Wei K, Jiu Y. Multifaceted Function of Myosin-18, an Unconventional Class of the Myosin Superfamily. Front Cell Dev Biol 2021; 9:632445. [PMID: 33634131 PMCID: PMC7900500 DOI: 10.3389/fcell.2021.632445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Myosin is a diverse superfamily of motor proteins responsible for actin-based motility and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase motor activity, and the investigations on their functions and molecular mechanisms in vertebrate development and diseases have just been initiated in recent years. Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B shows strong enrichment in striated muscles. Myosin-18 family is important for cell motility, sarcomere formation, and mechanosensing, mostly by interacting with other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several intracellular transport processes, such as Golgi trafficking, and has multiple roles in focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac developmental defects in mouse, emphasizing their crucial role in muscle development and cardiac diseases. In this review, we revisit the discovery history of myosin-18s and summarize the evolving understanding of the molecular functions of myosin-18A and myosin-18B, with an emphasis on their separate yet closely related functions in cell motility and contraction. Moreover, we discuss the diseases tightly associated with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the unanswered questions and potential future research perspectives on myosin-18s.
Collapse
Affiliation(s)
- Zhaohui Ouyang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Su Yao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Wang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Senra D, Páez A, Gueron G, Bruno L, Guisoni N. Following the footprints of variability during filopodial growth. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:643-659. [PMID: 33141270 DOI: 10.1007/s00249-020-01473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Filopodia are actin-built finger-like dynamic structures that protrude from the cell cortex. These structures can sense the environment and play key roles in migration and cell-cell interactions. The growth-retraction cycle of filopodia is a complex process exquisitely regulated by intra- and extra-cellular cues, whose nature remains elusive. Filopodia present wide variation in length, lifetime and growth rate. Here, we investigate the features of filopodia patterns in fixed prostate tumor cells by confocal microscopy. Analysis of almost a thousand filopodia suggests the presence of two different populations: one characterized by a narrow distribution of lengths and the other with a much more variable pattern with very long filopodia. We explore a stochastic model of filopodial growth which takes into account diffusion and reactions involving actin and the regulatory proteins formin and capping, and retrograde flow. Interestingly, we found an inverse dependence between the filopodial length and the retrograde velocity. This result led us to propose that variations in the retrograde velocity could explain the experimental lengths observed for these tumor cells. In this sense, one population involves a wider range of retrograde velocities than the other population, and also includes low values of this velocity. It has been hypothesized that cells would be able to regulate retrograde flow as a mechanism to control filopodial length. Thus, we propound that the experimental filopodia pattern is the result of differential retrograde velocities originated from heterogeneous signaling due to cell-substrate interactions or prior cell-cell contacts.
Collapse
Affiliation(s)
- Daniela Senra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Alejandra Páez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
| | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Pabellón 2, Ciudad Universitaria (1428), Buenos Aires, Argentina
| | - Nara Guisoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
14
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
15
|
Parker F, Peckham M. Disease mutations in striated muscle myosins. Biophys Rev 2020; 12:887-894. [PMID: 32651905 PMCID: PMC7429545 DOI: 10.1007/s12551-020-00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Over 1000 disease-causing missense mutations have been found in human β-cardiac, α-cardiac, embryonic and adult fast myosin 2a myosin heavy chains. Most of these are found in human β-cardiac myosin heavy chain. Mutations in β-cardiac myosin cause hypertrophic cardiomyopathy predominantly, whereas those in α-cardiac are associated with many types of heart disease, of which the most common is dilated cardiomyopathy. Mutations in embryonic and fast myosin 2a affect skeletal muscle function. This review provides a short overview of the mutations in the different myosin isoforms and their disease-causing effects.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
16
|
Zhou W, Liu Y, Gao Y, Cheng Y, Chang R, Li X, Zhou Y, Wang S, Liang L, Duan C, Zhang C. MICAL2 is a novel nucleocytoplasmic shuttling protein promoting cancer invasion and growth of lung adenocarcinoma. Cancer Lett 2020; 483:75-86. [PMID: 32360180 DOI: 10.1016/j.canlet.2020.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
MICAL2 is a tumor-promoting factor involved in cell migration, invasion, deformation, and proliferation not yet fully explored in lung adenocarcinoma (LUAD). This study demonstrated that MICAL2 was overexpressed and cytoplasm-enriched in LUAD tissues. Moreover, high cytoplasmic MICAL2 and/or total MICAL2 expression levels were positively correlated with lymphatic metastasis and shorter overall survival in LUAD patients. MICAL2 promoted LUAD cell proliferation, migration, invasion, and epithelial to mesenchymal transition-all of which involved the AKT and myosin-9 pathways. Furthermore, MICAL2 was identified as a nucleoplasm shuttling protein dependent on myosin-9 and its C-terminal fragment. MICAL2-ΔC-enriched in the nucleus-had less impact on tumor malignancy in LUAD cells in vitro and in vivo. Tumor promotion by MICAL2 was reduced by nuclear-export inhibitor, myosin-9 inhibitor, or si-myosin-9-all of which effectively inhibited MICAL2's nuclear export. Finally, the expression and subcellular location as well as clinical significance of MICAL2 and myosin-9 were analyzed across TCGA data and LUAD tissue arrays. Our data revealed that MICAL2 overexpression and nuclear export were associated with cancer progression; inhibiting its expression and/or nuclear export may provide a new target for LUAD therapy.
Collapse
Affiliation(s)
- Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical College, Jining Medical College, Jining, 272000, PR China
| | - Lubiao Liang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000, PR China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| |
Collapse
|
17
|
The Expressions and Mechanisms of Sarcomeric Proteins in Cancers. DISEASE MARKERS 2020; 2020:8885286. [PMID: 32670437 PMCID: PMC7346232 DOI: 10.1155/2020/8885286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
The sarcomeric proteins control the movement of cells in diverse species, whereas the deregulation can induce tumours in model organisms and occurs in human carcinomas. Sarcomeric proteins are recognized as oncogene and related to tumor cell metastasis. Recent insights into their expressions and functions have led to new cancer therapeutic opportunities. In this review, we appraise the evidence for the sarcomeric proteins as cancer genes and discuss cancer-relevant biological functions, potential mechanisms by which sarcomeric proteins activity is altered in cancer.
Collapse
|
18
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
19
|
Huang J, Wu Y, Lin Y, Cai H, Chen S, Sun X, Li X, Wei Y, Zheng Q, Xu N, Xue X. Up-regulation of LIMK1 expression in prostate cancer is correlated with poor pathological features, lymph node metastases and biochemical recurrence. J Cell Mol Med 2020; 24:4698-4706. [PMID: 32168432 PMCID: PMC7176864 DOI: 10.1111/jcmm.15138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
This study aimed to explore the association between LIM domain kinase 1 (LIMK1) expression in prostate cancer (PCa) tissues with advanced pathological features, lymph node metastases and biochemical recurrence. A total of 279 PCa specimens from patients who underwent radical prostatectomy and 50 benign prostatic hyperplasia (BPH) specimens were collected to construct tissue microarray, which were subjected to immunohistochemical staining for LIMK1 expression subsequently. Logistic and Cox regression analysis were used to evaluate the relationship between LIMK1 expression and clinicopathological features of patients with PCa. Immunohistochemical staining assay demonstrated that LIMK1 expression was significantly higher in PCa than BPH specimens (77.1% vs 26.0%; P < .001). LIMK1 expression was significantly higher in positive lymph node specimens than corresponding PCa specimens (P = .002; P < .001). Up-regulation of LIMK1 was associated with prostate volume, prostate-specific antigen, prostate-specific antigen density, Gleason score, T stage, lymph node metastases, extracapsular extension and seminal vesicle invasion, and positive surgical margin. Multivariate logistic regression analysis demonstrated that LIMK1 was an independent risk factor for PCa lymph node metastasis (P < .05). Multivariate Cox regression analysis revealed that the up-regulation of LIMK1 was an independent risk factor for biochemical recurrence. Kaplan-Meier analysis indicated that up-regulation LIMK1 was associated with shortened biochemical-free survival (BFS) after radical prostatectomy (P < .001). In conclusion, LIMK1 was significantly up-regulated in PCa and positive lymph node specimens and correlated with lymph node metastasis and shortened BFS of PCa. The underlying molecular mechanism of LIMK1 in PCa should be further evaluated.
Collapse
Affiliation(s)
- Jin‐Bei Huang
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yu‐Peng Wu
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yun‐Zhi Lin
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hai Cai
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shao‐Hao Chen
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiong‐Lin Sun
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiao‐Dong Li
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yong Wei
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Qing‐Shui Zheng
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ning Xu
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xue‐Yi Xue
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
20
|
Abstract
Class XVIII myosins represent a branch of the myosin family tree characterized by the presence of large N- and C-terminal extensions flanking a generic myosin core. These myosins display the highest sequence similarity to conventional class II muscle myosins and are compatible with but not restricted to myosin-2 contractile structures. Instead, they fulfill their functions at diverse localities, such as lamella, actomyosin bundles, the Golgi apparatus, focal adhesions, the cell membrane, and within sarcomeres. Sequence comparison of active-site residues and biochemical data available thus far indicate that this myosin class lacks active ATPase-driven motor activity, suggesting that its members function as structural myosins. An emerging body of evidence indicates that this structural capability is essential for the organization, maturation, and regulation of the contractile machinery in both muscle and nonmuscle cells. This is supported by the clear association of myosin-18A (Myo18A) and myosin-18B (Myo18B) dysregulation with diseases such as cancer and various myopathies.
Collapse
|
21
|
Singh K, Sinha M, Pal D, Tabasum S, Gnyawali SC, Khona D, Sarkar S, Mohanty SK, Soto-Gonzalez F, Khanna S, Roy S, Sen CK. Cutaneous Epithelial to Mesenchymal Transition Activator ZEB1 Regulates Wound Angiogenesis and Closure in a Glycemic Status-Dependent Manner. Diabetes 2019; 68:2175-2190. [PMID: 31439646 PMCID: PMC6804631 DOI: 10.2337/db19-0202] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Epithelial to mesenchymal transition (EMT) and wound vascularization are two critical interrelated processes that enable cutaneous wound healing. Zinc finger E-box binding homeobox 1 (ZEB1), primarily studied in the context of tumor biology, is a potent EMT activator. ZEB1 is also known to contribute to endothelial cell survival as well as stimulate tumor angiogenesis. The role of ZEB1 in cutaneous wounds was assessed using Zeb1+/- mice, as Zeb1-/- mice are not viable. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics was used to elucidate the effect of elevated ZEB1, as noted during hyperglycemia. Under different glycemic conditions, ZEB1 binding to E-cadherin promoter was investigated using chromatin immunoprecipitation. Cutaneous wounding resulted in loss of epithelial marker E-cadherin with concomitant gain of ZEB1. The dominant proteins downregulated after ZEB1 overexpression functionally represented adherens junction pathway. Zeb1+/- mice exhibited compromised wound closure complicated by defective EMT and poor wound angiogenesis. Under hyperglycemic conditions, ZEB1 lost its ability to bind E-cadherin promoter. Keratinocyte E-cadherin, thus upregulated, resisted EMT required for wound healing. Diabetic wound healing was improved in ZEB+/- as well as in db/db mice subjected to ZEB1 knockdown. This work recognizes ZEB1 as a key regulator of cutaneous wound healing that is of particular relevance to diabetic wound complication.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mithun Sinha
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Durba Pal
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Saba Tabasum
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Surya C Gnyawali
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Dolly Khona
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Subendu Sarkar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sujit K Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Fidel Soto-Gonzalez
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
22
|
Zhang H, Cong QX, Zhang SG, Zhai XW, Li HF, Li SQ. High Expression Levels of Fascin-1 Protein in Human Gliomas and its Clinical Relevance. Open Med (Wars) 2018; 13:544-550. [PMID: 30426092 PMCID: PMC6227898 DOI: 10.1515/med-2018-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction The fascin-1 protein is a cytoskeleton-like protein, which can prompt structural changes in cell membranes and affect the integrity of intercellular relations to promote invasion and metastasis of tumor cells. In this study, we researched the expression of fascin-1 in glioma. Material and methods The fascin-1 protein and mRNA were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). Then, we analyzed the relationship between the expression of fascin-1 protein and the clinical pathological characteristics of patients with glioma. Finally, the fascin-1 protein expression status and prognosis of glioma patients were investigated. Results The fascin-1 protein was mainly located in the cytoplasm of cells from glioma. The high expression rate of fascin-1 protein in glioma tissue was higher than that of normal brain tissue. At same time, we found that high fascin-1 protein expression was significantly correlated with World Health Organization (WHO) grading of glioma patients. The results survival analysis suggested high expression of fascin-1 protein in glioma patients with a shorter survival time. Multivariate analysis showed that high expression of fascin-1 protein was an independent predictor of the prognosis of patients with glioma. Conclusions High expression of the fascin-1 protein indicates poor prognosis for glioma patients.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Longnan Hospital, Daqing 163453, Heilongjiang, China
| | - Qing-Xue Cong
- Department of Radiology, The Longnan Hospital, Daqing 163453, Heilongjiang, China
| | - Shan-Guo Zhang
- Department of Radiology, The Longnan Hospital, Daqing 163453, Heilongjiang, China
| | - Xiu-Wei Zhai
- Department of surgery, The Longnan Hospital, Daqing 163453, Heilongjiang, China
| | - Hui-Feng Li
- Department of Pathology, Daqing Oilfield General Hospital, Daqing 163453, Heilongjiang, China
| | - Shuang-Qi Li
- Department of surgery, The Longnan Hospital, Daqing 163453, Heilongjiang, China
| |
Collapse
|
23
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
24
|
Shutova MS, Svitkina TM. Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun 2018; 506:394-402. [PMID: 29550471 DOI: 10.1016/j.bbrc.2018.03.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Nonmuscle myosin II is an actin-based motor that executes numerous mechanical tasks in cells including spatiotemporal organization of the actin cytoskeleton, adhesion, migration, cytokinesis, tissue remodeling, and membrane trafficking. Nonmuscle myosin II is ubiquitously expressed in mammalian cells as a tissue-specific combination of three paralogs. Recent studies reveal novel specific aspects of their kinetics, intracellular regulation and functions. On the other hand, the three paralogs also can copolymerize and cooperate in cells. Here we review the recent advances from the prospective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cell.
Collapse
Affiliation(s)
- Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
ROS induced distribution of mitochondria to filopodia by Myo19 depends on a class specific tryptophan in the motor domain. Sci Rep 2017; 7:11577. [PMID: 28912530 PMCID: PMC5599611 DOI: 10.1038/s41598-017-11002-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023] Open
Abstract
The role of the actin cytoskeleton in relation to mitochondria function and dynamics is only recently beginning to be recognized. Myo19 is an actin-based motor that is bound to the outer mitochondrial membrane and promotes the localization of mitochondria to filopodia in response to glucose starvation. However, how glucose starvation induces mitochondria localization to filopodia, what are the dynamics of this process and which enzymatic adaptation allows the translocation of mitochondria to filopodia are not known. Here we show that reactive oxygen species (ROS) mimic and mediate the glucose starvation induced phenotype. In addition, time-lapse fluorescent microscopy reveals that ROS-induced Myo19 motility is a highly dynamic process which is coupled to filopodia elongation and retraction. Interestingly, Myo19 motility is inhibited by back-to-consensus-mutation of a unique residue of class XIX myosins in the motor domain. Kinetic analysis of the purified mutant Myo19 motor domain reveals that the duty ratio (time spent strongly bound to actin) is highly compromised in comparison to that of the WT motor domain, indicating that Myo19 unique motor properties are necessary to propel mitochondria to filopodia tips. In summary, our study demonstrates the contribution of actin-based motility to the mitochondrial localization to filopodia by specific cellular cues.
Collapse
|
26
|
Structure of Myo7b/USH1C complex suggests a general PDZ domain binding mode by MyTH4-FERM myosins. Proc Natl Acad Sci U S A 2017; 114:E3776-E3785. [PMID: 28439001 DOI: 10.1073/pnas.1702251114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unconventional myosin 7a (Myo7a), myosin 7b (Myo7b), and myosin 15a (Myo15a) all contain MyTH4-FERM domains (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in their cargo binding tails and are essential for the growth and function of microvilli and stereocilia. Numerous mutations have been identified in the MyTH4-FERM tandems of these myosins in patients suffering visual and hearing impairment. Although a number of MF domain binding partners have been identified, the molecular basis of interactions with the C-terminal MF domain (CMF) of these myosins remains poorly understood. Here we report the high-resolution crystal structure of Myo7b CMF in complex with the extended PDZ3 domain of USH1C (a.k.a., Harmonin), revealing a previously uncharacterized interaction mode both for MyTH4-FERM tandems and for PDZ domains. We predicted, based on the structure of the Myo7b CMF/USH1C PDZ3 complex, and verified that Myo7a CMF also binds to USH1C PDZ3 using a similar mode. The structure of the Myo7b CMF/USH1C PDZ complex provides mechanistic explanations for >20 deafness-causing mutations in Myo7a CMF. Taken together, these findings suggest that binding to PDZ domains, such as those from USH1C, PDZD7, and Whirlin, is a common property of CMFs of Myo7a, Myo7b, and Myo15a.
Collapse
|
27
|
Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal cells? Biol Cell 2017; 109:167-189. [DOI: 10.1111/boc.201600078] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Charlotte Alibert
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Bruno Goud
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Jean-Baptiste Manneville
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| |
Collapse
|