1
|
King-Hudson TRJ, Davies JS, Quan S, Currie MJ, Tillett ZD, Copping J, Panjikar S, Friemann R, Allison JR, North RA, Dobson RCJ. On the function of TRAP substrate-binding proteins: Conformational variation of the sialic acid binding protein SiaP. J Biol Chem 2024; 300:107851. [PMID: 39357825 PMCID: PMC11550005 DOI: 10.1016/j.jbc.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are analogous to ABC transporters in that they use a substrate-binding protein to scavenge metabolites (e.g., N-acetylneuraminate) and deliver them to the membrane components for import. TRAP substrate-binding proteins are thought to bind the substrate using a two-state (open and closed) induced-fit mechanism. We solved the structure of the TRAP N-acetylneuraminate substrate-binding protein from Aggregatibacter actinomycetemcomitans (AaSiaP) in both the open ligand-free and closed liganded conformations. Surprisingly, we also observed an intermediate conformation, where AaSiaP is mostly closed and is bound to a non-cognate ligand, acetate, which hints at how N-acetylneuraminate binding stabilizes a fully closed state. AaSiaP preferentially binds N-acetylneuraminate (KD = 0.4 μM) compared to N-glycolylneuraminate (KD = 4.4 μM), which is explained by the closed-N-acetylneuraminate bound structure. Small-angle X-ray scattering data alongside molecular dynamics simulations suggest the AaSiaP adopts a more open state in solution than in a crystal. However, the open unliganded conformation can also sample closed conformations. Molecular dynamics simulations also demonstrate the importance of water molecules for stabilizing the closed conformation. Although our data is consistent with an induced fit model of binding, we suggest that the open unliganded conformation may sample multiple states capable of binding substrate. The mechanism by which the ligand is released for import remains to be determined.
Collapse
Affiliation(s)
- Te-Rina J King-Hudson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Computational and Structural Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| | - Senwei Quan
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Zachary D Tillett
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jack Copping
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia; Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rachel A North
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Dhanabalan K, Cheng Y, Thach T, Subramanian R. Many locks to one key: N-acetylneuraminic acid binding to proteins. IUCRJ 2024; 11:664-674. [PMID: 38965900 PMCID: PMC11364026 DOI: 10.1107/s2052252524005360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Sialic acids play crucial roles in cell surface glycans of both eukaryotic and prokaryotic organisms, mediating various biological processes, including cell-cell interactions, development, immune response, oncogenesis and host-pathogen interactions. This review focuses on the β-anomeric form of N-acetylneuraminic acid (Neu5Ac), particularly its binding affinity towards various proteins, as elucidated by solved protein structures. Specifically, we delve into the binding mechanisms of Neu5Ac to proteins involved in sequestering and transporting Neu5Ac in Gram-negative bacteria, with implications for drug design targeting these proteins as antimicrobial agents. Unlike the initial assumptions, structural analyses revealed significant variability in the Neu5Ac binding pockets among proteins, indicating diverse evolutionary origins and binding modes. By comparing these findings with existing structures from other systems, we can effectively highlight the intricate relationship between protein structure and Neu5Ac recognition, emphasizing the need for tailored drug design strategies to inhibit Neu5Ac-binding proteins across bacterial species.
Collapse
Affiliation(s)
| | - YiYang Cheng
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Trung Thach
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Ramaswamy Subramanian
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907USA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
3
|
Wu Y, Bell A, Thomas GH, Bolam DN, Sargent F, Juge N, Palmer T, Severi E. Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001448. [PMID: 38488830 PMCID: PMC10955332 DOI: 10.1099/mic.0.001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.
Collapse
Affiliation(s)
- Yunhan Wu
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Bell
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Gavin H. Thomas
- Department of Biology and York Biomedical Research Institute (YBRI), Wentworth Way, University of York, York YO10 5DD, UK
| | - David N. Bolam
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Frank Sargent
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Nathalie Juge
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Tracy Palmer
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
4
|
Liang Q, Ma C, Crowley SM, Allaire JM, Han X, Chong RWW, Packer NH, Yu HB, Vallance BA. Sialic acid plays a pivotal role in licensing Citrobacter rodentium's transition from the intestinal lumen to a mucosal adherent niche. Proc Natl Acad Sci U S A 2023; 120:e2301115120. [PMID: 37399418 PMCID: PMC10334811 DOI: 10.1073/pnas.2301115120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Shauna M. Crowley
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Joannie M. Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Xiao Han
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Raymond W. W. Chong
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Nicolle H. Packer
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| |
Collapse
|
5
|
Drousiotis K, Herman R, Hawkhead J, Leech A, Wilkinson A, Thomas GH. Characterization of the l-arabinofuranose-specific GafABCD ABC transporter essential for l-arabinose-dependent growth of the lignocellulose-degrading bacterium Shewanella sp. ANA-3. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001308. [PMID: 36920280 PMCID: PMC10191376 DOI: 10.1099/mic.0.001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Microbes that have evolved to live on lignocellulosic biomass face unique challenges in the effective and efficient use of this material as food. The bacterium Shewanella sp. ANA-3 has the potential to utilize arabinan and arabinoxylan, and uptake of the monosaccharide, l-arabinose, derived from these polymers, is known to be mediated by a single ABC transporter. We demonstrate that the substrate binding protein of this system, GafASw, binds specifically to l-arabinofuranose, which is the rare furanose form of l-arabinose found in lignocellulosic biomass. The structure of GafASw was resolved to 1.7 Å and comparison to Escherichia coli YtfQ (GafAEc) revealed binding site adaptations that confer specificity for furanose over pyranose forms of monosaccharides, while selecting arabinose over another related monosaccharide, galactose. The discovery of a bacterium with a natural predilection for a sugar found abundantly in certain lignocellulosic materials suggests an intimate connection in the enzymatic release and uptake of the sugar, perhaps to prevent other microbes scavenging this nutrient before it mutarotates to l-arabinopyranose. This biological discovery also provides a clear route to engineer more efficient utilization of plant biomass components in industrial biotechnology.
Collapse
Affiliation(s)
| | - Reyme Herman
- Department of Biology, University of York, PO Box 373, York, UK
| | - Judith Hawkhead
- Department of Biology, University of York, PO Box 373, York, UK
| | - Andrew Leech
- Biology Technology Facility, University of York, PO Box 373, York. YO10 5YW, UK
| | - Anthony Wilkinson
- Department of Chemistry, York Structural Biology Laboratory, University of York, PO Box 373, York. YO10 5YW, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, PO Box 373, York, UK
| |
Collapse
|
6
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Bell A, Severi E, Owen CD, Latousakis D, Juge N. Biochemical and structural basis of sialic acid utilization by gut microbes. J Biol Chem 2023; 299:102989. [PMID: 36758803 PMCID: PMC10017367 DOI: 10.1016/j.jbc.2023.102989] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The human gastrointestinal (GI) tract harbors diverse microbial communities collectively known as the gut microbiota that exert a profound impact on human health and disease. The repartition and availability of sialic acid derivatives in the gut have a significant impact on the modulation of gut microbes and host susceptibility to infection and inflammation. Although N-acetylneuraminic acid (Neu5Ac) is the main form of sialic acids in humans, the sialic acid family regroups more than 50 structurally and chemically distinct modified derivatives. In the GI tract, sialic acids are found in the terminal location of mucin glycan chains constituting the mucus layer and also come from human milk oligosaccharides in the infant gut or from meat-based foods in adults. The repartition of sialic acid in the GI tract influences the gut microbiota composition and pathogen colonization. In this review, we provide an update on the mechanisms underpinning sialic acid utilization by gut microbes, focusing on sialidases, transporters, and metabolic enzymes.
Collapse
Affiliation(s)
- Andrew Bell
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom
| | - Emmanuele Severi
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - C David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Dimitrios Latousakis
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom.
| |
Collapse
|
8
|
Bozzola T, Johnsson RE, Nilsson UJ, Ellervik U. Sialic Acid 4-N-Piperazine and Piperidine Derivatives Bind with High Affinity to the P. mirabilis Sialic Acid Sodium Solute Symporter. ChemMedChem 2022; 17:e202200351. [PMID: 36121381 PMCID: PMC10092485 DOI: 10.1002/cmdc.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Indexed: 01/14/2023]
Abstract
In search for novel antibacterial compounds, bacterial sialic acid uptake inhibition represents a promising strategy. Sialic acid plays a critical role for growth and colonisation of several pathogenic bacteria, and its uptake inhibition in bacteria was recently demonstrated to be a viable strategy by targeting the SiaT sodium solute symporters from Proteus mirabilis and Staphylococcus aureus. Here we report the design, synthesis and evaluation of potential sialic acid uptake inhibitors bearing 4-N-piperidine and piperazine moieties. The 4-N-derivatives were obtained via 4-N-functionalization with piperidine and piperazine nucleophiles in an efficient direct substitution of the 4-O-acetate of Neu5Ac. Evaluation for binding to bacterial transport proteins with nanoDSF and ITC revealed compounds possessing nanomolar affinity for the P. mirabilis SiaT symporter. Computational analyses indicate the engagement of a previously untargeted portion of the binding site.
Collapse
Affiliation(s)
- Tiago Bozzola
- Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Ulf Ellervik
- Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
9
|
Rossing E, Pijnenborg JFA, Boltje TJ. Chemical tools to track and perturb the expression of sialic acid and fucose monosaccharides. Chem Commun (Camb) 2022; 58:12139-12150. [PMID: 36222364 PMCID: PMC9623448 DOI: 10.1039/d2cc04275d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of glycans is a highly conserved biological process and found in all domains of life. The expression of cell surface glycans is increasingly recognized as a target for therapeutic intervention given the role of glycans in major pathologies such as cancer and microbial infection. Herein, we summarize our contributions to the development of unnatural monosaccharide derivatives to infiltrate and alter the expression of both mammalian and bacterial glycans and their therapeutic application.
Collapse
Affiliation(s)
- Emiel Rossing
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Johan F A Pijnenborg
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
11
|
Sokolovskaya OM, Tan MW, Wolan DW. Sialic acid diversity in the human gut: Molecular impacts and tools for future discovery. Curr Opin Struct Biol 2022; 75:102397. [PMID: 35653953 DOI: 10.1016/j.sbi.2022.102397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Sialic acids are a family of structurally related sugars that are prevalent in mucosal surfaces, including the human intestine. In the gut, sialic acids have diverse biological roles at the interface of the host epithelium and the microbiota. N-acetylneuraminic acid (Neu5Ac), the best studied sialic acid, is a nutrient source for bacteria and, when displayed on the cell surface, a binding site for host immune factors, viruses, and bacterial toxins. Neu5Ac is extensively modified by host and microbial enzymes, and the impacts of Neu5Ac derivatives on host-microbe interactions, and generally on human and microbial biology, remain underexplored. In this mini-review, we highlight recent reports describing how host and microbial proteins differentiate Neu5Ac and its derivatives, draw attention to gaps in knowledge related to sialic acid biology, and suggest cutting-edge methodologies that may expand our appreciation and understanding of Neu5Ac in health and disease.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, United States
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, United States
| | - Dennis W Wolan
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, United States.
| |
Collapse
|
12
|
Tomás-Martínez S, Chen LM, Neu TR, Weissbrodt DG, van Loosdrecht MCM, Lin Y. Catabolism of sialic acids in an environmental microbial community. FEMS Microbiol Ecol 2022; 98:6571932. [PMID: 35446356 DOI: 10.1093/femsec/fiac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Sialic acids are a family of nine-carbon negatively charged carbohydrates. In animals, they are abundant on mucosa surfaces as terminal carbohydrates of mucin glycoproteins. Some commensal and pathogenic bacteria are able to release, take up, and catabolize sialic acids. Recently, sialic acids have been discovered to be widespread among most microorganisms. Although the catabolism of sialic acids has been intensively investigated in the field of host-microbe interactions, very limited information is available on microbial degradation of sialic acids produced by environmental microorganisms. In this study, the catabolic pathways of sialic acids within an microbial community dominated by 'Candidatus Accumulibacter' was evaluated. Protein alignment tools were used to detect the presence of the different proteins involved in the utilization of sialic acids in the flanking populations detected by 16S rRNA gene amplicon sequencing. The results showed the ability of Clostridium to release sialic acids from the glycan chains by the action of a sialidase. Clostridium and Chryseobacterium can take up free sialic acids and utilize them as nutrient. Interestingly, these results display similarities with the catabolism of sialic acids by the gut microbiota. This study points at the importance of sialic acids in environmental communities in the absence of eukaryotic hosts.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Le Min Chen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Thomas R Neu
- Microbiology of Interfaces, Department River Ecology, Helmholtz Centre of Environmental Research - UFZ, Brueckstrasse 3A, 39114, Magdeburg, Germany
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
13
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
14
|
Abstract
Sialic acids are present in humans and other metazoans, playing essential roles in physiological and pathological processes. Commensal and pathogenic bacteria have evolved the capacity to utilize sialic acids as nutrient and energy sources. However, in some actinobacteria, sialic acid catabolism (SAC) is associated with free-living populations. To unravel the distribution and evolutionary history of SAC in the phylum Actinobacteria, we analyzed the presence and diversity of the putative SAC gene cluster (nan) in 7,180 high-quality, nonredundant actinobacterial genomes that covered 1,969 species. The results showed that ∼13% of actinobacterial species had the potential to utilize sialic acids, with 45 species capable of anhydro-SAC, all except two of them through the canonical pathway. These species belonged to 20 orders and 81 genera, with ∼36% of them from four genera, Actinomyces, Bifidobacterium, Corynebacterium, and Streptomyces. Moreover, ∼40% of the nan-positive species are free living. Phylogenetic analysis of the key nan genes, nanA, nanK, and nanE, revealed a strong signal of horizontal gene transfer (HGT), accompanied with vertical inheritance and gene loss. This evolutionary pattern led to high diversity and differential distribution of nan among actinobacterial taxa and might cause the cluster to spread to some free-living species while losing in some host-associated species. The evolution of SAC in actinobacteria probably represents the evolution of certain kinds of noncore bacterial functions for environmental adaptation and lifestyle switch, in which HGT plays a dominant role. IMPORTANCE Sialic acids play essential roles in the physiology of humans and other metazoan animals, and microbial sialic acid catabolism (SAC) is one of the processes critical for pathogenesis. To date, microbial SAC is studied mainly in commensals and pathogens, while its distribution in free-living microbes and evolutionary pathway remain largely unexplored. Here, by examining all actinobacterial genomes available, we demonstrate that putative SAC is present in a small proportion of actinobacterial species, of which, however, ∼40% are free-living species. We also reveal remarkable difference in the distribution of SAC among actinobacterial taxa and high diversity of the putative SAC gene clusters. HGT plays a significant role in the evolution of SAC, accompanied with vertical inheritance and gene loss. Our results provide a comprehensive and systematic picture of the distribution and evolutionary history of SAC in actinobacteria, expanding the current knowledge on bacterial adaptation and diversification.
Collapse
|
15
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
16
|
Severi E, Rudden M, Bell A, Palmer T, Juge N, Thomas GH. Multiple evolutionary origins reflect the importance of sialic acid transporters in the colonization potential of bacterial pathogens and commensals. Microb Genom 2021; 7. [PMID: 34184979 PMCID: PMC8461474 DOI: 10.1099/mgen.0.000614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Located at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host-microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least eight times during the evolution of bacteria, from within four of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria, including Spirochaetes, Bacteroidetes, Planctomycetes and Verrucomicrobia, many of which are species that have not been previously recognized to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonization of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.
Collapse
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, York, UK.,Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Andrew Bell
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tracy Palmer
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
17
|
Landa G, Miranda-Calderon LG, Sebastian V, Irusta S, Mendoza G, Arruebo M. Selective point-of-care detection of pathogenic bacteria using sialic acid functionalized gold nanoparticles. Talanta 2021; 234:122644. [PMID: 34364453 DOI: 10.1016/j.talanta.2021.122644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022]
Abstract
In resource-limited settings, fast and simple point-of-need tests should facilitate healthcare providers the identification of pathogens avoiding empirical suboptimal treatments with broad-spectrum antibiotics. A rapid optical whole cell bacterial biosensor has been here developed using sialic acid functionalized gold nanoparticles allowing the selective screening of Gram-positive Staphylococcus aureus ATCC 25923 and Methicillin Resistant Staphylococcus aureus (MRSA) USA300 and Gram-negative bacteria (Pseudomonas aeruginosa ATCC 15442) by selecting the appropriate dispersing media. Those bacteria were selected due to their common presence in wound bed tissue of chronic infected topical wounds. The discrimination of bacterial pathogens has been attempted in different media including water, two independent buffers, bacterial broth, human serum and human urine. The identification of Gram + bacterial pathogens was also assessed under simultaneous co-culture of S. Aureus and Pseudomonas aeruginosa. High bacterial loads were required to provide with a statistically significant optical pathogen identification in human serum whereas it was not possible to detect the presence of bacteria at clinically relevant levels in urine.
Collapse
Affiliation(s)
- Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018, Zaragoza, Spain
| | - Laura G Miranda-Calderon
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018, Zaragoza, Spain
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
19
|
McDonald ND, Boyd EF. Structural and Biosynthetic Diversity of Nonulosonic Acids (NulOs) That Decorate Surface Structures in Bacteria. Trends Microbiol 2021; 29:142-157. [PMID: 32950378 PMCID: PMC7855311 DOI: 10.1016/j.tim.2020.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Nonulosonic acids (NulOs) are a diverse family of 9-carbon α-keto acid sugars that are involved in a wide range of functions across all branches of life. The family of NulOs includes the sialic acids as well as the prokaryote-specific NulOs. Select bacteria biosynthesize the sialic acid N-acetylneuraminic acid (Neu5Ac), and the ability to produce this sugar and its subsequent incorporation into cell-surface structures is implicated in a variety of bacteria-host interactions. Furthermore, scavenging of sialic acid from the environment for energy has been characterized across a diverse group of bacteria, mainly human commensals and pathogens. In addition to sialic acid, bacteria have the ability to biosynthesize prokaryote-specific NulOs, of which there are several known isomers characterized. These prokaryotic NulOs are similar in structure to Neu5Ac but little is known regarding their role in bacterial physiology. Here, we discuss the diversity in structure, the biosynthesis pathways, and the functions of bacteria-specific NulOs. These carbohydrates are phylogenetically widespread among bacteria, with numerous structurally unique modifications recognized. Despite the diversity in structure, the NulOs are involved in similar functions such as motility, biofilm formation, host colonization, and immune evasion.
Collapse
Affiliation(s)
- Nathan D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. mBio 2021; 12:mBio.03226-20. [PMID: 33468699 PMCID: PMC7845648 DOI: 10.1128/mbio.03226-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of “self” cells by the immune system, thereby guiding an appropriate immune response against foreign “nonself” and/or damaged cells. Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent “molecular mimicry” of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic “Trojan horse” that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.
Collapse
|
21
|
Ali A, Kolenda R, Khan MM, Weinreich J, Li G, Wieler LH, Tedin K, Roggenbuck D, Schierack P. Novel Avian Pathogenic Escherichia coli Genes Responsible for Adhesion to Chicken and Human Cell Lines. Appl Environ Microbiol 2020; 86:e01068-20. [PMID: 32769194 PMCID: PMC7531953 DOI: 10.1128/aem.01068-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen of commercial poultry contributing to extensive economic losses and contamination of the food chain. One of the initial steps in bacterial infection and successful colonization of the host is adhesion to the host cells. A random transposon mutant library (n = 1,300) of APEC IMT 5155 was screened phenotypically for adhesion to chicken (CHIC-8E11) and human (LoVo) intestinal epithelial cell lines. The detection and quantification of adherent bacteria were performed by a modified APEC-specific antibody staining assay using fluorescence microscopy coupled to automated VideoScan technology. Eleven mutants were found to have significantly altered adhesion to the cell lines examined. Mutated genes in these 11 "adhesion-altered mutants" were identified by arbitrary PCR and DNA sequencing. The genes were amplified from wild-type APEC IMT 5155, cloned, and transformed into the respective adhesion-altered mutants, and complementation was determined in adhesion assays. Here, we report contributions of the fdtA, rluD, yjhB, ecpR, and fdeC genes of APEC in adhesion to chicken and human intestinal cell lines. Identification of the roles of these genes in APEC pathogenesis will contribute to prevention and control of APEC infections.IMPORTANCE Avian pathogenic E. coli is not only pathogenic for commercial poultry but can also cause foodborne infections in humans utilizing the same attachment and virulence mechanisms. Our aim was to identify genes of avian pathogenic E. coli involved in adhesion to chicken and human cells in order to understand the colonization and pathogenesis of these bacteria. In contrast to the recent studies based on genotypic and bioinformatics data, we have used a combination of phenotypic and genotypic approaches for identification of novel genes contributing to adhesion in chicken and human cell lines. Identification of adhesion factors remains important, as antibodies elicited against such factors have shown potential to block colonization and ultimately prevent disease as prophylactic vaccines. Therefore, the data will augment the understanding of disease pathogenesis and ultimately in designing strategies against the infections.
Collapse
Affiliation(s)
- Aamir Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Muhammad Moman Khan
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jörg Weinreich
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - Karsten Tedin
- Institute for Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Dirk Roggenbuck
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Peter Schierack
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
22
|
Sequence analysis of nonulosonic acid biosynthetic gene clusters in Vibrionaceae and Moritella viscosa. Sci Rep 2020; 10:11995. [PMID: 32686701 PMCID: PMC7371886 DOI: 10.1038/s41598-020-68492-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Nonulosonic acid (NulO) biosynthesis in bacteria is directed by nab gene clusters that can lead to neuraminic, legionaminic or pseudaminic acids. Analysis of the gene content from a set mainly composed of Aliivibrio salmonicida and Moritella viscosa strains reveals the existence of several unique nab clusters, for which the NulO products were predicted. This prediction method can be used to guide tandem mass spectrometry studies in order to verify the products of previously undescribed nab clusters and identify new members of the NulOs family.
Collapse
|
23
|
Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J, Thomas GH, Naismith JH, Juge N. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem 2020; 295:13724-13736. [PMID: 32669363 PMCID: PMC7535918 DOI: 10.1074/jbc.ra120.014454] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The human gut symbiont Ruminococcus gnavus scavenges host-derived N-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported into R. gnavus ATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD+ regeneration. The crystal structure of RgNanOx in complex with the NAD+ cofactor showed a protein dimer with a Rossman fold. Guided by the RgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence of RgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that the Escherichia coli homologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and that E. coli could catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, using E. coli mutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism in E. coli depended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway in E. coli.
Collapse
Affiliation(s)
- Andrew Bell
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Micah Lee
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Dimitrios Latousakis
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain; Instituto de Investigaciones Químicas (CSIC-US), Sevilla, Spain
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - James H Naismith
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom.
| |
Collapse
|
24
|
Barnard KN, Alford-Lawrence BK, Buchholz DW, Wasik BR, LaClair JR, Yu H, Honce R, Ruhl S, Pajic P, Daugherity EK, Chen X, Schultz-Cherry SL, Aguilar HC, Varki A, Parrish CR. Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. J Virol 2020; 94:e01567-19. [PMID: 32051275 PMCID: PMC7163148 DOI: 10.1128/jvi.01567-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are the primary receptors for influenza viruses and are widely displayed on cell surfaces and in secreted mucus. Sia may be present in variant forms that include O-acetyl modifications at C-4, C-7, C-8, and C-9 positions and N-acetyl or N-glycolyl at C-5. They can also vary in their linkages, including α2-3 or α2-6 linkages. Here, we analyze the distribution of modified Sia in cells and tissues of wild-type mice or in mice lacking CMP-N-acetylneuraminic acid hydroxylase (CMAH) enzyme, which synthesizes N-glycolyl (Neu5Gc) modifications. We also examined the variation of Sia forms on erythrocytes and in saliva from different animals. To determine the effect of Sia modifications on influenza A virus (IAV) infection, we tested for effects on hemagglutinin (HA) binding and neuraminidase (NA) cleavage. We confirmed that 9-O-acetyl, 7,9-O-acetyl, 4-O-acetyl, and Neu5Gc modifications are widely but variably expressed in mouse tissues, with the highest levels detected in the respiratory and gastrointestinal (GI) tracts. Secreted mucins in saliva and surface proteins of erythrocytes showed a high degree of variability in display of modified Sia between different species. IAV HAs from different virus strains showed consistently reduced binding to both Neu5Gc- and O-acetyl-modified Sia; however, while IAV NAs were inhibited by Neu5Gc and O-acetyl modifications, there was significant variability between NA types. The modifications of Sia in mucus may therefore have potent effects on the functions of IAV and may affect both pathogens and the normal flora of different mucosal sites.IMPORTANCE Sialic acids (Sia) are involved in numerous different cellular functions and are receptors for many pathogens. Sia come in chemically modified forms, but we lack a clear understanding of how they alter interactions with microbes. Here, we examine the expression of modified Sia in mouse tissues, on secreted mucus in saliva, and on erythrocytes, including those from IAV host species and animals used in IAV research. These Sia forms varied considerably among different animals, and their inhibitory effects on IAV NA and HA activities and on bacterial sialidases (neuraminidases) suggest a host-variable protective role in secreted mucus.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Petar Pajic
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Erin K Daugherity
- Center for Animal Resources and Education, Cornell University, Ithaca, New York, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Stacey L Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, California, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol 2019; 4:2393-2404. [PMID: 31636419 PMCID: PMC6881182 DOI: 10.1038/s41564-019-0590-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
Abstract
Sialic acid (Neu5Ac) is commonly found in terminal location of colonic mucins glycans where it is a much-coveted nutrient for gut bacteria including Ruminococcus gnavus. R. gnavus is part of the healthy gut microbiota in humans but shows a disproportionate representation in diseases. There is therefore a need in understanding the molecular mechanisms underpinning its adaptation to the gut. Previous in vitro work demonstrated that R. gnavus mucin glycan-foraging strategy is strain-dependent and associated with the expression of an intramolecular trans-sialidase releasing 2,7-anhydro-Neu5Ac instead of Neu5Ac from mucins. Here, we have unravelled the metabolism pathway of 2,7-anhydro-Neu5Ac in R. gnavus which is underpinned by the exquisite specificity of the sialic transporter for 2,7-anhydro-Neu5Ac, and by the action of an oxidoreductase converting 2,7-anhydro-Neu5Ac into Neu5Ac which then becomes substrate of a Neu5Ac-specific aldolase. Having generated a R. gnavus nan cluster deletion mutant that lost the ability to grow on sialylated substrates, we showed that in gnotobiotic mice colonised with R. gnavus wild-type and mutant strains, the fitness of the nan mutant was significantly impaired with a reduced ability to colonise the mucus layer. Overall, our study revealed a unique sialic acid pathway in bacteria, with significant implications for the spatial adaptation of mucin-foraging gut symbionts in health and disease.
Collapse
|
26
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
27
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
28
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Gangi Setty T, Mowers JC, Hobbs AG, Maiya SP, Syed S, Munson RS, Apicella MA, Subramanian R. Molecular characterization of the interaction of sialic acid with the periplasmic binding protein from Haemophilus ducreyi. J Biol Chem 2018; 293:20073-20084. [PMID: 30315109 DOI: 10.1074/jbc.ra118.005151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
The primary role of bacterial periplasmic binding proteins is sequestration of essential metabolites present at a low concentration in the periplasm and making them available for active transporters that transfer these ligands into the bacterial cell. The periplasmic binding proteins (SiaPs) from the tripartite ATP-independent periplasmic (TRAP) transport system that transports mammalian host-derived sialic acids have been well studied from different pathogenic bacteria, including Haemophilus influenzae, Fusobacterium nucleatum, Pasteurella multocida, and Vibrio cholerae SiaPs bind the sialic acid N-acetylneuraminic acid (Neu5Ac) with nanomolar affinity by forming electrostatic and hydrogen-bonding interactions. Here, we report the crystal structure of a periplasmic binding protein (SatA) of the ATP-binding cassette (ABC) transport system from the pathogenic bacterium Haemophilus ducreyi The structure of Hd-SatA in the native form and sialic acid-bound forms (with Neu5Ac and N-glycolylneuraminic acid (Neu5Gc)), determined to 2.2, 1.5, and 2.5 Å resolutions, respectively, revealed a ligand-binding site that is very different from those of the SiaPs of the TRAP transport system. A structural comparison along with thermodynamic studies suggested that similar affinities are achieved in the two classes of proteins through distinct mechanisms, one enthalpically driven and the other entropically driven. In summary, our structural and thermodynamic characterization of Hd-SatA reveals that it binds sialic acids with nanomolar affinity and that this binding is an entropically driven process. This information is important for future structure-based drug design against this pathogen and related bacteria.
Collapse
Affiliation(s)
- Thanuja Gangi Setty
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India,; the University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Jonathan C Mowers
- the Departments of Biochemistry and Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Aaron G Hobbs
- the Departments of Biochemistry and Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Shubha P Maiya
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India
| | - Sanaa Syed
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India
| | - Robert S Munson
- the Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio 43210, and
| | - Michael A Apicella
- Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ramaswamy Subramanian
- From the Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bangalore 560065, India,; the Departments of Biochemistry and Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
30
|
Nilsson I, Prathapam R, Grove K, Lapointe G, Six DA. The sialic acid transporter NanT is necessary and sufficient for uptake of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and its azido analog in Escherichia coli. Mol Microbiol 2018; 110:204-218. [PMID: 30076772 DOI: 10.1111/mmi.14098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 01/31/2023]
Abstract
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of lipopolysaccharides (LPS) in the Gram-negative bacterial outer membrane. Metabolic labeling of Escherichia coli LPS with 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3 ) has been reported but is inefficient. For optimization, it is important to understand how exogenous Kdo-N3 enters the cytoplasm. Based on similarities between Kdo and sialic acids, we proposed and verified that the sialic acid transporter NanT imports exogenous Kdo-N3 into E. coli. We demonstrated that E. coli ΔnanT were not labeled with Kdo-N3 , while expression of NanT in the ΔnanT mutant restored Kdo-N3 incorporation. Induced NanT expression in a strain lacking Kdo biosynthesis led to higher exogenous Kdo incorporation and restoration of full-length core-LPS, suggesting that NanT also transports Kdo. While Kdo-N3 incorporation was observed in strains having NanT, it was not detected in Pseudomonas aeruginosa and Acinetobacter baumannii, which lack nanT. However, heterologous expression of E. coli NanT in P. aeruginosa enabled Kdo-N3 incorporation and labeling, though this led to abnormal morphology and growth arrest. NanT seems to define which bacteria can be labeled with Kdo-N3 , provides opportunities to enhance Kdo-N3 labeling efficiency and spectrum, and raises the possibility of Kdo biosynthetic bypass where exogenous Kdo is present, perhaps even in vivo.
Collapse
Affiliation(s)
- Inga Nilsson
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Ramadevi Prathapam
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Kerri Grove
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Guillaume Lapointe
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - David A Six
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| |
Collapse
|
31
|
Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front Cell Infect Microbiol 2018; 8:33. [PMID: 29479520 PMCID: PMC5812351 DOI: 10.3389/fcimb.2018.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP) dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC) transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP) transporters and Tripartite Tricarboxylate Transporters (TTT). Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of β-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the β-proteobacteria and some α-proteobacteria. The reasons for this are not clear but might be related to a role for these proteins in signaling rather than transport.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
32
|
Ravcheev DA, Thiele I. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides. Front Genet 2017; 8:111. [PMID: 28912798 PMCID: PMC5583593 DOI: 10.3389/fgene.2017.00111] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
33
|
Midgett CR, Almagro-Moreno S, Pellegrini M, Taylor RK, Skorupski K, Kull FJ. Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS. Mol Microbiol 2017; 105:258-272. [PMID: 28464377 DOI: 10.1111/mmi.13699] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/31/2022]
Abstract
ToxR is a transmembrane transcription factor that is essential for virulence gene expression and human colonization by Vibrio cholerae. ToxR requires its operon partner ToxS, a periplasmic integral membrane protein, for full activity. These two proteins are thought to interact through their respective periplasmic domains, ToxRp and ToxSp. In addition, ToxR is thought to be responsive to various environmental cues, such as bile salts and alkaline pH, but how these factors influence ToxR is not yet understood. Using NMR and reciprocal pull down assays, we present the first direct evidence that ToxR and ToxS physically interact. Furthermore, using NMR and DSF, it was shown that the bile salts cholate and chenodeoxycholate interact with purified ToxRp and destabilize it. Surprisingly, bile salt destabilization of ToxRp enhanced the interaction between ToxRp and ToxSp. In contrast, alkaline pH, which is one of the factors that leads to ToxR proteolysis, decreased the interaction between ToxRp and ToxSp. Taken together, these data suggest a model whereby bile salts or other detergents destabilize ToxR, increasing its interaction with ToxS to promote full ToxR activity. Subsequently, as V. cholerae alkalinizes its environment in late stationary phase, the interaction between the two proteins decreases, allowing ToxR proteolysis to proceed.
Collapse
Affiliation(s)
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Ronald K Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - F Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
34
|
Lòpez-Fernàndez S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A. A Phloem-Feeding Insect Transfers Bacterial Endophytic Communities between Grapevine Plants. Front Microbiol 2017; 8:834. [PMID: 28555131 PMCID: PMC5430944 DOI: 10.3389/fmicb.2017.00834] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Bacterial endophytes colonize the inner tissues of host plants through the roots or through discontinuities on the plant surface, including wounds and stomata. Little is known regarding a possible role of insects in acquiring and transmitting non-phytopathogenic microorganisms from plant to plant, especially those endophytes that are beneficial symbionts providing plant protection properties and homeostatic stability to the host. To understand the ecological role of insects in the transmission of endophytic bacteria, we used freshly hatched nymphs of the American sap-feeding leafhopper Scaphoideus titanus (vector) to transfer microorganisms across grapevine plants. After contact with the vector, sink plants were colonized by a complex endophytic community dominated by Proteobacteria, highly similar to that present in source plants. A similar bacterial community, but with a higher ratio of Firmicutes, was found on S. titanus. Insects feeding only on sink plants transferred an entirely different bacterial community dominated by Actinobacteria, where Mycobacterium sp., played a major role. Despite the fact that insects dwelled mostly on plant stems, the bacterial communities in plant roots resembled more closely those inside and on insects, when compared to those of above-ground plant organs. We prove here the potential of insect vectors to transfer entire endophytic bacterial communities between plants. We also describe the role of plants and bacterial endophytes in establishing microbial communities in plant-feeding insects.
Collapse
Affiliation(s)
- Sebastiàn Lòpez-Fernàndez
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Infection Biology Department, Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Federico Pedrazzoli
- Technology Transfer Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Center Agriculture Food Environment, University of TrentoTrento, Italy
| | - Andrea Campisano
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| |
Collapse
|