1
|
Hao SY, Muhetaer Y, Zheng X, Long YL, Song JQ, Zhong M. Rapid improvement in postpartum pulmonary hypertension associated with hereditary hemorrhagic telangiectasia: A case report and review of literature. World J Clin Cases 2025; 13:98128. [PMID: 40242231 PMCID: PMC11718578 DOI: 10.12998/wjcc.v13.i11.98128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Postpartum pulmonary arterial hypertension (PAH) complicated with hereditary hemorrhagic telangiectasia (HHT) is a rare condition. Diagnosing and treating PAH in patients with HHT can be challenging. To the best of our knowledge, no previous reports have investigated the efficacy of pulmonary vasodilators in improving hemodynamics in postpartum patients with this disease. CASE SUMMARY In this paper, we report a postpartum case of HHT combined with PAH, presenting with worsening dyspnea. Genetic testing revealed that the patient carried a heterozygous variant of activin receptor-like kinase 1. The patient received various treatments, including diuretics, anticoagulants, sildenafil, macitentan, inhalation of nitric oxide, and iloprost. Changes in PaO2/FiO2, pulmonary artery systolic pressure as assessed by echocardiography, and N-terminus pro-brain natriuretic peptide levels suggested that, except for iloprost inhalation, the other treatments appeared to have limited efficacy. CONCLUSION To our knowledge, this is the first report on efficacy of pulmonary vasodilators in postpartum patients with HHT and PAH.
Collapse
Affiliation(s)
- Sheng-Yu Hao
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Yaxiaerjiang Muhetaer
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Xin Zheng
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Yu-Liang Long
- Department of Cardiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Jie-Qiong Song
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Bolanle IO, de Liedekerke Beaufort GC, Weinberg PD. Transcytosis of LDL Across Arterial Endothelium: Mechanisms and Therapeutic Targets. Arterioscler Thromb Vasc Biol 2025; 45:468-480. [PMID: 40013359 PMCID: PMC11936472 DOI: 10.1161/atvbaha.124.321549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Transport of LDL (low-density lipoprotein) from plasma to arterial intima is thought to be rate limiting in the development of atherosclerosis. Its variation likely determines where lesions develop within arteries and might account for some of the currently unexplained difference in disease susceptibility between individuals. It may also be critical in the development of lipid-rich, unstable plaques. Mechanisms have been controversial but recent evidence suggests that caveolar transcytosis across endothelial cells is the dominant pathway. Receptors involved are LDLR (LDL receptor), SR-B1 (scavenger receptor class B type 1), and ALK1 (activin receptor-like kinase 1). The role of LDLR is influenced by IL-1β (interleukin-1β); the role of SR-B1 by HDL (high-density lipoprotein), DOCK4 (dedicator of cytokinesis 4), GPER (G-protein-coupled estrogen receptor), and HMGB1 (high mobility group box 1); and the role of ALK1 by BMP (bone morphogenetic protein) 9. Additionally, BMP4 stimulates transcytosis and FSTL1 (follistatin-like 1 protein) inhibits it. Fundamental transcytotic mechanisms include caveola formation, undocking, trafficking, and docking; they are influenced by cholesterol-lowering agents, MYDGF (myeloid-derived growth factor), MFSD2a (major facilitator superfamily domain containing 2a) in the blood-brain barrier, and inhibitors of dynamin-2 and tubulin polymerization. The relative merits of different therapeutic approaches are discussed, with statins, colchicine, benzimidazoles, and metformin being existing drugs that might be repurposed and salidroside and glycyrrhizic acid being nutraceuticals worth investigating. Finally, we discuss evidence against the ferry-boat model of transcytosis, the contributions of receptor-mediated, fluid-phase, and active transcytosis, and where inhibition of transcytosis might be most beneficial.
Collapse
Affiliation(s)
- Israel O. Bolanle
- Department of Bioengineering, Imperial College London, United Kingdom
| | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
3
|
Ling L, Luo M, Yin H, Tian Y, Wang T, Zhang B, Yin L, Zhang Y, Bian J. Sinomenine Ameliorated Microglial Activation and Neuropathic Pain After Chronic Constriction Injury Via TGF-β1/ALK5/Smad3 Signalling Pathway. J Cell Mol Med 2024; 28:e70214. [PMID: 39586784 PMCID: PMC11588427 DOI: 10.1111/jcmm.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Sinomenine (SIN), a bioactive isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, is efficacious against various chronic pain conditions. Inhibition of microglial activation at the spinal level contributes to the analgesic effects of SIN. Microglial activation in the spinal dorsal horn is key to sensitising neuropathic pain. Consequently, this study aimed to investigate whether the antinociceptive effects of SIN in neuropathic pain are induced through microglial inhibition and the underlying mechanisms. In this study, we observed that SIN alleviated chronic constriction injury (CCI)-induced pain hypersensitivity, spinal microglial activation and neuroinflammation. Consistently, SIN evoked the upregulation of transforming growth factor-beta1 (TGF-β1) and phosphorylated Smad3 in the L4-6 ipsilateral spinal dorsal horn of CCI mice. Intrathecal injection of TGF-β1 siRNA and an activin receptor-like receptor (ALK5) inhibitor reversed SIN's antinociceptive and antimicroglial effects on CCI mice. Moreover, targeting Smad3 in vitro with siRNA dampened the inhibitory effect of TGF-β1 on lipopolysaccharide-induced microglial activation. Finally, targeting Smad3 abrogated SIN-induced pain relief and microglial inhibition in CCI mice. These findings indicate that the TGF-β1/ALK5/Smad3 axis plays a key role in the antinociceptive effects of SIN on neuropathic pain, indicating its suppressive ability on microglia.
Collapse
Affiliation(s)
- Ling Ling
- Department of AnesthesiologyPanzhihua Central HospitalPanzhihuaSichuanChina
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical UniversityThe First People's Hospital of ZunyiZunyiGuizhouChina
| | - Haolin Yin
- Department of AnesthesiologySchool of Clinic Medicine, Tsinghua UniversityBeijingChina
| | - Yunyun Tian
- Scientific Research and Discipline Construction OfficePanzhihua Central HospitalPanzhihuaSichuanChina
| | - Tao Wang
- Department of Anesthesiology, School of Clinic MedicineNorth Sichuan Medical UniversityNanchongSichuanChina
| | - Bangjian Zhang
- Department of AnesthesiologyPanzhihua Central HospitalPanzhihuaSichuanChina
| | - Li Yin
- Scientific Research and Discipline Construction OfficePanzhihua Central HospitalPanzhihuaSichuanChina
| | - Yuehui Zhang
- Department of NeurologyPanzhihua Central HospitalPanzhihuaSichuanChina
| | - Jiang Bian
- Department of AnesthesiologyPanzhihua Central HospitalPanzhihuaSichuanChina
| |
Collapse
|
4
|
Pak B, Kim M, Han O, Lee HW, Dubrac A, Choi W, Yang JM, Boyé K, Cho H, Citrin KM, Kim I, Eichmann A, Bautch VL, Jin SW. ACVR1/ALK2-p21 signaling axis modulates proliferation of the venous endothelium in the retinal vasculature. Angiogenesis 2024; 27:765-777. [PMID: 38955953 DOI: 10.1007/s10456-024-09936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Minjung Kim
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacy, Chosun University, Gwangju, Korea
| | - Alexandre Dubrac
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- CHU Sainte-Justine Research Center, and Department of Pathology and Cellular Biology, Université de Montréal, Montréal, QC, Canada
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jee Myung Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kevin Boyé
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heewon Cho
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Kathryn M Citrin
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria L Bautch
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Suk-Won Jin
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea.
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Bian J, Luo M, Tian Y, Zhang X, Zhang B, Yin L, Zhang Y. BMP10 accelerated spinal astrocytic activation in neuropathic pain via ALK2/smad1/5/8 signaling. Front Pharmacol 2024; 15:1426121. [PMID: 39188955 PMCID: PMC11345179 DOI: 10.3389/fphar.2024.1426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Background Astrocytic activation in the spinal dorsal horn contributes to the central sensitization of neuropathic pain. Bone morphogenetic protein (BMP) 10, one of the BMPs highly expressed in the central nervous system, has been demonstrated to have an accelerated effect on astrocytic activation. This study aimed to investigate the functional effects of BMP10 on the activation of astrocytes in the spinal dorsal horn of animal model of neuropathic pain and to explore potential mechanisms involved in this process. Methods A neuropathic pain mice model was established using the spared nerve injury (SNI). Western blot analysis was performed to detect the expressional levels of BMP10, activin receptor-like receptor 2 (ALK2), Smad1/5/8, phosphorylated Smad1/5/8, and glial fibrillary acidic protein (GFAP). Immunofluorescence staining was used to detect BMP10, ALK2, and GFAP distribution and expression. The behavioral changes in mice were evaluated using paw withdrawal threshold (PWT), thermal withdrawal latency (TWL), and open field test (OFT). The BMP10 siRNA, Smad1 siRNA, BMP10 peptide, and ALK2-IN-2 (ALK2 inhibitor) were intrathecally administrated to mice. A model of lipopolysaccharide (LPS)-stimulated astrocytes was established to investigate the effect of Smad1. The transfection efficiency of siRNAs was detected by western blot and qRT-PCR analysis. Results BMP10 levels were increased in the L4-6 ipsilateral spinal dorsal horn of SNI mice and particularly elevated in astrocytes. Consistently, GFAP and phosphorylated Smad1/5/8 were upregulated in the L4-6 ipsilateral spinal dorsal horn after SNI, indicating the activation of astrocytes and Smad1/5/8 signaling. An intrathecal injection of BMP10 siRNA abrogated pain hypersensitivity and astrocytic activation in SNI mice. In addition, intrathecal administration of BMP10 peptide evoked pain hypersensitivity and astrocytic activation in normal mice, and this action was reversed by inhibiting the ALK2. Furthermore, targeting Smad1 in vitro with the help of siRNA inhibited the activation of astrocytes induced by LPS. Finally, targeting Smad1 abrogated BMP10-induced hypersensitivity and activation of astrocytes. Conclusion These findings indicate that the BMP10/ALK2/Smad1/5/8 axis plays a key role in pain hypersensitivity after peripheral nerve injury, which indicates its stimulative ability toward astrocytes.
Collapse
Affiliation(s)
- Jiang Bian
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, Guizhou, China
| | - Yunyun Tian
- Scientific Research and Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Xuejuan Zhang
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Bangjian Zhang
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Li Yin
- Scientific Research and Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Yuehui Zhang
- Department of Neurology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| |
Collapse
|
7
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
8
|
Villanueva B, Cerdà P, Torres-Iglesias R, Rocamora JL, Figueras A, Viñals F, Riera-Mestre A. Potential angiogenic biomarkers in hereditary hemorrhagic telangiectasia and other vascular diseases. Eur J Intern Med 2023; 115:10-17. [PMID: 37225595 DOI: 10.1016/j.ejim.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Biomarkers are new tools framed in precision and personalized medicine. Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic vascular disease with disturbances in the angiogenic pathways. Descriptive evidence supports that some angiogenesis-related molecules are differently detected in HHT patients compared to healthy subjects. These molecules are also related to diagnosis, prognosis, complications and therapy monitoring in other common vascular diseases. Despite the need for improving knowledge before applying them in daily clinical practice, there are good candidates to be considered as potential biomarkers in HHT and other vascular diseases. In the present review, the authors aim to summarize and discuss current evidence regarding the main putative angiogenic biomarkers by describing the biological role of each biomarker, the evidence related to HHT and their potential use in this and other common vascular diseases from a clinical point-of-view.
Collapse
Affiliation(s)
- B Villanueva
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Cerdà
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - R Torres-Iglesias
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - J L Rocamora
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Viñals
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - A Riera-Mestre
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Hye T, Hossain MR, Saha D, Foyez T, Ahsan F. Emerging biologics for the treatment of pulmonary arterial hypertension. J Drug Target 2023; 31:1-15. [PMID: 37026714 PMCID: PMC10228297 DOI: 10.1080/1061186x.2023.2199351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 04/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disorder, wherein mean systemic arterial pressure (mPAP) becomes abnormally high because of aberrant changes in various proliferative and inflammatory signalling pathways of pulmonary arterial cells. Currently used anti-PAH drugs chiefly target the vasodilatory and vasoconstrictive pathways. However, an imbalance between bone morphogenetic protein receptor type II (BMPRII) and transforming growth factor beta (TGF-β) pathways is also implicated in PAH predisposition and pathogenesis. Compared to currently used PAH drugs, various biologics have shown promise as PAH therapeutics that elicit their therapeutic actions akin to endogenous proteins. Biologics that have thus far been explored as PAH therapeutics include monoclonal antibodies, recombinant proteins, engineered cells, and nucleic acids. Because of their similarity with naturally occurring proteins and high binding affinity, biologics are more potent and effective and produce fewer side effects when compared with small molecule drugs. However, biologics also suffer from the limitations of producing immunogenic adverse effects. This review describes various emerging and promising biologics targeting the proliferative/apoptotic and vasodilatory pathways involved in PAH pathogenesis. Here, we have discussed sotatercept, a TGF-β ligand trap, which is reported to reverse vascular remodelling and reduce PVR with an improved 6-minute walk distance (6-MWDT). We also elaborated on other biologics including BMP9 ligand and anti-gremlin1 antibody, anti-OPG antibody, and getagozumab monoclonal antibody and cell-based therapies. Overall, recent literature suggests that biologics hold excellent promise as a safe and effective alternative to currently used PAH therapeutics.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Md Riajul Hossain
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
| | - Tahmina Foyez
- Department of Hematology Blood Research Center School of Medicine, The University of North Carolina at Chapel Hill, North Carolina
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
- MedLuidics LLC, Elk Grove, California, USA
| |
Collapse
|
10
|
Toyama T, Kudryashova TV, Ichihara A, Lenna S, Looney A, Shen Y, Jiang L, Teos L, Avolio T, Lin D, Kaplan U, Marden G, Dambal V, Goncharov D, Delisser H, Lafyatis R, Seta F, Goncharova EA, Trojanowska M. GATA6 coordinates cross-talk between BMP10 and oxidative stress axis in pulmonary arterial hypertension. Sci Rep 2023; 13:6593. [PMID: 37087509 PMCID: PMC10122657 DOI: 10.1038/s41598-023-33779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.
Collapse
Affiliation(s)
- Tetsuo Toyama
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Tatiana V Kudryashova
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Asako Ichihara
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Stefania Lenna
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Agnieszka Looney
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Yuanjun Shen
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Lifeng Jiang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Leyla Teos
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Theodore Avolio
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek Lin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Ulas Kaplan
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Grace Marden
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Vrinda Dambal
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Dmitry Goncharov
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Horace Delisser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesca Seta
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Elena A Goncharova
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA.
- The Genome and Biomedical Science Facility (GBSF), Rm 6523, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA.
| |
Collapse
|
11
|
Guo X, Niu Y, Han W, Han X, Chen Q, Tian S, Zhu Y, Bai D, Li K. The ALK1‑Smad1/5‑ID1 pathway participates in tumour angiogenesis induced by low‑dose photodynamic therapy. Int J Oncol 2023; 62:55. [PMID: 36928315 PMCID: PMC10019755 DOI: 10.3892/ijo.2023.5503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and low‑invasive tumour therapy. However, it can induce tumour angiogenesis, which is a main factor leading to tumour recurrence and metastasis. Activin receptor‑like kinase‑1 (ALK1) is a key factor regulating angiogenesis. However, it remains unclear whether ALK1 plays an unusual role in low‑dose PDT‑induced tumour angiogenesis. In the present study, human umbilical vein endothelial cells (HUVECs) co‑cultured with breast cancer MDA‑MB‑231 cells (termed HU‑231 cells) were used to construct an experimental model of tumour angiogenesis induced by low‑dose PDT. The viability, and the proliferative, invasive, migratory, as well as the tube‑forming ability of the HU‑231 cells were evaluated following low‑dose PDT. In particular, ALK1 inhibitor and and an adenovirus against ALK1 were used to further verify the role of ALK1 in low‑dose PDT‑induced tumour angiogenesis. Moreover, the expression of ALK1, inhibitor of DNA binding 1 (ID1), Smad 1, p‑Smad1/5, AKT and PI3K were detected in order to verify the underlying mechanisms. The findings indicated that low‑dose PDT enhanced the proliferative ability of the HU‑231 cells and reinforced their migratory, invasive and tube formation capacity. However, these effects were reversed with the addition of an ALK1 inhibitor or by the knockdown of ALK1 using adenovirus. These results indicated that ALK1 was involved and played a critical role in tumour angiogenesis induced by low‑dose PDT. Furthermore, ALK1 was found to participate in PDT‑induced tumour angiogenesis by activating the Smad1/5‑ID1 pathway, as opposed to the PI3K/AKT pathway. On the whole, the present study, for the first time, to the best of our knowledge, demonstrates that ALK1 is involved in PDT‑induced tumour angiogenesis. The inhibition of ALK1 can suppress PDT‑induced tumour angiogenesis, which can enhance the effects of PDT and may thus provide a novel treatment strategy for PDT.
Collapse
Affiliation(s)
- Xiya Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yajuan Niu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wang Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Si Tian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Dr Dingqun Bai or Dr Kaiting Li, Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China, E-mail: , E-mail:
| | - Kaiting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Dr Dingqun Bai or Dr Kaiting Li, Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China, E-mail: , E-mail:
| |
Collapse
|
12
|
An P, Fan D, Guo Z, Liu FY, Li CF, Yang D, Wang MY, Yang Z, Tang QZ. Bone morphogenetic protein 10 alleviates doxorubicin-induced cardiac injury via signal transducer and activator of transcription 3 signaling pathway. Bioengineered 2022; 13:7471-7484. [PMID: 35293279 PMCID: PMC9208532 DOI: 10.1080/21655979.2022.2048994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Doxorubicin (DOX) has limited antitumor applications owing to its association with life-threatening cardiac injury. Oxidative damage and cardiac apoptosis are crucial in DOX-induced cardiac injury. Bone morphogenetic protein 10 (BMP10) is predominantly distributed in the heart and acts as a cardioprotective factor that preserves cardiac function. However, the role of BMP10 in DOX-induced cardiac injury has not yet been explored. The current study aimed to examine the function and mechanism of action of BMP10 in DOX-induced cardiac injury. An adeno-associated viral system was used for the overexpression or silencing of cardiac-specific BMP10, and subsequently, a single dose of DOX was intraperitoneally injected to induce cardiac injury. Results showed that DOX exposure decreased BMP10 expression in the heart. Cardiac-specific overexpression of BMP10 alleviated the oxidative stress and apoptosis and improved cardiac function. Conversely, cardiac-specific silencing of BMP10 aggravated the redox disorder and apoptosis and worsened the cardiac dysfunction caused by DOX. Exogenous BMP10 supplementation amelioratesd the DOX-induced cardiac contractile dysfunction. Mechanistically, we found that phosphorylation of signal transducer and activator of transcription 3 (STAT3) is reduced in DOX-induced cardiotoxicity, and, BMP10 activated impaired STAT3 via a non-canonical pathway. BMP10 lost its cardioprotective function in cardiomyocyte-specific STAT3 knockout (STAT3-cKO) mice. Based on our findings, we suggested that BMP10 is a potential therapeutic agent against DOX-induced cardiac injury and that the cardioprotective effects of BMP10 are dependent on the activation of STAT3.
Collapse
Affiliation(s)
- Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Chen-Fei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, RP China.,Hubei Key Laboratory of Metabolic And Chronic Diseases, Wuhan, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
| |
Collapse
|
13
|
Yue H, Zhao X, Liang W, Qin X, Bian L, He K, Wu Z. Curcumin, novel application in reversing myocardial fibrosis in the treatment for atrial fibrillation from the perspective of transcriptomics in rat model. Biomed Pharmacother 2021; 146:112522. [PMID: 34894517 DOI: 10.1016/j.biopha.2021.112522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
In order to explore the possible mechanism of curcumin in the treatment of AF, we focused on the myocardial fibrosis in the pathogenesis of atrial fibrillation to explore whether curcumin could play a role in the treatment of AF by reducing myocardial fibrosis.Rats were given daily gavage of saline (control and AF groups) or curcumin (4 mL/kg, concentration: 50 mg/mL, curcumin groups) during days 4-28. The rat model of AF was induced by Ach - CaCl2, and evaluate the therapeutic effect of curcumin on the duration of AF rhythm, the degree of myocardial fibrosis and the secretion of inflammatory factors in serum. RNA-seq to explore the possible mechanism of curcumin alleviating myocardial fibrosis of AF. curcumin significantly inhibits the duration of AF and reduces the degree of left atrial fibrosis. ELISA results showed curcumin could significantly reduce the secretion of IL-17A, IL-1β, IL -6 and TGF-β1. Bioinformatics analyses revealed that the IL-17 signaling pathway are involved in the therapeutic mechanism of curcumin. Furthermore, The genes encoding Col1a1, Fasn, Pck1, Bmp10, IL33 and Figf were pivotal and possible key genes for the therapeutic mechanisms of curcumin.Curcumin can reduce the degree of left atrial fibrosis of AF and the secretion of inflammatory factors. The therapeutic effect of curcumin on AF was attributed to its effect on the IL-17 signaling pathway. Besides, COL1A1, FASN, PCK1, BMP10, IL33 and FIGF were the pivotal genes associated with mechanisms of action of curcumin on AF.
Collapse
Affiliation(s)
- Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weitao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Longrong Bian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kang He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement? Cancers (Basel) 2021; 13:cancers13215412. [PMID: 34771575 PMCID: PMC8582496 DOI: 10.3390/cancers13215412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The modulation of tumor blood vessels is a great opportunity for improving cancer therapies. Understanding the cellular and molecular players that regulate the biology of tumor blood vessels and tumor angiogenesis is necessary for the development of new anti-tumor strategies. Bone morphogenetic protein 9 (BMP9) is a circulating factor with multiple effects in vascular biology through its receptor activin receptor-like kinase 1 (ALK1). In this review, we give an overview of the possible benefits of modulating BMP9–ALK1 functions for cancer therapy improvement. Abstract The improvement of cancer therapy efficacy, the extension of patient survival and the reduction of adverse side effects are major challenges in cancer research. Targeting blood vessels has been considered a promising strategy in cancer therapy. Since the tumor vasculature is disorganized, leaky and triggers immunosuppression and tumor hypoxia, several strategies have been studied to modify tumor vasculature for cancer therapy improvement. Anti-angiogenesis was first described as a mechanism to prevent the formation of new blood vessels and prevent the oxygen supply to tumor cells, showing numerous limitations. Vascular normalization using low doses of anti-angiogenic drugs was purposed to overcome the limitations of anti-angiogenic therapies. Other strategies such as vascular promotion or the induction of high endothelial venules are being studied now to improve cancer therapy. Bone morphogenetic protein 9 (BMP9) exerts a dual effect through the activin receptor-like kinase 1 (ALK1) receptor in blood vessel maturation or activation phase of angiogenesis. Thus, it is an interesting pathway to target in combination with chemotherapies or immunotherapies. This review manuscript explores the effect of the BMP9–ALK1 pathway in tumor angiogenesis and the possible usefulness of targeting this pathway in anti-angiogenesis, vascular normalization or vascular promotion therapies.
Collapse
|
15
|
Fu Y, Wang H, Dai H, Zhu Q, Cui CP, Sun X, Li Y, Deng Z, Zhou X, Ge Y, Peng Z, Yuan C, Wu B, Yang X, Li R, Liu CH, He F, Wei W, Zhang L. OTULIN allies with LUBAC to govern angiogenesis by editing ALK1 linear polyubiquitin. Mol Cell 2021; 81:3187-3204.e7. [PMID: 34157307 DOI: 10.1016/j.molcel.2021.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/04/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.
Collapse
Affiliation(s)
- Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongtian Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongmiao Dai
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Zhikang Deng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xuemei Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yingwei Ge
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Chao Yuan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Rongyu Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
16
|
Bofarid S, Hosman AE, Mager JJ, Snijder RJ, Post MC. Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. Int J Mol Sci 2021; 22:3471. [PMID: 33801690 PMCID: PMC8038106 DOI: 10.3390/ijms22073471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy.
Collapse
Affiliation(s)
- Sala Bofarid
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Anna E. Hosman
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Johannes J. Mager
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Repke J. Snijder
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Marco C. Post
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
- Department of Cardiology, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
17
|
Tao B, Kraehling JR, Ghaffari S, Ramirez CM, Lee S, Fowler JW, Lee WL, Fernandez-Hernando C, Eichmann A, Sessa WC. BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. J Biol Chem 2020; 295:18179-18188. [PMID: 33097593 PMCID: PMC7939458 DOI: 10.1074/jbc.ra120.015680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9-mediated internalization of ALK-1, BMP-9-dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9-induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9-mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis.
Collapse
Affiliation(s)
- Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jan R Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Siavash Ghaffari
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada
| | - Cristina M Ramirez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sungwoon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne Eichmann
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
18
|
Zhang Y, Qian H, Wu B, You S, Wu S, Lu S, Wang P, Cao L, Zhang N, Sun Y. E3 Ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease. Int J Biol Sci 2020; 16:2727-2740. [PMID: 33110392 PMCID: PMC7586430 DOI: 10.7150/ijbs.48437] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Protein ubiquitination represents a critical modification occurring after translation. E3 ligase catalyzes the covalent binding of ubiquitin to the protein substrate, which could be degraded. Ubiquitination as an important protein post-translational modification is closely related to cardiovascular disease. The NEDD4 family, belonging to HECT class of E3 ubiquitin ligases can recognize different substrate proteins, including PTEN, ENaC, Nav1.5, SMAD2, PARP1, Septin4, ALK1, SERCA2a, TGFβR3 and so on, via the WW domain to catalyze ubiquitination, thus participating in multiple cardiovascular-related disease such as hypertension, arrhythmia, myocardial infarction, heart failure, cardiotoxicity, cardiac hypertrophy, myocardial fibrosis, cardiac remodeling, atherosclerosis, pulmonary hypertension and heart valve disease. However, there is currently no review comprehensively clarifying the important role of NEDD4 family proteins in the cardiovascular system. Therefore, the present review summarized recent studies about NEDD4 family members in cardiovascular disease, providing novel insights into the prevention and treatment of cardiovascular disease. In addition, assessing transgenic animals and performing gene silencing would further identify the ubiquitination targets of NEDD4. NEDD4 quantification in clinical samples would also constitute an important method for determining NEDD4 significance in cardiovascular disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Saien Lu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Pingyuan Wang
- Staff scientist, Center for Molecular Medicine National Heart Lung and Blood Institute, National Institutes of Health, the United States
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
19
|
Li Y, Shang Q, Li P, Yang Z, Yang J, Shi J, Ge S, Wang Y, Fan X, Jia R. BMP9 attenuates occurrence of venous malformation by maintaining endothelial quiescence and strengthening vessel walls via SMAD1/5/ID1/α-SMA pathway. J Mol Cell Cardiol 2020; 147:92-107. [PMID: 32730768 DOI: 10.1016/j.yjmcc.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Venous malformation (VM) is a type of vascular morphogenic defect in humans with an incidence of 1%. Although gene mutation is considered as the most common cause of VM, the pathogenesis of those without gene mutation remains to be elucidated. Here, we aimed to explore the relation of bone morphogenetic protein 9 (BMP9) and development of VM. At first, we found serum and tissue BMP9 expression in VM patients was significantly lower than that in healthy subjects, detected via enzyme-linked immunosorbent assay. Next, with wound healing assay, transwell assay and tube formation assay, we discovered BMP9 could inhibit migration and enhance tube formation activity of human umbilical vein endothelial cells (HUVECs) via receptor activin receptor-like kinase 1 (ALK1). Besides, BMP9 improved the expression of structural proteins alpha-smooth muscle actin (α-SMA) and Desmin in human umbilical vein smooth muscle cells (HUVSMCs) via activation of the SMAD1/5-ID1 pathway, determined by RNA-based next-generation sequencing, qPCR, immunofluorescence and western blotting. Intriguingly, this effect could be blocked by receptor ALK1 inhibitor, SMAD1/5 inhibitor and siRNAs targeting ID1, verifying the BMP9/ALK1/SMAD1/5/ID1/α-SMA pathway. Meanwhile, knocking out BMP9 in C57BL/6 mice embryo led to α-SMA scarcity in walls of lung and mesenteric vessels, as well as walls of small trachea. BMP9-/- zebrafish also exhibited abnormal vascular maturity, indicating a critical role of BMP9 in vascular maturity and remodeling. Finally, a VM mice model revealed that BMP9 might have therapeutic effect in VM progression. Our study discovered that BMP9 might inhibit the occurrence of VM by strengthening the vessel wall and maintaining endothelium quiescence. These findings provide promising evidences of new therapeutic targets that might be used for the management of VM.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Qingfeng Shang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Peng Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yefei Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
20
|
BMP9 is a potential therapeutic agent for use in oral and maxillofacial bone tissue engineering. Biochem Soc Trans 2020; 48:1269-1285. [PMID: 32510140 DOI: 10.1042/bst20200376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Oral and maxillofacial surgery is often challenging due to defective bone healing owing to the microbial environment of the oral cavity, the additional involvement of teeth and esthetic concerns. Insufficient bone volume as a consequence of aging and some oral and maxillofacial surgical procedures, such as tumor resection of the jaw, may further impact facial esthetics and cause the failure of certain procedures, such as oral and maxillofacial implantation. Bone morphogenetic protein (BMP) 9 (BMP9) is one of the most effective BMPs to induce the osteogenic differentiation of different stem cells. A large cross-talk network that includes the BMP9, Wnt/β, Hedgehog, EGF, TGF-β and Notch signaling pathways finely regulates osteogenesis induced by BMP9. Epigenetic control during BMP9-induced osteogenesis is mainly dependent on histone deacetylases (HDACs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which adds another layer of complexity. As a result, all these factors work together to orchestrate the molecular and cellular events underlying BMP9-related tissue engineering. In this review, we summarize our current understanding of the SMAD-dependent and SMAD-independent BMP9 pathways, with a particular focus on cross-talk and cross-regulation between BMP9 and other major signaling pathways in BMP9-induced osteogenesis. Furthermore, recently discovered epigenetic regulation of BMP9 pathways and the molecular and cellular basis of the application of BMP9 in tissue engineering in current oral and maxillofacial surgery and other orthopedic-related clinical settings are also discussed.
Collapse
|
21
|
Williams EI, Betterton RD, Davis TP, Ronaldson PT. Transporter-Mediated Delivery of Small Molecule Drugs to the Brain: A Critical Mechanism That Can Advance Therapeutic Development for Ischemic Stroke. Pharmaceutics 2020; 12:pharmaceutics12020154. [PMID: 32075088 PMCID: PMC7076465 DOI: 10.3390/pharmaceutics12020154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is the 5th leading cause of death in the United States. Despite significant improvements in reperfusion therapies, stroke patients still suffer from debilitating neurocognitive deficits. This indicates an essential need to develop novel stroke treatment paradigms. Endogenous uptake transporters expressed at the blood-brain barrier (BBB) provide an excellent opportunity to advance stroke therapy via optimization of small molecule neuroprotective drug delivery to the brain. Examples of such uptake transporters include organic anion transporting polypeptides (OATPs in humans; Oatps in rodents) and organic cation transporters (OCTs in humans; Octs in rodents). Of particular note, small molecule drugs that have neuroprotective properties are known substrates for these transporters and include 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (i.e., statins) for OATPs/Oatps and 1-amino-3,5-dimethyladamantane (i.e., memantine) for OCTs/Octs. Here, we review current knowledge on specific BBB transporters that can be targeted for improvement of ischemic stroke treatment and provide state-of-the-art perspectives on the rationale for considering BBB transport properties during discovery/development of stroke therapeutics.
Collapse
|
22
|
Schoonderwoerd MJA, Goumans MJTH, Hawinkels LJAC. Endoglin: Beyond the Endothelium. Biomolecules 2020; 10:biom10020289. [PMID: 32059544 PMCID: PMC7072477 DOI: 10.3390/biom10020289] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keywords: endoglin; CD105 TGF-β; BMP9; ALK-1; TRC105; tumor microenvironment.
Collapse
Affiliation(s)
- Mark J. A. Schoonderwoerd
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Lukas J. A. C. Hawinkels
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-6736
| |
Collapse
|
23
|
Arjaans S, Wagner BD, Mourani PM, Mandell EW, Poindexter BB, Berger RMF, Abman SH. Early angiogenic proteins associated with high risk for bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Am J Physiol Lung Cell Mol Physiol 2020; 318:L644-L654. [PMID: 31967847 DOI: 10.1152/ajplung.00131.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early pulmonary vascular disease in preterm infants is associated with the subsequent development of bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH); however, mechanisms that contribute to or identify infants with increased susceptibility for BPD and/or PH are incompletely understood. Therefore, we tested if changes in circulating angiogenic peptides during the first week of life are associated with the later development of BPD and/or PH. We further sought to determine alternate peptides and related signaling pathways with the risk for BPD or PH. We prospectively enrolled infants with gestational age <34 wk and collected blood samples during their first week of life. BPD and PH were assessed at 36 wk postmenstrual age. Samples were assayed for each of the 1,121 peptides included in the SOMAscan scan technology, with subsequent pathway analysis. Of 102 infants in the study, 82 had BPD, and 13 had PH. Multiple angiogenic proteins (PF-4, VEGF121, ANG-1, bone morphogenetic protein 10 [BMP10], hepatocyte growth factor (HGF), ANG-2) were associated with the subsequent diagnosis of BPD; and FGF-19, PF-4, connective tissue activating peptide (CTAP)-III, and PDGF-AA levels were associated with BPD severity. Early increases in BMP10 was strongly associated with the late risk for BPD and PH. We found that early alterations of circulating angiogenic peptides and others were associated with the subsequent development of BPD. We further identified peptides that were associated with BPD severity and BPD-associated PH, including BMP10. We speculate that proteomic biomarkers during the first week of life may identify infants at risk for BPD and/or PH to enhance care and research.
Collapse
Affiliation(s)
- Sanne Arjaans
- Department of Paediatric Cardiology, Centre for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Brandie D Wagner
- Pediatric Heart Lung Center, Pediatrics, University of Colorado Denver, Aurora, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Peter M Mourani
- Pediatric Heart Lung Center, Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Erica W Mandell
- Pediatric Heart Lung Center, Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Brenda B Poindexter
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rolf M F Berger
- Department of Paediatric Cardiology, Centre for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven H Abman
- Pediatric Heart Lung Center, Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
24
|
Desroches-Castan A, Tillet E, Ricard N, Ouarné M, Mallet C, Belmudes L, Couté Y, Boillot O, Scoazec JY, Bailly S, Feige JJ. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology 2019; 70:1392-1408. [PMID: 30964206 DOI: 10.1002/hep.30655] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis. However, the molecular mechanism that links BMP9 with liver diseases is still unknown. Here, we report that Bmp9 gene deletion in 129/Ola mice triggers hepatic perisinusoidal fibrosis that was detectable from 15 weeks of age. An inflammatory response appeared within the same time frame as fibrosis, whereas sinusoidal vessel dilation developed later on. Proteomic and mRNA analyses of primary liver sinusoidal endothelial cells (LSECs) both revealed that the expression of the LSEC-specifying transcription factor GATA-binding protein 4 was strongly reduced in Bmp9 gene knockout (Bmp9-KO) mice as compared with wild-type mice. LSECs from Bmp9-KO mice also lost the expression of several terminal differentiation markers (Lyve1, Stab1, Stab2, Ehd3, Cd209b, eNos, Maf, Plvap). They gained CD34 expression and deposited a basal lamina, indicating that they were capillarized. Another main characteristic of differentiated LSECs is the presence of permeable fenestrae. LSECs from Bmp9-KO mice had a significantly reduced number of fenestrae. This was already observable in 2-week-old pups. Moreover, we could show that addition of BMP9 to primary cultures of LSECs prevented the loss of their fenestrae and maintained the expression levels of Gata4 and Plvap. Conclusion: Taken together, our observations show that BMP9 is a key paracrine regulator of liver homeostasis, controlling LSEC fenestration and protecting against perivascular hepatic fibrosis.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Ricard
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarné
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Lucid Belmudes
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Yohann Couté
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Olivier Boillot
- Liver Transplant Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sabine Bailly
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Jean-Jacques Feige
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
25
|
Toshner M. BMP9 Morphs into a Potential Player in Portopulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:819-821. [PMID: 30383395 PMCID: PMC6444656 DOI: 10.1164/rccm.201810-1886ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mark Toshner
- 1 Royal Papworth Hospital NHS Foundation Trust Cambridge, United Kingdom and.,2 Department of Medicine University of Cambridge Cambridge, United Kingdom
| |
Collapse
|
26
|
Yang Y, Yu H, Yang C, Zhang Y, Ai X, Wang X, Lu K, Yi B. Krüppel-like factor 6 mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and is aggravated by bone morphogenetic protein 9. Biol Open 2019; 8:bio.040121. [PMID: 31189661 PMCID: PMC6602319 DOI: 10.1242/bio.040121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular disease derived from chronic liver disease, and its key pathogenesis is angiogenesis. Krüppel-like factor 6 (KLF6) mediates physiological repair and remodeling during vascular injury. However, the role of KLF6 in pulmonary microvascular endothelial cells (PMVECs) during angiogenesis of HPS and its underlying mechanism in HPS have not been investigated. Common bile duct ligation (CBDL) in rats can replicate pulmonary vascular abnormalities of human HPS. Here, we found that advanced pulmonary angiogenesis and pulmonary injury score coincided with the increase of KLF6 level in PMVECs of CBDL rat; KLF6 in PMVECs was also induced while cultured with CBDL rat serum in vitro. Inhibition of KLF6 dramatically suppressed PMVEC-mediated proliferation, migration and tube formation in vivo; this may be related to the downregulation of activin receptor-like kinase-1 (ALK1) and endoglin (ENG), which are transacted by KLF6. Bone morphogenetic protein 9 (BMP9) enhanced the expression of KLF6 in PMVECs and was involved in the angiogenesis of HPS. These results suggest that KLF6 triggers PMVEC-mediated angiogenesis of HPS and is aggravated by BMP9, and the inhibition of the BMP9/KLF6 axis may be an effective strategy for HPS treatment. Summary: Krüppel-like factor 6, which is triggered by pulmonary injury and promoted by bone morphogenetic protein 9, mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and then aggravates lung dysfunction.
Collapse
Affiliation(s)
- Yihui Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China.,Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000 China
| | - Hongfu Yu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Congwen Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yunfei Zhang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China.,Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000 China
| | - Xiangfa Ai
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Xiaobo Wang
- Department of LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
27
|
Liu R, Hu W, Li X, Pu D, Yang G, Liu H, Tan M, Zhu D. Association of circulating BMP9 with coronary heart disease and hypertension in Chinese populations. BMC Cardiovasc Disord 2019; 19:131. [PMID: 31146694 PMCID: PMC6543594 DOI: 10.1186/s12872-019-1095-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background Bone morphogenetic protein9 (BMP9) has been reported to have a role in vascular development. However, there is still a lack of information regarding the association between circulating BMP9 levels and cardiovascular disease in humans. The goal of this study is to measure circulating BMP9 concentrations in patients with essential hypertension (HTN), coronary heart disease (CHD) and HTN + CHD, and evaluates the relationship between circulating BMP9 and these cardiovascular diseases. Methods A total of 417 individuals were recruited for this cross-sectional study from June 2015 to December 2017. These subjects were screened for HTN and CHD. Circulating BMP9 concentrations were measured by ELISA. Results Circulating BMP9 concentrations were significantly low in HTN, CHD and HTN + CHD individuals relative to those of the healthy individuals. Circulating BMP9 correlated negatively with SBP, FIns and HOMA-IR in HTN patients and correlated negatively with FBG and 2 h-BG in CHD patients. In both HTN and CHD patients, circulating BMP9 correlated negatively with BMI, WHR, FAT%, BP and TG. Multivariate logistic regression analysis showed that circulating BMP9 levels were associated with HTN, HTN + CHD and CHD. Individuals with low quartile of circulating BMP9 had a significantly high risk of HTN or/and CHD as compared with those in high quartile. Conclusions BMP9 is likely to be a biomarker for cardiovascular disease in humans, and it may play a role in the progression of cardiovascular disease. Trial registration ChiCTR-OPC-14005324. Electronic supplementary material The online version of this article (10.1186/s12872-019-1095-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Liu
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.,Department of Endocrinology, the Second Affiliated Hospital Chongqing Medical University, Chongqing, China
| | - Wenjing Hu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases, Chongqing, China
| | - Xiaoqiang Li
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danlan Pu
- Department of Endocrinology, Pepople's Hospital of Chongqing Banan District, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Minghong Tan
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| | - Danping Zhu
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
28
|
Tu L, Desroches-Castan A, Mallet C, Guyon L, Cumont A, Phan C, Robert F, Thuillet R, Bordenave J, Sekine A, Huertas A, Ritvos O, Savale L, Feige JJ, Humbert M, Bailly S, Guignabert C. Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension. Circ Res 2019; 124:846-855. [DOI: 10.1161/circresaha.118.313356] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ly Tu
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Agnès Desroches-Castan
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Christine Mallet
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Laurent Guyon
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Amélie Cumont
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Carole Phan
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Florian Robert
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Raphaël Thuillet
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Jennifer Bordenave
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Ayumi Sekine
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Alice Huertas
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Olli Ritvos
- Department of Bacteriology and Immunology and Department of Physiology, Faculty of Medicine, University of Helsinki, Finland (O.R.)
| | - Laurent Savale
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Jean-Jacques Feige
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Marc Humbert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Sabine Bailly
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Christophe Guignabert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| |
Collapse
|
29
|
Morrell NW. Finding the needle in the haystack: BMP9 and 10 emerge from the genome in pulmonary arterial hypertension. Eur Respir J 2019; 53:53/3/1900078. [PMID: 30872557 DOI: 10.1183/13993003.00078-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Nicholas W Morrell
- Dept of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
30
|
Yu L, Dawson LA, Yan M, Zimmel K, Lin YL, Dolan CP, Han M, Muneoka K. BMP9 stimulates joint regeneration at digit amputation wounds in mice. Nat Commun 2019; 10:424. [PMID: 30723209 PMCID: PMC6363752 DOI: 10.1038/s41467-018-08278-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/28/2018] [Indexed: 01/09/2023] Open
Abstract
A major goal of regenerative medicine is to stimulate tissue regeneration after traumatic injury. We previously discovered that treating digit amputation wounds with BMP2 in neonatal mice stimulates endochondral ossification to regenerate the stump bone. Here we show that treating the amputation wound with BMP9 stimulates regeneration of a synovial joint that forms an articulation with the stump bone. Regenerated structures include a skeletal element lined with articular cartilage and a synovial cavity, and we demonstrate that this response requires the Prg4 gene. Combining BMP2 and BMP9 treatments in sequence stimulates the regeneration of bone and joint. These studies provide evidence that treatment of growth factors can be used to engineer a regeneration response from a non-regenerating amputation wound. Mammalian joints have poor regenerative capacity following amputation. Here, the authors show that in mice, stimulation of the amputation wound with BMP2 and BMP9 stimulates regeneration of a synovial joint that includes bone, cartilage and a synovial cavity.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Manjong Han
- Department of Cell & Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA. .,Department of Cell & Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
31
|
Rossi E, Bernabeu C, Smadja DM. Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-β. Front Med (Lausanne) 2019; 6:10. [PMID: 30761306 PMCID: PMC6363663 DOI: 10.3389/fmed.2019.00010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Endoglin (ENG) is a transmembrane glycoprotein expressed on endothelial cells that functions as a co-receptor for several ligands of the transforming growth factor beta (TGF-β) family. ENG is also a recognized marker of angiogenesis and mutations in the endoglin gene are responsible for Hereditary Hemorrhagic Telangiectasia (HHT) type 1, a vascular disease characterized by defective angiogenesis, arteriovenous malformations, telangiectasia, and epistaxis. In addition to its involvement in the TGF-β family signaling pathways, several lines of evidence suggest that the extracellular domain of ENG has a role in integrin-mediated cell adhesion via its RGD motif. Indeed, we have described a role for endothelial ENG in leukocyte trafficking and extravasation via its binding to leukocyte integrins. We have also found that ENG is involved in vasculogenic properties of endothelial progenitor cells known as endothelial colony forming cells (ECFCs). Moreover, the binding of endothelial ENG to platelet integrins regulate the resistance to shear during platelet-endothelium interactions under inflammatory conditions. Because of the need for more effective treatments in HHT and the involvement of ENG in angiogenesis, current studies are aimed at identifying novel biological functions of ENG which could serve as a therapeutic target. This review focuses on the interaction between ENG and integrins with the aim to better understand the role of this protein in blood vessel formation driven by progenitor and mature endothelial cells.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - David M Smadja
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm UMR-S1140, Paris, France.,Department of Hematology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
32
|
Abstract
Pulmonary arterial hypertension (PAH) is a pulmonary vasculopathy that causes right ventricular dysfunction and exercise limitation and progresses to death. New findings from translational studies have suggested alternative pathways for treatment. These avenues include sex hormones, genetic abnormalities and DNA damage, elastase inhibition, metabolic dysfunction, cellular therapies, and anti-inflammatory approaches. Both novel and repurposed compounds with rationale from preclinical experimental models and human cells are now in clinical trials in patients with PAH. Findings from these studies will elucidate the pathobiology of PAH and may result in clinically important improvements in outcome.
Collapse
Affiliation(s)
- Edda Spiekerkoetter
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Steven M Kawut
- Department of Medicine and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6021, USA;
| | - Vinicio A de Jesus Perez
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
33
|
Cui J, Zhang W, Huang E, Wang J, Liao J, Li R, Yu X, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Lei J, Yang C, Wu K, Wu Y, Huang S, Ji X, Li A, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, An L, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Huang A, Luu HH, Reid RR, Wolf JM, Thinakaran G, Lee MJ, He TC. BMP9-induced osteoblastic differentiation requires functional Notch signaling in mesenchymal stem cells. J Transl Med 2019; 99:58-71. [PMID: 30353129 PMCID: PMC6300564 DOI: 10.1038/s41374-018-0087-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/28/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into multiple lineages including osteoblastic lineage. Osteogenic differentiation of MSCs is a cascade that recapitulates most, if not all, of the molecular events occurring during embryonic skeletal development, which is regulated by numerous signaling pathways including bone morphogenetic proteins (BMPs). Through a comprehensive analysis of the osteogenic activity, we previously demonstrated that BMP9 is the most potent BMP for inducing bone formation from MSCs both in vitro and in vivo. However, as one of the least studied BMPs, the essential mediators of BMP9-induced osteogenic signaling remain elusive. Here we show that BMP9-induced osteogenic signaling in MSCs requires intact Notch signaling. While the expression of Notch receptors and ligands are readily detectable in MSCs, Notch inhibitor and dominant-negative Notch1 effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic bone formation in vivo. Genetic disruption of Notch pathway severely impairs BMP9-induced osteogenic differentiation and ectopic bone formation from MSCs. Furthermore, while BMP9-induced expression of early-responsive genes is not affected by defective Notch signaling, BMP9 upregulates the expression of Notch receptors and ligands at the intermediate stage of osteogenic differentiation. Taken together, these results demonstrate that Notch signaling may play an essential role in coordinating BMP9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Jing Cui
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, the Affiliated University-Town Hospital, Chongqing Medical University, 401331, Chongqing, China.
| | - Enyi Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Jia Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, the Affiliated University-Town Hospital, Chongqing Medical University, 401331, Chongqing, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Alexander Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Cheng Gong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, 443002, Yichang, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, the Second Hospital of Lanzhou University, 730030, Lanzhou, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, the Second Hospital of Lanzhou University, 730030, Lanzhou, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, 400021, Chongqing, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, 410011, Changsha, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Gopal Thinakaran
- Department of Neurobiology, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
34
|
Abdullahi W, Brzica H, Hirsch NA, Reilly BG, Ronaldson PT. Functional Expression of Organic Anion Transporting Polypeptide 1a4 Is Regulated by Transforming Growth Factor- β/Activin Receptor-like Kinase 1 Signaling at the Blood-Brain Barrier. Mol Pharmacol 2018; 94:1321-1333. [PMID: 30262595 PMCID: PMC6207918 DOI: 10.1124/mol.118.112912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) drug delivery can be achieved by targeting drug uptake transporters such as Oatp1a4. In fact, many drugs that can improve neurologic outcomes in CNS diseases [3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (i.e., statins)] are organic anion transporting polypeptide (OATP) transport substrates. To date, transport properties and regulatory mechanisms of Oatp1a4 at the blood-brain barrier (BBB) have not been rigorously studied. Such knowledge is critical to develop Oatp1a4 for optimization of CNS drug delivery and for improved treatment of neurological diseases. Our laboratory has demonstrated that the transforming growth factor-β (TGF-β)/activin receptor-like kinase 1 (ALK1) signaling agonist bone morphogenetic protein 9 (BMP-9) increases functional expression of Oatp1a4 in rat brain microvessels. Here, we expand on this work and show that BMP-9 treatment increases blood-to-brain transport and brain exposure of established OATP transport substrates (i.e., taurocholate, atorvastatin, and pravastatin). We also demonstrate that BMP-9 activates the TGF-β/ALK1 pathway in brain microvessels as indicated by increased nuclear translocation of specific Smad proteins associated with signaling mediated by the ALK1 receptor (i.e., pSmad1/5/8). Furthermore, we report that an activated Smad protein complex comprised of phosphorylated Smad1/5/8 and Smad4 is formed following BMP-9 treatment and binds to the promoter of the Slco1a4 gene (i.e., the gene that encodes Oatp1a4). This signaling mechanism causes increased expression of Slco1a4 mRNA. Overall, this study provides evidence that Oatp1a4 transport activity at the BBB is directly regulated by TGF-β/ALK1 signaling and indicates that this pathway can be targeted for control of CNS delivery of OATP substrate drugs.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Nicholas A Hirsch
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
35
|
Gallardo-Vara E, Tual-Chalot S, Botella LM, Arthur HM, Bernabeu C. Soluble endoglin regulates expression of angiogenesis-related proteins and induction of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Dis Model Mech 2018; 11:dmm.034397. [PMID: 30108051 PMCID: PMC6176985 DOI: 10.1242/dmm.034397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a transmembrane glycoprotein expressed in vascular endothelium that plays a key role in angiogenesis. Mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1 (HHT1), characterized by arteriovenous malformations (AVMs) in different organs. These vascular lesions derive from abnormal processes of angiogenesis, whereby aberrant vascular remodeling leads to focal loss of capillaries. Current treatments for HHT1 include antiangiogenic therapies. Interestingly, a circulating form of endoglin (also known as soluble endoglin, sEng), proteolytically released from the membrane-bound protein and displaying antiangiogenic activity, has been described in several endothelial-related pathological conditions. Using human and mouse endothelial cells, we find that sEng downregulates several pro-angiogenic and pro-migratory proteins involved in angiogenesis. However, this effect is much reduced in endothelial cells that lack endogenous transmembrane endoglin, suggesting that the antiangiogenic activity of sEng is dependent on the presence of endogenous transmembrane endoglin protein. In fact, sEng partially restores the phenotype of endoglin-silenced endothelial cells to that of normal endothelial cells. Moreover, using an established neonatal retinal model of HHT1 with depleted endoglin in the vascular endothelium, sEng treatment decreases the number of AVMs and has a normalizing effect on the vascular phenotype with respect to vessel branching, vascular density and migration of the vascular plexus towards the retinal periphery. Taken together, these data show that circulating sEng can influence vascular development and AVMs by modulating angiogenesis, and that its effect on endothelial cells depends on the expression of endogenous endoglin. This article has an associated First Person interview with the first author of the paper. Summary: Soluble endoglin regulates vascular development and arteriovenous malformations by modulating angiogenesis, and its effect on endothelial cells depends on expression of endogenous membrane-bound endoglin.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| |
Collapse
|
36
|
Ying Y, Ueta T, Jiang S, Lin H, Wang Y, Vavvas D, Wen R, Chen YG, Luo Z. Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK. Oncotarget 2018; 8:32794-32806. [PMID: 28427181 PMCID: PMC5464828 DOI: 10.18632/oncotarget.15825] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/12/2017] [Indexed: 11/25/2022] Open
Abstract
Anti-VEGF therapy has been proven to be effective in the treatment of pathological angiogenesis. However, therapy resistance often occurs, leading to development of alternative approaches. The present study examines if AMPK negatively regulates ALK1-mediated signaling events and associated angiogenesis. Thus, we treated human umbilical vein endothelial cells with metformin as well as other pharmacological AMPK activators and showed that activation of AMPK inhibited Smad1/5 phosphorylation and tube formation induced by BMP9. This event was mimicked by expression of the active mutant of AMPKα1 and prevented by the dominant negative AMPKα1. Metformin inhibition of BMP9 signaling is possibly mediated by upregulation of Smurf1, leading to degradation of ALK1. Furthermore, metformin suppressed BMP9-induced angiogenesis in mouse matrigel plug. In addition, laser photocoagulation was employed to evaluate the effect of metformin. The data revealed that metformin significantly reduced choroidal neovascularization to a level comparable to LDN212854, an ALK1 specific inhibitor. In conjunction, metformin diminished expression of ALK1 in endothelium of the lesion area. Collectively, our study for the first time demonstrates that AMPK inhibits ALK1 and associated angiogenesis/neovascularization. This may offer us a new avenue for the treatment of related diseases using clinically used pharmacological AMPK activators like metformin in combination with other strategies to enhance the treatment efficacy or in the case of anti-VEGF resistance.
Collapse
Affiliation(s)
- Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Takashi Ueta
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shanshan Jiang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Yuanyuan Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Demetrios Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller Medical School, Miami, FL, USA
| | - Ye-Guang Chen
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,Windsor University School of Medicine, Brighton's Estate, Cayon, St. Kitts
| |
Collapse
|
37
|
Marí M, Morales A. Bone morphogenetic protein-9/activin-like kinase 1 axis a new target for hepatic regeneration and fibrosis treatment in liver injury. Hepatobiliary Surg Nutr 2017; 6:414-416. [PMID: 29312979 DOI: 10.21037/hbsn.2017.11.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Spain.,Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
38
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|
39
|
Abdullahi W, Davis TP, Ronaldson PT. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS JOURNAL 2017; 19:931-939. [PMID: 28447295 DOI: 10.1208/s12248-017-0081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
Abstract
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA.
| |
Collapse
|
40
|
A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep 2016; 5:37366. [PMID: 27874028 PMCID: PMC5118799 DOI: 10.1038/srep37366] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a potentially life-threatening genetic vascular disorder caused by loss-of-function mutations in the genes encoding activin receptor-like kinase 1 (ALK1), endoglin, Smad4, and bone morphogenetic protein 9 (BMP9). Injections of mouse neonates with BMP9/10 blocking antibodies lead to HHT-like vascular defects in the postnatal retinal angiogenesis model. Mothers and their newborns share the same immunity through the transfer of maternal antibodies during lactation. Here, we investigated whether the transmammary delivery route could improve the ease and consistency of administering anti-BMP9/10 antibodies in the postnatal retinal angiogenesis model. We found that anti-BMP9/10 antibodies, when intraperitoneally injected into lactating dams, are efficiently transferred into the blood circulation of lactationally-exposed neonatal pups. Strikingly, pups receiving anti-BMP9/10 antibodies via lactation displayed consistent and robust vascular pathology in the retina, which included hypervascularization and defects in arteriovenous specification, as well as the presence of multiple and massive arteriovenous malformations. Furthermore, RNA-Seq analyses of neonatal retinas identified an increase in the key pro-angiogenic factor, angiopoietin-2, as the most significant change in gene expression triggered by the transmammary delivery of anti-BMP9/10 antibodies. Transmammary-delivered BMP9/10 immunoblocking in the mouse neonatal retina is therefore a practical, noninvasive, reliable, and robust model of HHT vascular pathology.
Collapse
|