1
|
Sun XL, Song HX, Li JH, Liu YJ, Wang XY, Zhang LN. TOE1 deadenylase inhibits gastric cancer cell proliferation by regulating cell cycle progression. Biochim Biophys Acta Gen Subj 2025; 1869:130736. [PMID: 39657841 DOI: 10.1016/j.bbagen.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
TOE1, also known as hCaf1z, belongs to the DEDD superfamily of deadenylases and a newly identified isoenzyme of hCaf1 deadenylases. Previous research has demonstrated that TOE1 has deadenylase activity, which can catalyze the degradation of poly(A) substrates and interact with hCcr4d to form the unconventional human Ccr4-Caf1 deadenylase complex. Our recent research indicates that hCaf1a and hCaf1b isoenzymes, highly expressed in gastric cancer, promote gastric cancer cell proliferation and tumorigenicity via modulating cell cycle progression. However, no studies have yet explored the relationship between TOE1 deadenylase and tumor development. In our study, we systematically investigated the functions and mechanisms of TOE1 in gastric cancer progression. Our findings revealed that overexpression of TOE1 inhibited gastric cancer cell proliferation, invasion and migration, promoted cell apoptosis, and led to cell cycle arrest in G0/G1 phase, while TOE1 knockdown had the opposite biological effects on these processes in gastric cancer cells. Further results indicated that TOE1 suppressed gastric cancer progression by inhibiting EMT process and MMPs expression. Moreover, our study clarified that TOE1 blocked gastric cancer cell cycle progression by up-regulating the expression level of the key cell cycle factors p21 and p53 through different regulatory mechanisms. Specifically, TOE1 up-regulated p53 expression by enhancing p53 promoter activity, and up-regulated p21 expression by enhancing p21 mRNA stability. Collectively, our findings first contribute to further elucidating the molecular mechanisms by which TOE1 participates in the regulation of gastric cancer progression, and are expected to provide a theoretical basis for diagnosis and targeted treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiao-Lin Sun
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Huan-Xi Song
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Jia-Hui Li
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yi-Jin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin-Ya Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Gao R, Hu Y, Yuan Q. ADAMTS12 serves as a novel prognostic biomarker and promotes proliferation and invasion in gastric cancer. Discov Oncol 2024; 15:837. [PMID: 39720953 DOI: 10.1007/s12672-024-01724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) remains a prevalent and aggressive malignancy with a poor prognosis. This study aimed to identify diagnostic and prognostic biomarkers while exploring their potential functions in GC. A total of 598 upregulated and 506 downregulated genes were identified in GC patients. Among these, survival-related differentially expressed genes (DEGs), including ADAMTS12, F5, and VCAN, were highlighted. Pan-cancer analyses revealed their dysregulation across multiple tumor types. A novel prognostic signature, incorporating ADAMTS12 and F5, effectively stratified GC patients into low- and high-risk groups, demonstrating significant differences in overall survival and robust predictive performance. ADAMTS12, strongly associated with advanced clinical stages and poor prognosis, was validated in an independent cohort and exhibited promising diagnostic potential. RT-PCR and western blot analyses confirmed its high expression in GC tissues and cell lines. Functional assays further demonstrated that ADAMTS12 promotes GC cell proliferation and invasion. In summary, this study provides critical insights into the molecular landscape of GC, offering a potential prognostic tool and therapeutic target.
Collapse
Affiliation(s)
- Ruimei Gao
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Yalan Hu
- Department of Anorectal Surgery, Qingdao Eighth People's Hospital, Qingdao, China
| | - Qiuxiang Yuan
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China.
| |
Collapse
|
3
|
Shao H, Huang J, Wang H, Wang G, Yang X, Cheng M, Sun C, Zou L, Yang Q, Zhang D, Liu Z, Jiang X, Shi L, Shi P, Han B, Jiao B. Fused in sarcoma (FUS) inhibits milk production efficiency in mammals. Nat Commun 2024; 15:3953. [PMID: 38729967 PMCID: PMC11087553 DOI: 10.1038/s41467-024-48428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.
Collapse
Affiliation(s)
- Haili Shao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jipeng Huang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guolei Wang
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, 261042, China
| | - Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mei Cheng
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Changjie Sun
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dandan Zhang
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China
| | - Zhen Liu
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xuelong Jiang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lei Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Baowei Han
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China.
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
4
|
Karousis ED. The art of hijacking: how Nsp1 impacts host gene expression during coronaviral infections. Biochem Soc Trans 2024; 52:481-490. [PMID: 38385526 PMCID: PMC10903449 DOI: 10.1042/bst20231119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Non-structural protein 1 (Nsp1) is one of the first proteins produced during coronaviral infections. It plays a pivotal role in hijacking and rendering the host gene expression under the service of the virus. With a focus on SARS-CoV-2, this review presents how Nsp1 selectively inhibits host protein synthesis and induces mRNA degradation of host but not viral mRNAs and blocks nuclear mRNA export. The clinical implications of this protein are highlighted by showcasing the pathogenic role of Nsp1 through the repression of interferon expression pathways and the features of viral variants with mutations in the Nsp1 coding sequence. The ability of SARS-CoV-2 Nsp1 to hinder host immune responses at an early step, the absence of homology to any human proteins, and the availability of structural information render this viral protein an ideal drug target with therapeutic potential.
Collapse
Affiliation(s)
- Evangelos D. Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Zhang C, Ni X, Tao C, Zhou Z, Wang F, Gu F, Cui X, Jiang S, Li Q, Lu H, Li D, Wu Z, Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol (Dordr) 2024; 47:157-174. [PMID: 37632669 PMCID: PMC10899302 DOI: 10.1007/s13402-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear. METHODS The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC. RESULTS We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level. CONCLUSION Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
Collapse
Affiliation(s)
- Cancan Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoge Ni
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Chunlin Tao
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Ziyang Zhou
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fengmian Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
- Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
6
|
Chagas BS, Tibúrcio Júnior E, Silva RCDO, dos Santos DL, Barros Junior MR, de Lima RDCP, Invenção MDCV, Santos VEP, França Neto PL, Silva Júnior AH, Silva Neto JC, Batista MVDA, de Freitas AC. E7 Oncogene HPV58 Variants Detected in Northeast Brazil: Genetic and Functional Analysis. Microorganisms 2023; 11:1915. [PMID: 37630475 PMCID: PMC10458125 DOI: 10.3390/microorganisms11081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is associated with persistent infections by high-risk Human Papillomavirus (HPV) types that may have nucleotide polymorphisms and, consequently, different oncogenic potentials. Therefore, this study aimed to evaluate the genetic variability and structural effects of the E7 oncogene of HPV58 in cervical scraping samples from Brazilian women. The study was developed with patients from hospitals in the metropolitan area of Recife, PE, Brazil. The most frequent HPV types were, in descending order of abundance, HPV16, 31, and 58. Phylogenetic analysis demonstrated that the isolates were classified into sublineages A2, C1, and D2. Two positively selected mutations were found in E7: 63G and 64T. The mutations G41R, G63D, and T64A in the E7 protein reduced the stability of the protein structure. Utilizing an NF-kB reporter assay, we observed a decrease in the NK-kB pathway activity with the HPV58-E7 variant 54S compared to the WT E7. The other detected E7 HPV58 variants presented similar NF-kB pathway activity compared to the WT E7. In this study, it was possible to identify mutations that may interfere with the molecular interaction between the viral oncoproteins and host proteins.
Collapse
Affiliation(s)
- Bárbara Simas Chagas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Elias Tibúrcio Júnior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Ruany Cristyne de Oliveira Silva
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Marconi Rego Barros Junior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Pedro Luiz França Neto
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Antônio Humberto Silva Júnior
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
| | - Jacinto Costa Silva Neto
- Laboratory of Molecular and Cytological Research, Department of Histology, Federal University of Pernambuco, Recife 50670-901, PE, Brazil;
| | - Marcus Vinícius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| |
Collapse
|
7
|
Oh S, Kim K, Kang YJ, Hwang H, Kim Y, Hinterdorfer P, Kim MK, Ko K, Lee YK, Kim DS, Myung SC, Ko K. Co-transient expression of PSA-Fc and PAP-Fc fusion protein in plant as prostate cancer vaccine candidates and immune responses in mice. PLANT CELL REPORTS 2023; 42:1203-1215. [PMID: 37269373 DOI: 10.1007/s00299-023-03028-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE PAP-FcK and PSA-FcK prostate cancer antigenic proteins transiently co-expressed in plant induce their specific humoral immune responses in mice. Prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) have been considered as immunotherapeutic antigens for prostate cancer. The use of a single antigenic agent is unlikely to be effective in eliciting immunotherapeutic responses due to the heterogeneous and multifocal nature of prostate cancer. Thus, multiple antigens have been combined to enhance their anti-cancer effects. In the current study, PSA and PAP were fused to the crystallizable region (Fc region) of immunoglobulin G1 and tagged with KDEL, the endoplasmic reticulum (ER) retention signal motif, to generate PSA-FcK and PAP-FcK, respectively, and were transiently co-expressed in Nicotiana benthamiana. Western blot analysis confirmed the co-expression of PSA-FcK and PAP-FcK (PSA-FcK + PAP-FcK) with a 1:3 ratios in the co-infiltrated plants. PSA-FcK, PAP-FcK, and PSA-FcK + PAP-FcK proteins were successfully purified from N. benthamiana by protein A affinity chromatography. ELISA showed that anti-PAP and anti-PSA antibodies successfully detected PAP-FcK and PSA-FcK, respectively, and both detected PSA-FcK + PAP-FcK. Surface plasmon resonance (SPR) analysis confirmed the binding affinity of the plant-derived Fc fusion proteins to FcγRI/CD64. Furthermore, we also confirmed that mice injected with PSA-FcK + PAP-FcK produced both PSA- and PAP-specific IgGs, demonstrating their immunogenicity. This study suggested that the transient plant expression system can be applied to produce the dual-antigen Fc fusion protein (PSA-FcK + PAP-FcK) for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Soyeon Oh
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Kibum Kim
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Yang Joo Kang
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hyunjoo Hwang
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Yerin Kim
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University, 4020, Linz, Austria
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Konkuk University, Seoul, South Korea
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan-si, 54004, South Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, South Korea
| | - Soon Chul Myung
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Kisung Ko
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
8
|
R158Q and G212S, novel pathogenic compound heterozygous variants in SLC12A3 of Gitelman syndrome. Front Med 2022; 16:932-945. [PMID: 36370249 DOI: 10.1007/s11684-022-0963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022]
Abstract
The dysfunction of Na+-Cl- cotransporter (NCC) caused by mutations in solute carrier family12, member 3 gene (SLC12A3) primarily causes Gitelman syndrome (GS). In identifying the pathogenicity of R158Q and G212S variants of SLC12A3, we evaluated the pathogenicity by bioinformatic, expression, and localization analysis of two variants from a patient in our cohort. The prediction of mutant protein showed that p.R158Q and p.G212S could alter protein's three-dimensional structure. Western blot showed a decrease of mutant Ncc. Immunofluorescence of the two mutations revealed a diffuse positive staining below the plasma membrane. Meanwhile, we conducted a compound heterozygous model-Ncc R156Q/G210S mice corresponding to human NCC R158Q/G212S. NccR156Q/G210S mice clearly exhibited typical GS features, including hypokalemia, hypomagnesemia, and increased fractional excretion of K+ and Mg2+ with a normal blood pressure level, which made NccR156Q/G210S mice an optimal mouse model for further study of GS. A dramatic decrease and abnormal localization of the mutant Ncc in distal convoluted tubules contributed to the phenotype. The hydrochlorothiazide test showed a loss of function of mutant Ncc in NccR156Q/G210S mice. These findings indicated that R158Q and G212S variants of SLC12A3 were pathogenic variants of GS.
Collapse
|
9
|
Schroader JH, Jones LA, Meng R, Shorrock HK, Richardson J, Shaughnessy S, Lin Q, Begley T, Berglund J, Fuchs G, Handley M, Reddy K. Disease-associated inosine misincorporation into RNA hinders translation. Nucleic Acids Res 2022; 50:9306-9318. [PMID: 35979951 PMCID: PMC9458462 DOI: 10.1093/nar/gkac709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022] Open
Abstract
Failure to prevent accumulation of the non-canonical nucleotide inosine triphosphate (ITP) by inosine triphosphate pyrophosphatase (ITPase) during nucleotide synthesis results in misincorporation of inosine into RNA and can cause severe and fatal developmental anomalies in humans. While the biochemical activity of ITPase is well understood, the pathogenic basis of ITPase deficiency and the molecular and cellular consequences of ITP misincorporation into RNA remain cryptic. Here, we demonstrate that excess ITP in the nucleotide pool during in vitro transcription results in T7 polymerase-mediated inosine misincorporation in luciferase RNA. In vitro translation of inosine-containing luciferase RNA reduces resulting luciferase activity, which is only partly explained by reduced abundance of the luciferase protein produced. Using Oxford Nanopore Direct RNA sequencing, we reveal inosine misincorporation to be stochastic but biased largely towards misincorporation in place of guanosine, with evidence for misincorporation also in place of cytidine, adenosine and uridine. Inosine misincorporation into RNA is also detected in Itpa-null mouse embryonic heart tissue as an increase in relative variants compared with the wild type using Illumina RNA sequencing. By generating CRISPR/Cas9 rat H9c2 Itpa-null cardiomyoblast cells, we validate a translation defect in cells that accumulate inosine within endogenous RNA. Furthermore, we observe hindered cellular translation of transfected luciferase RNA containing misincorporated inosine in both wild-type and Itpa-null cells. We therefore conclude that inosine misincorporation into RNA perturbs translation, thus providing mechanistic insight linking ITPase deficiency, inosine accumulation and pathogenesis.
Collapse
Affiliation(s)
| | | | - Ryan Meng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Hannah K Shorrock
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jared I Richardson
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA,Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Sharon M Shaughnessy
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qishan Lin
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA,RNA Epitranscriptomics & Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA,Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA,RNA Epitranscriptomics & Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA,Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA,Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Gabriele Fuchs
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA,Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Kaalak Reddy
- *To whom correspondence should be addressed. Tel: +1 518 442 1464;
| |
Collapse
|
10
|
Meng E, Deng J, Jiang R, Wu H. CircRNA-Encoded Peptides or Proteins as New Players in Digestive System Neoplasms. Front Oncol 2022; 12:944159. [PMID: 35936754 PMCID: PMC9355255 DOI: 10.3389/fonc.2022.944159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) were considered non-coding RNAs. Nowadays, a large number of studies have found that these RNAs contain open reading frames that can be translated in a cap-independent manner, such as internal ribosome entry site (IRES) and N6-methyladenosine (m6A). The encoded peptides or proteins affect the occurrence and development of tumors by regulating the Yap-hippo and the Wnt/β-catenin signaling pathways, as well as the malignant progression of tumors through phosphorylation and ubiquitination of specific molecules. This review will summarize the regulation of circRNA translation and the functional roles and underlying mechanisms of circRNA-derived peptides or proteins in digestive tract tumors. Some circRNA-encoded peptides or proteins may be used as tumor biomarkers and prognostic factors for early screening and treatment of clinical gastrointestinal tumors.
Collapse
|
11
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
12
|
Analysis of the Expression and Subcellular Distribution of eEF1A1 and eEF1A2 mRNAs during Neurodevelopment. Cells 2022; 11:cells11121877. [PMID: 35741005 PMCID: PMC9220863 DOI: 10.3390/cells11121877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Neurodevelopment is accompanied by a precise change in the expression of the translation elongation factor 1A variants from eEF1A1 to eEF1A2. These are paralogue genes that encode 92% identical proteins in mammals. The switch in the expression of eEF1A variants has been well studied in mouse motor neurons, which solely express eEF1A2 by four weeks of postnatal development. However, changes in the subcellular localization of eEF1A variants during neurodevelopment have not been studied in detail in other neuronal types because antibodies lack perfect specificity, and immunofluorescence has a low sensitivity. In hippocampal neurons, eEF1A is related to synaptic plasticity and memory consolidation, and decreased eEF1A expression is observed in the hippocampus of Alzheimer's patients. However, the specific variant involved in these functions is unknown. To distinguish eEF1A1 from eEF1A2 expression, we have designed single-molecule fluorescence in-situ hybridization probes to detect either eEF1A1 or eEF1A2 mRNAs in cultured primary hippocampal neurons and brain tissues. We have developed a computational framework, ARLIN (analysis of RNA localization in neurons), to analyze and compare the subcellular distribution of eEF1A1 and eEF1A2 mRNAs at specific developmental stages and in mature neurons. We found that eEF1A1 and eEF1A2 mRNAs differ in expression and subcellular localization over neurodevelopment, and eEF1A1 mRNAs localize in dendrites and synapses during dendritogenesis and synaptogenesis. Interestingly, mature hippocampal neurons coexpress both variant mRNAs, and eEF1A1 remains the predominant variant in dendrites.
Collapse
|
13
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
14
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
16
|
Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021; 13:2090. [PMID: 34959371 PMCID: PMC8707022 DOI: 10.3390/pharmaceutics13122090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The perspective of using messenger RNA (mRNA) as a therapeutic molecule first faced some uncertainties due to concerns about its instability and the feasibility of large-scale production. Today, given technological advances and deeper biomolecular knowledge, these issues have started to be addressed and some strategies are being exploited to overcome the limitations. Thus, the potential of mRNA has become increasingly recognized for the development of new innovative therapeutics, envisioning its application in immunotherapy, regenerative medicine, vaccination, and gene editing. Nonetheless, to fully potentiate mRNA therapeutic application, its efficient production, stabilization and delivery into the target cells are required. In recent years, intensive research has been carried out in this field in order to bring new and effective solutions towards the stabilization and delivery of mRNA. Presently, the therapeutic potential of mRNA is undoubtedly recognized, which was greatly reinforced by the results achieved in the battle against the COVID-19 pandemic, but there are still some issues that need to be improved, which are critically discussed in this review.
Collapse
Affiliation(s)
- Bruno Baptista
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Nabila Laroui
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Chantal Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| |
Collapse
|
17
|
Shi SL, Fukuda H, Chujo T, Kouwaki T, Oshiumi H, Tomizawa K, Wei FY. Export of RNA-derived modified nucleosides by equilibrative nucleoside transporters defines the magnitude of autophagy response and Zika virus replication. RNA Biol 2021; 18:478-495. [PMID: 34382915 PMCID: PMC8677048 DOI: 10.1080/15476286.2021.1960689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.
Collapse
Affiliation(s)
- Sheng-Lan Shi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Fukuda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| |
Collapse
|
18
|
Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, Jing J, Zhou X, Pan W. Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis 2021; 12:443. [PMID: 33947841 PMCID: PMC8097074 DOI: 10.1038/s41419-021-03714-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Dysregulation of circular RNA (circRNA) expression is involved in the progression of cancer. Here, we aimed to study the potential function of hsa_circ_0006401 in colorectal cancer (CRC). CircRNA hsa_circ_0006401 expression levels in CRC and adjacent nontumor tissues were analyzed by real-time quantitative PCR (qRT-PCR) and circRNA in situ hybridization (RNA-ISH). Then, CRC cell proliferation was assessed by cell counting. Wound-healing and transwell assays were utilized to detect the effect of hsa_circ_0006401 on CRC migration. A circRNA-ORF construct was created, and a specific antibody against the splice junction of hsa_circ_0006401 was prepared. Finally, the proteins directly binding to hsa_circ_0006401 peptides were identified by immunoprecipitation combined with mass spectrometry. In our study, we found hsa_circ_0006401 was closely related to CRC metastasis and exhibited upregulated expression in metastatic CRC tissue samples. Proliferation and migration were inhibited in vitro when hsa_circ_0006401 expression was silenced. Downregulation of hsa_circ_0006401 expression decreased CRC proliferation and liver metastasis in vivo. A 198-aa peptide was encoded by sequences of the splice junction absent from col6a3. Hsa_circ_0006401 promoted CRC proliferation and migration by encoding the hsa_circ_0006401 peptide. Hsa_circ_0006401 peptides decreased the mRNA and protein level of the host gene col6a3 by promoting col6a3 mRNA stabilation. In conclusion, our study revealed that circRNAs generated from col6a3 that contain an open-reading frame (ORF) encode a novel 198-aa functional peptide and hsa_circ_0006401 peptides promote stability of the host gene col6a3 mRNA to promote CRC proliferation and metastasis.
Collapse
Affiliation(s)
- Chenjing Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Xiaolu Zhou
- The Medical College of QingDao University, No. 308 Ningxia Road, Shinan District, Qingdao, Shandong, China
| | - Xiaoge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Jingya Wang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yanan Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiyong Jing
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xuelong Zhou
- Department of Anesthology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wensheng Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Noncoding RNA 2021; 7:ncrna7010003. [PMID: 33466464 PMCID: PMC7839045 DOI: 10.3390/ncrna7010003] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
mRNA stability influences gene expression and translation in almost all living organisms, and the levels of mRNA molecules in the cell are determined by a balance between production and decay. Maintaining an accurate balance is crucial for the correct function of a wide variety of biological processes and to maintain an appropriate cellular homeostasis. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of gene expression through different molecular mechanisms, including mRNA stabilization. In this review we provide an overview on the molecular mechanisms by which lncRNAs modulate mRNA stability and decay. We focus on how lncRNAs interact with RNA binding proteins and microRNAs to avoid mRNA degradation, and also on how lncRNAs modulate epitranscriptomic marks that directly impact on mRNA stability.
Collapse
Affiliation(s)
- Maialen Sebastian-delaCruz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain; (M.S.-d.); (A.O.-G.); (A.C.-R.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Itziar Gonzalez-Moro
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain; (M.S.-d.); (A.O.-G.); (A.C.-R.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain; (M.S.-d.); (A.O.-G.); (A.C.-R.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Izortze Santin
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-94-601-32-09
| |
Collapse
|
20
|
Abstract
The mRNA epitranscriptome imparts diversity to gene expression by installing chemical modifications. Advances in detection methods have identified chemical modifications in eukaryotic, bacterial, and viral messenger RNAs (mRNAs). The biological functions of modifications in mRNAs still remain to be understood. Chemical modifications are introduced in synthetic mRNAs meant for therapeutic applications to maximize expression from the synthetic mRNAs and to evade the host immune response. This overview provides a background of chemical modifications found in mRNAs, with an emphasis on pseudouridine and its known effects on the mRNA life cycle, its potential applications in synthetic mRNA, and the methods used to assess its effects on mRNA translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- RNA and Genome Editing, New England Biolabs Inc, Ipswich, MA, USA.
| |
Collapse
|
21
|
Ross AB, Langer JD, Jovanovic M. Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives. Mol Cell Proteomics 2020; 20:100016. [PMID: 33556866 PMCID: PMC7950106 DOI: 10.1074/mcp.r120.002190] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
In all cells, proteins are continuously synthesized and degraded to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At a steady state, protein turnover is constant to maintain protein homeostasis, but in dynamic responses, proteins change their rates of synthesis and degradation to adjust their proteomes to internal or external stimuli. Thus, probing the kinetics and dynamics of protein turnover lends insight into how cells regulate essential processes such as growth, differentiation, and stress response. Here, we outline historical and current approaches to measuring the kinetics of protein turnover on a proteome-wide scale in both steady-state and dynamic systems, with an emphasis on metabolic tracing using stable isotope-labeled amino acids. We highlight important considerations for designing proteome turnover experiments, key biological findings regarding the conserved principles of proteome turnover regulation, and future perspectives for both technological and biological investigation.
Collapse
Affiliation(s)
- Alison Barbara Ross
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Julian David Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany; Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
22
|
Liu C, Li Y, Li L, Shui S, Yang L, Sui C, Zhang H. Aberrant expression of oxytocin receptor in endometrium and decidua in women who have experienced recurrent implantation failure. F&S SCIENCE 2020; 1:183-187. [PMID: 35559926 DOI: 10.1016/j.xfss.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To detect the oxytocin receptor (OTR) expression levels in the endometrium and decidua from women who have experienced recurrent implantation failure (RIF) and fertile women. DESIGN Laboratory study using human endometrial and decidual samples. SETTINGS University-affiliated hospital. PATIENT(S) Six patients with RIF and six fertile women were recruited for endometrial sampling on day 20-24 of the menstrual cycle. Decidual tissues were collected from women who had a history of RIF and experienced a spontaneous abortion at 6-8 weeks of gestation (n = 8) and women with healthy pregnancies that terminated for nonmedical reasons (n = 8). INTERVENTION None. MAIN OUTCOME MEASURE(S) OTR expression in the endometrial and decidual tissues was detected with the use of real-time quantitative polymerase chain reaction and Western blotting. RESULT(S) OTR protein and mRNA were significantly increased in the endometria of RIF patients. In the decidua, OTR protein was significantly up-regulated in the RIF group, whereas mRNA was significantly decreased in this group. CONCLUSION(S) Women who experienced RIF presented with an aberrant expression pattern of OTR in the endometria and decidua.
Collapse
Affiliation(s)
- Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linshuang Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shike Shui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Le Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
23
|
Wang Z, Zhuang X, Chen B, Feng D, Li G, Wei M. The Role of miR-107 as a Potential Biomarker and Cellular Factor for Acute Aortic Dissection. DNA Cell Biol 2020; 39:1895-1906. [PMID: 32882141 DOI: 10.1089/dna.2020.5506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute aortic dissection (AD) is one of the most severe and highly mortality vascular disease. Its actual prevalence may be seriously underestimated. We studied different expression genes to understand gene profile change between acute AD and nondiseased individuals, and then discover potential biomarkers and therapeutic targets of acute AD. In our study, acute AD differentially expressed mRNAs and miRNAs were identified through bioinformatics analysis on Gene Expression Omnibus data sets GSE52093, GSE98770, and GSE92427. Then, comprehensive target prediction and network analysis methods were used to evaluate protein-protein interaction networks and to identify Gene Ontology terms for differentially expressed mRNAs. Differentially expressed mRNAs-miRNAs involved in acute AD were assessed as well. Finally, the quantitative real-time PCR and in vitro experiment was used to validate the results. We found Integral Membrane Protein 2C (ITM2C) was low expressed and miR-107-5p was highly expressed in acute AD tissues. Meanwhile, overexpression miR-107-5p promoted the cell proliferation and inhibited the cell apoptosis in RASMC cells. miR-107-5p inhibited the progression of acute AD through targeted ITM2C.
Collapse
Affiliation(s)
- Zanxin Wang
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China.,Department of Cardiac Surgery, The University of Hong Kong-Shenzhen Hospital, Guangdong, P.R. China
| | - Xianmian Zhuang
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Bailang Chen
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Dongjie Feng
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Gang Li
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China
| | - Minxin Wei
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Guangdong, P.R. China.,Department of Cardiac Surgery, The University of Hong Kong-Shenzhen Hospital, Guangdong, P.R. China
| |
Collapse
|
24
|
Kolenda T, Guglas K, Baranowski D, Sobocińska J, Kopczyńska M, Teresiak A, Bliźniak R, Lamperska K. cfRNAs as biomarkers in oncology - still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother 2020; 25:783-792. [PMID: 32904167 PMCID: PMC7451588 DOI: 10.1016/j.rpor.2020.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Dawid Baranowski
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
25
|
Luo EC, Nathanson JL, Tan FE, Schwartz JL, Schmok JC, Shankar A, Markmiller S, Yee BA, Sathe S, Pratt GA, Scaletta DB, Ha Y, Hill DE, Aigner S, Yeo GW. Large-scale tethered function assays identify factors that regulate mRNA stability and translation. Nat Struct Mol Biol 2020; 27:989-1000. [PMID: 32807991 DOI: 10.1038/s41594-020-0477-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The molecular functions of the majority of RNA-binding proteins (RBPs) remain unclear, highlighting a major bottleneck to a full understanding of gene expression regulation. Here, we develop a plasmid resource of 690 human RBPs that we subject to luciferase-based 3'-untranslated-region tethered function assays to pinpoint RBPs that regulate RNA stability or translation. Enhanced UV-cross-linking and immunoprecipitation of these RBPs identifies thousands of endogenous mRNA targets that respond to changes in RBP level, recapitulating effects observed in tethered function assays. Among these RBPs, the ubiquitin-associated protein 2-like (UBAP2L) protein interacts with RNA via its RGG domain and cross-links to mRNA and rRNA. Fusion of UBAP2L to RNA-targeting CRISPR-Cas9 demonstrates programmable translational enhancement. Polysome profiling indicates that UBAP2L promotes translation of target mRNAs, particularly global regulators of translation. Our tethering survey allows rapid assignment of the molecular activity of proteins, such as UBAP2L, to specific steps of mRNA metabolism.
Collapse
Affiliation(s)
- En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jason L Nathanson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frederick E Tan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Duy B Scaletta
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yuanchi Ha
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Kemppainen M, Chowdhury J, Lundberg-Felten J, Pardo A. Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Curr Genet 2020; 66:791-811. [PMID: 32170354 DOI: 10.1007/s00294-020-01060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
For long time, studies on ectomycorrhiza (ECM) have been limited by inefficient expression of fluorescent proteins (FPs) in the fungal partner. To convert this situation, we have evaluated the basic requirements of FP expression in the model ECM homobasidiomycete Laccaria bicolor and established eGFP and mCherry as functional FP markers. Comparison of intron-containing and intronless FP-expression cassettes confirmed that intron-processing is indispensable for efficient FP expression in Laccaria. Nuclear FP localization was obtained via in-frame fusion of FPs between the intron-containing genomic gene sequences of Laccaria histone H2B, while cytosolic FP expression was produced by incorporating the intron-containing 5' fragment of the glyceraldehyde-3-phosphate dehydrogenase encoding gene. In addition, we have characterized the consensus Kozak sequence of strongly expressed genes in Laccaria and demonstrated its boosting effect on transgene mRNA accumulation. Based on these results, an Agrobacterium-mediated transformation compatible plasmid set was designed for easy use of FPs in Laccaria. The four cloning plasmids presented here allow fast and highly flexible construction of C-terminal in-frame fusions between the sequences of interest and the two FPs, expressed either from the endogenous gene promoter, allowing thus evaluation of the native regulation modes of the gene under study, or alternatively, from the constitutive Agaricus bisporus gpdII promoter for enhanced cellular protein localization assays. The molecular tools described here for cell-biological studies in Laccaria can also be exploited in studies of other biotrophic or saprotrophic basidiomycete species susceptible to genetic transformation.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina.
| | - Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Judith Lundberg-Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina
| |
Collapse
|
27
|
Decoding mRNA translatability and stability from the 5' UTR. Nat Struct Mol Biol 2020; 27:814-821. [PMID: 32719458 DOI: 10.1038/s41594-020-0465-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022]
Abstract
Precise control of protein synthesis by engineering sequence elements in 5' untranslated regions (5' UTRs) remains a fundamental challenge. To accelerate our understanding of the cis-regulatory code embedded in 5' UTRs, we devised massively parallel reporter assays from a synthetic messenger RNA library composed of over one million 5' UTR variants. A completely randomized 10-nucleotide sequence preceding an upstream open reading frame (uORF) and downstream GFP drives a broad range of translational outputs and mRNA stability in mammalian cells. While efficient translation protects mRNA from degradation, uORF translation triggers mRNA decay in a UPF1-dependent manner. We also identified translational inhibitory elements with G-quadruplexes as marks for mRNA decay in P-bodies. Unexpectedly, an unstructured A-rich element in 5' UTRs destabilizes mRNAs in the absence of translation, although it enables cap-independent translation. Our results not only identify diverse sequence features of 5' UTRs that control mRNA translatability, but they also reveal ribosome-dependent and ribosome-independent mRNA-surveillance pathways.
Collapse
|
28
|
Serdar LD, Whiteside DL, Nock SL, McGrath D, Baker KE. Inhibition of post-termination ribosome recycling at premature termination codons in UPF1 ATPase mutants. eLife 2020; 9:57834. [PMID: 32697194 PMCID: PMC7375815 DOI: 10.7554/elife.57834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022] Open
Abstract
Recognition and rapid degradation of mRNA harboring premature translation termination codons (PTCs) serves to protect cells from accumulating non-functional and potentially toxic truncated polypeptides. Targeting of PTC-containing transcripts is mediated by the nonsense-mediated mRNA decay (NMD) pathway and requires a conserved set of proteins including UPF1, an RNA helicase whose ATPase activity is essential for NMD. Previously, we identified a functional interaction between the NMD machinery and terminating ribosomes based on 3’ RNA decay fragments that accrue in UPF1 ATPase mutants. Herein, we show that those decay intermediates originate downstream of the PTC and harbor 80S ribosomes that migrate into the mRNA 3’ UTR independent of canonical translation. Accumulation of 3’ RNA decay fragments is determined by both RNA sequence downstream of the PTC and the inactivating mutation within the active site of UPF1. Our data reveal a failure in post-termination ribosome recycling in UPF1 ATPase mutants.
Collapse
Affiliation(s)
- Lucas D Serdar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, United States
| | - DaJuan L Whiteside
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Sarah L Nock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - David McGrath
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Kristian E Baker
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, United States
| |
Collapse
|
29
|
Rothenburger T, McLaughlin KM, Herold T, Schneider C, Oellerich T, Rothweiler F, Feber A, Fenton TR, Wass MN, Keppler OT, Michaelis M, Cinatl J. SAMHD1 is a key regulator of the lineage-specific response of acute lymphoblastic leukaemias to nelarabine. Commun Biol 2020; 3:324. [PMID: 32581304 PMCID: PMC7314829 DOI: 10.1038/s42003-020-1052-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
The nucleoside analogue nelarabine, the prodrug of arabinosylguanine (AraG), is effective against T-cell acute lymphoblastic leukaemia (T-ALL) but not against B-cell ALL (B-ALL). The underlying mechanisms have remained elusive. Here, data from pharmacogenomics studies and a panel of ALL cell lines reveal an inverse correlation between nelarabine sensitivity and the expression of SAMHD1, which can hydrolyse and inactivate triphosphorylated nucleoside analogues. Lower SAMHD1 abundance is detected in T-ALL than in B-ALL in cell lines and patient-derived leukaemic blasts. Mechanistically, T-ALL cells display increased SAMHD1 promoter methylation without increased global DNA methylation. SAMHD1 depletion sensitises B-ALL cells to AraG, while ectopic SAMHD1 expression in SAMHD1-null T-ALL cells induces AraG resistance. SAMHD1 has a larger impact on nelarabine/AraG than on cytarabine in ALL cells. Opposite effects are observed in acute myeloid leukaemia cells, indicating entity-specific differences. In conclusion, SAMHD1 promoter methylation and, in turn, SAMHD1 expression levels determine ALL cell response to nelarabine.
Collapse
Affiliation(s)
- Tamara Rothenburger
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Straße 40, 60596, Frankfurt am Main, Germany
| | | | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Feodor-Lynenstraße 21, 81377, Munich, Germany
| | - Constanze Schneider
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Straße 40, 60596, Frankfurt am Main, Germany
- Department of Medicine II, Hematology/Oncology, Goethe-Universität, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Cancer Consortium/German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Straße 40, 60596, Frankfurt am Main, Germany
| | - Andrew Feber
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Oliver T Keppler
- Faculty of Medicine, Max von Pettenkofer Institute, Virology, LMU München, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Straße 40, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Dinan AM, Lukhovitskaya NI, Olendraite I, Firth AE. A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol 2020; 6:veaa007. [PMID: 32064120 PMCID: PMC7010960 DOI: 10.1093/ve/veaa007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Positive-sense single-stranded RNA viruses form the largest and most diverse group of eukaryote-infecting viruses. Their genomes comprise one or more segments of coding-sense RNA that function directly as messenger RNAs upon release into the cytoplasm of infected cells. Positive-sense RNA viruses are generally accepted to encode proteins solely on the positive strand. However, we previously identified a surprisingly long (∼1,000-codon) open reading frame (ORF) on the negative strand of some members of the family Narnaviridae which, together with RNA bacteriophages of the family Leviviridae, form a sister group to all other positive-sense RNA viruses. Here, we completed the genomes of three mosquito-associated narnaviruses, all of which have the long reverse-frame ORF. We systematically identified narnaviral sequences in public data sets from a wide range of sources, including arthropod, fungal, and plant transcriptomic data sets. Long reverse-frame ORFs are widespread in one clade of narnaviruses, where they frequently occupy >95 per cent of the genome. The reverse-frame ORFs correspond to a specific avoidance of CUA, UUA, and UCA codons (i.e. stop codon reverse complements) in the forward-frame RNA-dependent RNA polymerase ORF. However, absence of these codons cannot be explained by other factors such as inability to decode these codons or GC3 bias. Together with other analyses, we provide the strongest evidence yet of coding capacity on the negative strand of a positive-sense RNA virus. As these ORFs comprise some of the longest known overlapping genes, their study may be of broad relevance to understanding overlapping gene evolution and de novo origin of genes.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nina I Lukhovitskaya
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ingrida Olendraite
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
31
|
Zagore LL, Sweet TJ, Hannigan MM, Weyn-Vanhentenryck SM, Jobava R, Hatzoglou M, Zhang C, Licatalosi DD. DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. Cell Rep 2019; 25:1225-1240.e6. [PMID: 30380414 PMCID: PMC6878787 DOI: 10.1016/j.celrep.2018.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/26/2018] [Accepted: 10/01/2018] [Indexed: 01/25/2023] Open
Abstract
The RNA binding protein DAZL is essential for gametogenesis, but its direct in vivo functions, RNA targets, and the molecular basis for germ cell loss in Dazl-null mice are unknown. Here, we mapped transcriptome-wide DAZL-RNA interactions in vivo, revealing DAZL binding to thousands of mRNAs via polyA-proximal 3′ UTR interactions. In parallel, fluorescence-activated cell sorting and RNA-seq identified mRNAs sensitive to DAZL deletion in male germ cells. Despite binding a broad set of mRNAs, integrative analyses indicate that DAZL post-transcriptionally controls only a subset of its mRNA targets, namely those corresponding to a network of genes that are critical for germ cell proliferation and survival. In addition, we provide evidence that polyA sequences have key roles in specifying DAZL-RNA interactions across the transcriptome. Our results reveal a mechanism for DAZL-RNA binding and illustrate that DAZL functions as a master regulator of a post-transcriptional mRNA program essential for germ cell survival. Combining transgenic mice, FACS, and multiple RNA-profiling methods, Zagore et al. show that DAZL binds thousands of mRNAs via GUU sites upstream of polyA tails. Loss of DAZL results in decreased mRNA levels for a network of genes that are essential for germ cell proliferation and differentiation.
Collapse
Affiliation(s)
- Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Sabi R, Tuller T. Novel insights into gene expression regulation during meiosis revealed by translation elongation dynamics. NPJ Syst Biol Appl 2019; 5:12. [PMID: 30962948 PMCID: PMC6449359 DOI: 10.1038/s41540-019-0089-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The ability to dynamically control mRNA translation has a great impact on many intracellular processes. Whereas it is believed that translational control in eukaryotes occurs mainly at initiation, the condition-specific changes at the elongation level and their potential regulatory role remain unclear. Using computational approaches applied to ribosome profiling data, we show that elongation rate is dynamic and can change considerably during the yeast meiosis to facilitate the selective translation of stage-specific transcripts. We observed unique elongation changes during meiosis II, including a global inhibition of translation elongation at the onset of anaphase II accompanied by a sharp shift toward increased elongation for genes required at this meiotic stage. We also show that ribosomal proteins counteract the global decreased elongation by maintaining high initiation rates. Our findings provide new insights into gene expression regulation during meiosis and demonstrate that codon usage evolved, among others, to optimize timely translation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
34
|
McAteer SP, Sy BM, Wong JL, Tollervey D, Gally DL, Tree JJ. Ribosome maturation by the endoribonuclease YbeY stabilizes a type 3 secretion system transcript required for virulence of enterohemorrhagic Escherichia coli. J Biol Chem 2018; 293:9006-9016. [PMID: 29678883 PMCID: PMC5995498 DOI: 10.1074/jbc.ra117.000300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant human pathogen that colonizes humans and its reservoir host, cattle. Colonization requires the expression of a type 3 secretion (T3S) system that injects a mixture of effector proteins into host cells to promote bacterial attachment and disease progression. The T3S system is tightly regulated by a complex network of transcriptional and post-transcriptional regulators. Using transposon mutagenesis, here we identified the ybeZYX-Int operon as being required for normal T3S levels. Deletion analyses localized the regulation to the endoribonuclease YbeY, previously linked to 16S rRNA maturation and small RNA (sRNA) function. Loss of ybeY in EHEC had pleiotropic effects on EHEC cells, including reduced motility and growth and cold sensitivity. Using UV cross-linking and RNA-Seq (CRAC) analysis, we identified YbeY-binding sites throughout the transcriptome and discovered specific binding of YbeY to the "neck" and "beak" regions of 16S rRNA but identified no significant association of YbeY with sRNA, suggesting that YbeY modulates T3S by depleting mature ribosomes. In E. coli, translation is strongly linked to mRNA stabilization, and subinhibitory concentrations of the translation-initiation inhibitor kasugamycin provoked rapid degradation of a polycistronic mRNA encoding needle filament and needle tip proteins of the T3S system. We conclude that T3S is particularly sensitive to depletion of initiating ribosomes, explaining the inhibition of T3S in the ΔybeY strain. Accessory virulence transcripts may be preferentially degraded in cells with reduced translational capacity, potentially reflecting prioritization in protein production.
Collapse
Affiliation(s)
- Sean P McAteer
- From the Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, Scotland, United Kingdom
| | - Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - David L Gally
- From the Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, Scotland, United Kingdom,
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| |
Collapse
|