1
|
Rahman RA, Zaman B, Islam MS, Rashid MH. Molecular dynamics studies reveal the structural impacts of LRRK2 R1441C and LRRK2 D1994A mutations in Parkinson's disease. Biochem Biophys Rep 2024; 40:101866. [PMID: 39610832 PMCID: PMC11603123 DOI: 10.1016/j.bbrep.2024.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Parkinson's Disease (PD) is a continuingly deteriorating neurological ailment affecting over 8.5 million patients globally as of 2019, and the numbers are expected to keep rising. To aid in identifying therapeutic targets, molecular dynamics simulations are convenient and cost-effective methods for enriching our knowledge of the molecular pathophysiology of diseases. Many proteins and their corresponding mutations have been identified to contribute to this disease, of which Leucine-rich repeat kinase 2 (LRRK2) is accountable for a significant percentage. Several mutations involving the domains in LRRK2 have been studied, which are known to interfere with various enzymatic processes, ultimately leading to trademark features of PD like aggregation of protein inclusions called Lewy Bodies (LBs), mitochondrial dysfunctions, etc. The precise molecular mechanism of the mutations' pathophysiology is still unclear. This research article looks at the structural effects of mutations, namely the R1441C and D1994A mutations, on the surrounding residues in the protein, offering novel insights into pathophysiological changes at an atomistic level. Our results indicate a gain of electrostatic interactions with a stable αβ motif within the LRR-Roc linker, amongst other changes. This article also highlights the potential involvement and importance of the αβ motif in LRRK2 associated PD.
Collapse
Affiliation(s)
- Ramisha A. Rahman
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
| | - Bushra Zaman
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Arkansas, United States
| | - Md Shariful Islam
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
- Department of Chemistry and Biochemistry, New Mexico State University, New Mexico, United States
| | - Md Harunur Rashid
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Naidoo D, de Lencastre A. Regulation of TIR-1/SARM-1 by miR-71 Protects Dopaminergic Neurons in a C. elegans Model of LRRK2-Induced Parkinson's Disease. Int J Mol Sci 2024; 25:8795. [PMID: 39201481 PMCID: PMC11354575 DOI: 10.3390/ijms25168795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by symptoms such as bradykinesia, resting tremor, and rigidity, primarily driven by the degradation of dopaminergic (DA) neurons in the substantia nigra. A significant contributor to familial autosomal dominant PD cases is mutations in the LRRK2 gene, making it a primary therapeutic target. This study explores the role of microRNAs (miRNAs) in regulating the proteomic stress responses associated with neurodegeneration in PD using C. elegans models. Our focus is on miR-71, a miRNA known to affect stress resistance and act as a pro-longevity factor in C. elegans. We investigated miR-71's function in C. elegans models of PD, where mutant LRRK2 expression correlates with dopaminergic neuronal death. Our findings reveal that miR-71 overexpression rescues motility defects and slows dopaminergic neurodegeneration in these models, suggesting its critical role in mitigating the proteotoxic effects of mutant LRRK2. Conversely, miR-71 knockout exacerbates neuronal death caused by mutant LRRK2. Additionally, our data indicate that miR-71's neuroprotective effect involves downregulating the toll receptor domain protein tir-1, implicating miR-71 repression of tir-1 as vital in the response to LRRK2-induced proteotoxicity. These insights into miR-71's role in C. elegans models of PD not only enhance our understanding of molecular mechanisms in neurodegeneration but also pave the way for potential research into human neurodegenerative diseases, leveraging the conservation of miRNAs and their targets across species.
Collapse
Affiliation(s)
- Devin Naidoo
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA
| | | |
Collapse
|
4
|
Cai Z, Yang Z, Li H, Fang Y. Research progress of PROTACs for neurodegenerative diseases therapy. Bioorg Chem 2024; 147:107386. [PMID: 38643565 DOI: 10.1016/j.bioorg.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (NDD) are characterized by the gradual deterioration of neuronal function and integrity, resulting in an overall decline in brain function. The existing therapeutic options for NDD, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, fall short of meeting the clinical demand. A prominent pathological hallmark observed in numerous neurodegenerative disorders is the aggregation and misfolding of proteins both within and outside neurons. These abnormal proteins play a pivotal role in the pathogenesis of neurodegenerative diseases. Targeted degradation of irregular proteins offers a promising avenue for NDD treatment. Proteolysis-targeting chimeras (PROTACs) function via the ubiquitin-proteasome system and have emerged as a novel and efficacious approach in drug discovery. PROTACs can catalytically degrade "undruggable" proteins even at exceptionally low concentrations, allowing for precise quantitative control of aberrant protein levels. In this review, we present a compilation of reported PROTAC structures and their corresponding biological activities aimed at addressing NDD. Spanning from 2016 to present, this review provides an up-to-date overview of PROTAC-based therapeutic interventions. Currently, most protein degraders intended for NDD treatment remain in the preclinical research phase. Overcoming several challenges is imperative, including enhancing oral bioavailability and permeability across the blood-brain barrier, before these compounds can progress to clinical research or eventually reach the market. However, armed with an enhanced comprehension of the underlying pathological mechanisms and the emergence of innovative scaffolds for protein degraders, along with further structural optimization, we are confident that PROTAC possesses the potential to make substantial breakthroughs in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhifang Cai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huilan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| |
Collapse
|
5
|
Li D, Yu SF, Lin L, Guo JR, Huang SM, Wu XL, You HL, Cheng XJ, Zhang QY, Zeng YQ, Pan XD. Deficiency of leucine-rich repeat kinase 2 aggravates thioacetamide-induced acute liver failure and hepatic encephalopathy in mice. J Neuroinflammation 2024; 21:123. [PMID: 38725082 PMCID: PMC11084037 DOI: 10.1186/s12974-024-03125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF). METHODS TAA-induced HE mouse models of LRRK2 wild type (WT), LRRK2 G2019S mutation (Lrrk2G2019S) and LRRK2 knockout (Lrrk2-/-) were established. A battery of neurobehavioral experiments was conducted. The biochemical indexes and pro-inflammatory cytokines were detected. The prefrontal cortex (PFC), striatum (STR), hippocampus (HIP), and liver were examined by pathology and electron microscopy. The changes of autophagy-lysosomal pathway and activity of critical Rab GTPases were analyzed. RESULTS The Lrrk2-/--HE model reported a significantly lower survival rate than the other two models (24% vs. 48%, respectively, p < 0.05), with no difference found between the WT-HE and Lrrk2G2019S-HE groups. Compared with the other groups, after the TAA injection, the Lrrk2-/- group displayed a significant increase in ammonium and pro-inflammatory cytokines, aggravated hepatic inflammation/necrosis, decreased autophagy, and abnormal phosphorylation of lysosomal Rab10. All three models reported microglial activation, neuronal loss, disordered vesicle transmission, and damaged myelin structure. The Lrrk2-/--HE mice presented no severer neuronal injury than the other genotypes. CONCLUSIONS LRRK2 deficiency may exacerbate TAA-induced ALF and HE in mice, in which inflammatory response is evident in the brain and aggravated in the liver. These novel findings indicate a need of sufficient clinical awareness of the adverse effects of LRRK2 inhibitors on the liver.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China.
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian, 350001, China.
| | - Shu-Fang Yu
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Lin Lin
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jie-Ru Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Si-Mei Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Xi-Lin Wu
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Han-Lin You
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Juan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qiu-Yang Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yu-Qi Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Baidya AT, Deshwal S, Das B, Mathew AT, Devi B, Sandhir R, Kumar R. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 143:106972. [PMID: 37995640 DOI: 10.1016/j.bioorg.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Alen T Mathew
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India.
| |
Collapse
|
7
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
8
|
Filippone A, Cucinotta L, Bova V, Lanza M, Casili G, Paterniti I, Campolo M, Cuzzocrea S, Esposito E. Inhibition of LRRK2 Attenuates Depression-Related Symptoms in Mice with Moderate Traumatic Brain Injury. Cells 2023; 12:cells12071040. [PMID: 37048114 PMCID: PMC10093681 DOI: 10.3390/cells12071040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Moderate traumatic brain injury (mTBI) has been associated with emotional dysregulation such as loss of consciousness, post-traumatic amnesia and major depressive disorder. The gene Leucine-rich repeat kinase 2 (LRRK2) is involved in protein synthesis and degradation, apoptosis, inflammation and oxidative stress, processes that trigger mTBI. The aim of this study was to investigate the role of LRRK2 in reducing depression-related symptoms after mTBI and to determine whether inhibition of LRRK2 mediated by PF-06447475 could have antidepressant effects. Moderate traumatic brain injury was induced by controlled cortical impact (CCI) and mice were treated with PF-06447475 at doses of 1, 2.5 and 5 mg/kg once daily for 14 days. We performed histological, immunohistochemical and molecular analyses of brain tissue 24 days after mTBI. Furthermore, the tissue changes found in the hippocampus and amygdala confirmed the depression-like behavior. PF-treatment with 06447475 significantly reduced the histological damage and behavioral disturbances. Thus, this study has shown that mTBI induction promotes the development of depression-like behavioral changes. LRRK2 inhibition showed an antidepressant effect and restored the changes in the copper/glutamate/N-methyl-D-aspartic acid receptor (Cu/NMDAR) system.
Collapse
|
9
|
Circular RNAs in Parkinson's Disease: Reliable Biological Markers and Targets for Rehabilitation. Mol Neurobiol 2023; 60:3261-3276. [PMID: 36840847 DOI: 10.1007/s12035-023-03268-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
In clinical practice, the underlying pathogenesis of Parkinson's disease (PD) remains unknown. Circular RNAs (circRNAs) have good biological properties and can be used as biological marker. Rehabilitation as a third treatment alongside drug and surgery has been shown to be clinically effective, but biomarkers of rehabilitation efficiency at genetic level is still lacking. In this study, we identified differentially expressed circRNAs in peripheral blood exosomes between PD patients and health controls (HCs) and determined whether these circRNAs changed after rehabilitation, to explore the competing RNA networks and epigenetic mechanisms affected. We found that there were 558 upregulated and 609 downregulated circRNAs in PD patients compared to HCs, 3398 upregulated and 479 downregulated circRNAs in PD patients after rehabilitation compared to them before rehabilitation, along with 3721 upregulated and 635 downregulated circRNAs in PD patients after rehabilitation compared to HCs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed circRNAs may affect the stability of the cellular actin backbone and synaptic structure by influencing the aggregation of α-synuclein (a-syn). We selected two circRNAs overexpressed in PD patients for validation (hsa_circ_0001535 and hsa_circ_0000437); the results revealed that their expression levels were all reduced to varying degrees (p < 0.05) after rehabilitation. After network analysis, we believe that hsa_circ_0001535 may be related to the aggregation of a-syn, while hsa_circ_0000437 may act on hsa-let-7b-5p or hsa-let-7c-5p through sponge effect to cause inflammatory response. Our findings suggest that rehabilitation can mitigate the pathological process of PD by epigenetic means.
Collapse
|
10
|
Simons E, Fleming SM. Role of rodent models in advancing precision medicine for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:3-16. [PMID: 36803818 DOI: 10.1016/b978-0-323-85555-6.00002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With a current lack of disease-modifying treatments, an initiative toward implementing a precision medicine approach for treating Parkinson's disease (PD) has emerged. However, challenges remain in how to define and apply precision medicine in PD. To accomplish the goal of optimally targeted and timed treatment for each patient, preclinical research in a diverse population of rodent models will continue to be an essential part of the translational path to identify novel biomarkers for patient diagnosis and subgrouping, understand PD disease mechanisms, identify new therapeutic targets, and screen therapeutics prior to clinical testing. This review highlights the most common rodent models of PD and discusses how these models can contribute to defining and implementing precision medicine for the treatment of PD.
Collapse
Affiliation(s)
- Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
11
|
Volta M. Lysosomal Pathogenesis of Parkinson's Disease: Insights From LRRK2 and GBA1 Rodent Models. Neurotherapeutics 2023; 20:127-139. [PMID: 36085537 PMCID: PMC10119359 DOI: 10.1007/s13311-022-01290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
The discovery of mutations in LRRK2 and GBA1 that are linked to Parkinson's disease provided further evidence that autophagy and lysosome pathways are likely implicated in the pathogenic process. Their protein products are important regulators of lysosome function. LRRK2 has kinase-dependent effects on lysosome activity, autophagic efficacy and lysosomal Ca2+ signaling. Glucocerebrosidase (encoded by GBA1) is a hydrolytic enzyme contained in the lysosomes and contributes to the degradation of alpha-synuclein. PD-related mutations in LRRK2 and GBA1 slow the degradation of alpha-synuclein, thus directly implicating the dysfunction of the process in the neuropathology of Parkinson's disease. The development of genetic rodent models of LRRK2 and GBA1 provided hopes of obtaining reliable preclinical models in which to study pathogenic processes and perform drug validation studies. Here, I will review the extensive characterization of these models, their impact on understanding lysosome alterations in the course of Parkinson's disease and what novel insights have been obtained. In addition, I will discuss how these models fare with respect to the features of a "gold standard" animal models and what could be attempted in future studies to exploit LRRK2 and GBA1 rodent models in the fight against Parkinson's disease.
Collapse
Affiliation(s)
- Mattia Volta
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, via Volta 21, Bolzano, 39100, Italy.
| |
Collapse
|
12
|
Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7965433. [PMID: 36567855 PMCID: PMC9771667 DOI: 10.1155/2022/7965433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests as motor and nonmotor symptoms due to the selective loss of midbrain DArgic (DA) neurons. More and more studies have shown that pathological reactions initiated by autoimmune cells play an essential role in the progression of PD. Autoimmune cells exist in the brain parenchyma, cerebrospinal fluid, and meninges; they are considered inducers of neuroinflammation and regulate the immune in the human brain in PD. For example, T cells can recognize α-synuclein presented by antigen-presenting cells to promote neuroinflammation. In addition, B cells will accelerate the apoptosis of DA neurons in the case of PD-related gene mutations. Activation of microglia and damage of DA neurons even form the self-degeneration cycle to deteriorate PD. Numerous autoimmune cells have been considered regulators of apoptosis, α-synuclein misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation of DA neurons in PD. The evidence is mounting that autoimmune cells promote DA neuron apoptosis. In this review, we discuss the current knowledge regarding the regulation and function of B cell, T cell, and microglia as well as NK cell in PD pathogenesis, focusing on DA neuron apoptosis to understand the disease better and propose potential target identification for the treatment in the early stages of PD. However, there are still some limitations in our work, for example, the specific mechanism of PD progression caused by autoimmune cells in mitochondrial dysfunction, ferroptosis, and autophagy has not been clarified in detail, which needs to be summarized in further work.
Collapse
|
13
|
D'Alessandro G, Marrocco F, Limatola C. Microglial cells: Sensors for neuronal activity and microbiota-derived molecules. Front Immunol 2022; 13:1011129. [PMID: 36426369 PMCID: PMC9679421 DOI: 10.3389/fimmu.2022.1011129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Microglial cells play pleiotropic homeostatic activities in the brain, during development and in adulthood. Microglia regulate synaptic activity and maturation, and continuously patrol brain parenchyma monitoring for and reacting to eventual alterations or damages. In the last two decades microglia were given a central role as an indicator to monitor the inflammatory state of brain parenchyma. However, the recent introduction of single cell scRNA analyses in several studies on the functional role of microglia, revealed a not-negligible spatio-temporal heterogeneity of microglial cell populations in the brain, both during healthy and in pathological conditions. Furthermore, the recent advances in the knowledge of the mechanisms involved in the modulation of cerebral activity induced by gut microbe-derived molecules open new perspectives for deciphering the role of microglial cells as possible mediators of these interactions. The aim of this review is to summarize the most recent studies correlating gut-derived molecules and vagal stimulation, as well as dysbiotic events, to alteration of brain functioning, and the contribution of microglial cells.
Collapse
Affiliation(s)
- Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Laboratory affiliated to Pasteur Italy, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Marrocco
- Department of Physiology and Pharmacology, Laboratory affiliated to Pasteur Italy, University of Rome La Sapienza, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory affiliated to Pasteur Italy, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
14
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci 2022; 14:825086. [PMID: 35401152 PMCID: PMC8990307 DOI: 10.3389/fnagi.2022.825086] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common diseases in the central nervous system (CNS) with high mortality and morbidity. Patients with TBI usually suffer many sequelae in the life time post injury, including neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the pathological mechanisms connecting these two processes have not yet been fully elucidated. It is important to further investigate the pathophysiological mechanisms underlying TBI and TBI-induced neurodegeneration, which will promote the development of precise treatment target for these notorious neurodegenerative consequences after TBI. A growing body of evidence shows that neuroinflammation is a pivotal pathological process underlying chronic neurodegeneration following TBI. Microglia, as the immune cells in the CNS, play crucial roles in neuroinflammation and many other CNS diseases. Of interest, microglial activation and functional alteration has been proposed as key mediators in the evolution of chronic neurodegenerative pathology following TBI. Here, we review the updated studies involving phenotypical and functional alterations of microglia in neurodegeneration after injury, survey key molecules regulating the activities and functional responses of microglia in TBI pathology, and explore their potential implications to chronic neurodegeneration after injury. The work will give us a comprehensive understanding of mechanisms driving TBI-related neurodegeneration and offer novel ideas of developing corresponding prevention and treatment strategies for this disease.
Collapse
Affiliation(s)
- Fangjie Shao
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qun Wu,
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
- Jianmin Zhang,
| |
Collapse
|
16
|
Novak G, Finkbeiner S, Skibinski G, Skupin A. Generation of two human induced pluripotent stem cell lines from fibroblasts of unrelated Parkinson's patients carrying the G2019S mutation in the LRRK2 gene (LCSBi005, LCSBi006). Stem Cell Res 2021; 57:102569. [PMID: 34736041 DOI: 10.1016/j.scr.2021.102569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022] Open
Abstract
Mutations in the LRRK2 gene are known to mediate predisposition to Parkinson disease. Fibroblasts heterozygous for the G2019S LRRK2 mutation were obtained from a 53-year-old male patient with disease onset at 34 years (LCSBi005, ND29542), and from a 63-year-old male patient with disease onset at 56 years (LCSBi006, ND34267). Induced pluripotent stem cell (iPSC) clones were generated for each cell line using Sendai virus. The absence of chromosomal defects was confirmed using array comparative genomic hybridization. The cell lines express pluripotency markers and have the ability to differentiate into all three germ layers.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signaling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Gladstone Center for Systems and Therapeutics, Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco San Francisco, CA 94158, USA.
| | - Steven Finkbeiner
- Gladstone Center for Systems and Therapeutics, Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco San Francisco, CA 94158, USA
| | - Gaia Skibinski
- Gladstone Center for Systems and Therapeutics, Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco San Francisco, CA 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signaling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
17
|
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD) and are implicated in a significant proportion of apparently sporadic PD cases. Clinically, LRRK2-driven PD is indistinguishable from sporadic PD, making it an attractive genetic model for the much more common sporadic PD. In this review, we highlight recent advances in understanding LRRK2's subcellular functions using LRRK2-driven PD models, while also considering some of the limitations of these model systems. Recent developments of particular importance include new evidence of key LRRK2 functions in the endolysosomal system and LRRK2's regulation of and by Rab GTPases. Additionally, LRRK2's interaction with the cytoskeleton allowed elucidation of the LRRK2 structure and appears relevant to LRRK2 protein degradation and LRRK2 inhibitor therapies. We further discuss how LRRK2's interactions with other PD-driving genes, such as the VPS35, GBA1, and SNCA genes, may highlight cellular pathways more broadly disrupted in PD.
Collapse
Affiliation(s)
- Ahsan Usmani
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| | - Farbod Shavarebi
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| | - Annie Hiniker
- Department of Pathology, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
18
|
Senchuk MM, Van Raamsdonk JM, Moore DJ. Multiple genetic pathways regulating lifespan extension are neuroprotective in a G2019S LRRK2 nematode model of Parkinson's disease. Neurobiol Dis 2021; 151:105267. [PMID: 33450392 PMCID: PMC7925424 DOI: 10.1016/j.nbd.2021.105267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of late-onset, familial Parkinson's disease (PD), and LRRK2 variants are associated with increased risk for sporadic PD. While advanced age represents the strongest risk factor for disease development, it remains unclear how different age-related pathways interact to regulate LRRK2-driven late-onset PD. In this study, we employ a C. elegans model expressing PD-linked G2019S LRRK2 to examine the interplay between age-related pathways and LRRK2-induced dopaminergic neurodegeneration. We find that multiple genetic pathways that regulate lifespan extension can provide robust neuroprotection against mutant LRRK2. However, the level of neuroprotection does not strictly correlate with the magnitude of lifespan extension, suggesting that lifespan can be experimentally dissociated from neuroprotection. Using tissue-specific RNAi, we demonstrate that lifespan-regulating pathways, including insulin/insulin-like growth factor-1 (IGF-1) signaling, target of rapamycin (TOR), and mitochondrial respiration, can be directly manipulated in neurons to mediate neuroprotection. We extend this finding for AGE-1/PI3K, where pan-neuronal versus dopaminergic neuronal restoration of AGE-1 reveals both cell-autonomous and non-cell-autonomous neuroprotective mechanisms downstream of insulin signaling. Our data demonstrate the importance of distinct lifespan-regulating pathways in the pathogenesis of LRRK2-linked PD, and suggest that extended longevity is broadly neuroprotective via the actions of these pathways at least in part within neurons. This study further highlights the complex interplay that occurs between cells and tissues during organismal aging and disease manifestation.
Collapse
Affiliation(s)
- Megan M Senchuk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H4A 3J1, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Cambridge, MA 02115, USA.
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
19
|
Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson's disease: common pathophysiological links. Gut 2021; 70:408-417. [PMID: 33067333 DOI: 10.1136/gutjnl-2020-322429] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease and Parkinson's disease are chronic progressive disorders that mainly affect different organs: the gut and brain, respectively. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the 'gut-brain axis'. Moreover, recent population-based studies have shown that inflammatory bowel disease might increase the risk of Parkinson's disease. Although the precise mechanisms underlying gut-brain interactions remain elusive, some of the latest findings have begun to explain the link. Several genetic loci are shared between both disorders with a similar direction of effect on the risk of both diseases. The most interesting example is LRRK2 (leucine-rich repeat kinase 2), initially identified as a causal gene in Parkinson's disease, and recently also implicated in Crohn's disease. In this review, we highlight recent findings on the link between these seemingly unrelated diseases with shared genetic susceptibility. We discuss supporting and conflicting data obtained from epidemiological and genetic studies along with remaining questions and concerns. In addition, we discuss possible biological links including the gut-brain axis, microbiota, autoimmunity, mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ho-Su Lee
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
20
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Abstract
Probiotics are a group of active microorganisms, which benefit the host by colonizing and changing the composition of host flora. It is of great significance to promote the development of human gastrointestinal nutrition and health by regulating the host mucosal and systemic immune function or regulating the balance of intestinal flora. The purpose of this study is to analyze the production activity of the enzyme, evaluate its biological characteristics and safety as a preventive drug, and provide reference for the research of enzyme production and compound enzyme preparation by probiotics. In this study, four groups of probiotics were set up: Clostridium butyricum experimental group, Lactobacillus plantarum experimental group, drinking water control group, and Bacillus licheniformis experimental group. In addition, a variety of complex enzyme experiments were set up to study the influence on the digestive tract and single factor experiment. The results showed that probiotics and compound enzyme preparations could significantly promote the intestinal digestibility. Under the effect of probiotics, the weight of the chicken was almost 1 Jin heavier than that of the control group, and the average digestibility was increased by 4.3%. The effect of the enzyme on digestibility is stronger than that of probiotics, but the final effect tends to be stable.
Collapse
|
23
|
Dues DJ, Moore DJ. LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Front Neurosci 2020; 14:719. [PMID: 32733200 PMCID: PMC7360724 DOI: 10.3389/fnins.2020.00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) instigate an autosomal dominant form of Parkinson’s disease (PD). Despite the neuropathological heterogeneity observed in LRRK2-PD, accumulating evidence suggests that alpha-synuclein and tau pathology are observed in a vast majority of cases. Intriguingly, the presence of protein aggregates spans both LRRK2-PD and idiopathic disease, supportive of a common pathologic mechanism. Thus, it is important to consider how LRRK2 mutations give rise to such pathology, and whether targeting LRRK2 might modify the accumulation, transmission, or toxicity of protein aggregates. Likewise, it is not clear how LRRK2 mutations drive PD pathogenesis, and whether protein aggregates are implicated in LRRK2-dependent neurodegeneration. While animal models have been instrumental in furthering our understanding of a potential interaction between LRRK2 and protein aggregation, the biology is far from clear. We aim to provide a thoughtful overview of the evidence linking LRRK2 to protein aggregation in animal models.
Collapse
Affiliation(s)
- Dylan J Dues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
24
|
Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proc Natl Acad Sci U S A 2020; 117:17296-17307. [PMID: 32631998 PMCID: PMC7382283 DOI: 10.1073/pnas.1922184117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain. Rodent models containing familial LRRK2 mutations often lack robust PD-like neurodegenerative phenotypes. Here, we develop a robust preclinical model of PD in adult rats induced by the brain delivery of recombinant adenoviral vectors with neuronal-specific expression of human LRRK2 harboring the most common G2019S mutation. In this model, G2019S LRRK2 induces the robust degeneration of substantia nigra dopaminergic neurons, a pathological hallmark of PD. Introduction of a stable kinase-inactive mutation or administration of the selective kinase inhibitor, PF-360, attenuates neurodegeneration induced by G2019S LRRK2. Neuroprotection provided by pharmacological kinase inhibition is mediated by an unusual mechanism involving the robust destabilization of human LRRK2 protein in the brain relative to endogenous LRRK2. Our study further demonstrates that G2019S LRRK2-induced dopaminergic neurodegeneration critically requires normal GTPase activity, as hypothesis-testing mutations that increase GTP hydrolysis or impair GTP-binding activity provide neuroprotection although via distinct mechanisms. Taken together, our data demonstrate that G2019S LRRK2 induces neurodegeneration in vivo via a mechanism that is dependent on kinase and GTPase activity. Our study provides a robust rodent preclinical model of LRRK2-linked PD and nominates kinase inhibition and modulation of GTPase activity as promising disease-modifying therapeutic targets.
Collapse
|
25
|
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Front Neurosci 2020; 14:556. [PMID: 32581693 PMCID: PMC7287096 DOI: 10.3389/fnins.2020.00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are associated with both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large protein comprised of a GTPase and a kinase domain. All pathogenic variants converge on enhancing LRRK2 kinase substrate phosphorylation, and distinct LRRK2 kinase inhibitors are currently in various stages of clinical trials. Although the precise pathophysiological functions of LRRK2 remain largely unknown, PD-associated mutants have been shown to alter various intracellular vesicular trafficking pathways, especially those related to endolysosomal protein degradation events. In addition, biochemical studies have identified a subset of Rab proteins, small GTPases required for all vesicular trafficking steps, as substrate proteins for the LRRK2 kinase activity in vitro and in vivo. Therefore, it is crucial to evaluate the impact of such phosphorylation on neurodegenerative mechanisms underlying LRRK2-related PD, especially with respect to deregulated Rab-mediated endolysosomal membrane trafficking and protein degradation events. Surprisingly, a significant proportion of PD patients due to LRRK2 mutations display neuronal cell loss in the substantia nigra pars compacta in the absence of any apparent α-synuclein-containing Lewy body neuropathology. These findings suggest that endolysosomal alterations mediated by pathogenic LRRK2 per se are not sufficient to cause α-synuclein aggregation. Here, we will review current knowledge about the link between pathogenic LRRK2, Rab protein phosphorylation and endolysosomal trafficking alterations, and we will propose a testable working model whereby LRRK2-related PD may present with variable LB pathology.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - María Romo-Lozano
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yahaira Naaldijk
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sabine Hilfiker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
26
|
Clinical characterization of patients with leucine-rich repeat kinase 2 genetic variants in Japan. J Hum Genet 2020; 65:771-781. [PMID: 32398759 DOI: 10.1038/s10038-020-0772-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Variants of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of familial Parkinson's disease (PD). We aimed to investigate the genetic and clinical features of patients with PD and LRRK2 variants in Japan by screening for LRRK2 variants in three exons (31, 41, and 48), which include the following pathogenic mutations: p.R1441C, p.R1441G, p.R1441H, p.G2019S, and p.I2020T. Herein, we obtained data containing LRRK2 variants derived from 1402 patients with PD (653 with sporadic PD and 749 with familial PD). As a result, we successfully detected pathogenic variants (four with p.R1441G, five with p.R1441H, seven with p.G2019S, and seven with p.I2020T) and other rare variants (two with p.V1447M, one with p.V1450I, one with p.T1491delT, and one with p.H2391Q). Two risk variants, p.P1446L and p.G2385R, were found in 10 and 146 patients, respectively. Most of the patients presented the symptoms resembling a common type of PD, such as middle-aged onset, tremor, akinesia, rigidity, and gait disturbance. Dysautonomia, cognitive decline, and psychosis were rarely observed. Each known pathogenic variant had a different founder in our cohort proven by haplotype analysis. The generation study revealed that the LRRK2 variants p.G2019S and p.I2020T were derived 3500 and 1300 years ago, respectively. Our findings present overviews of the prevalence and distribution of LRRK2 variants in Japanese cohorts.
Collapse
|
27
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
28
|
Chen X, Xie C, Tian W, Sun L, Wang Z, Hawes S, Chang L, Kung J, Ding J, Chen S, Le W, Cai H. Parkinson's disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. Mol Neurodegener 2020; 15:12. [PMID: 32075681 PMCID: PMC7031993 DOI: 10.1186/s13024-020-00360-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple missense mutations in Leucine-rich repeat kinase 2 (LRRK2) are associated with familial forms of late onset Parkinson's disease (PD), the most common age-related movement disorder. The dysfunction of dopamine transmission contributes to PD-related motor symptoms. Interestingly, LRRK2 is more abundant in the dopaminoceptive striatal spiny projection neurons (SPNs) compared to the dopamine-producing nigrostriatal dopaminergic neurons. Aging is the most important risk factor for PD and other neurodegenerative diseases. However, whether LRRK2 modulates the aging of SPNs remains to be determined. METHODS We conducted RNA-sequencing (RNA-seq) analyses of striatal tissues isolated from Lrrk2 knockout (Lrrk2-/-) and control (Lrrk2+/+) mice at 2 and 12 months of age. We examined SPN nuclear DNA damage and epigenetic modifications; SPN nuclear, cell body and dendritic morphology; and the locomotion and motor skill learning of Lrrk2+/+ and Lrrk2-/- mice from 2 to 24 months of age. Considering the strength of cell cultures for future mechanistic studies, we also performed preliminary studies in primary cultured SPNs derived from the Lrrk2+/+ and Lrrk2-/- mice as well as the PD-related Lrrk2 G2019S and R1441C mutant mice. RESULTS Lrrk2-deficiency accelerated nuclear hypertrophy and induced dendritic atrophy, soma hypertrophy and nuclear invagination in SPNs during aging. Additionally, increased nuclear DNA damage and abnormal histone methylations were also observed in aged Lrrk2-/- striatal neurons, together with alterations of molecular pathways involved in regulating neuronal excitability, genome stability and protein homeostasis. Furthermore, both the PD-related Lrrk2 G2019S mutant and LRRK2 kinase inhibitors caused nuclear hypertrophy, while the Lrrk2 R1441C mutant and γ-Aminobutyric acid type A receptor (GABA-AR) inhibitors promoted nuclear invagination in the cultured SPNs. On the other hand, inhibition of neuron excitability prevented the formation of nuclear invagination in the cultured Lrrk2-/- and R1441C SPNs. CONCLUSIONS Our findings support an important physiological function of LRRK2 in maintaining nuclear structure integrity and genomic stability during the normal aging process, suggesting that PD-related LRRK2 mutations may cause the deterioration of neuronal structures through accelerating the aging process.
Collapse
Affiliation(s)
- Xi Chen
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| | - Wotu Tian
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 20025 China
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| | - Zheng Wang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| | - Sarah Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 20025 China
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892–3707 USA
| |
Collapse
|
29
|
Bos PH, Lowry ER, Costa J, Thams S, Garcia-Diaz A, Zask A, Wichterle H, Stockwell BR. Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents. Cell Chem Biol 2019; 26:1703-1715.e37. [PMID: 31676236 DOI: 10.1016/j.chembiol.2019.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/14/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Disease-causing mutations in many neurodegenerative disorders lead to proteinopathies that trigger endoplasmic reticulum (ER) stress. However, few therapeutic options exist for patients with these diseases. Using an in vitro screening platform to identify compounds that protect human motor neurons from ER stress-mediated degeneration, we discovered that compounds targeting the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family are neuroprotective. The kinase inhibitor URMC-099 (compound 1) stood out as a promising lead compound for further optimization. We coupled structure-based compound design with functional activity testing in neurons subjected to ER stress to develop a series of analogs with improved MAP4K inhibition and concomitant increases in potency and efficacy. Further structural modifications were performed to enhance the pharmacokinetic profiles of the compound 1 derivatives. Prostetin/12k emerged as an exceptionally potent, metabolically stable, and blood-brain barrier-penetrant compound that is well suited for future testing in animal models of neurodegeneration.
Collapse
Affiliation(s)
- Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathon Costa
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alejandro Garcia-Diaz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
30
|
González-Casacuberta I, Juárez-Flores DL, Morén C, Garrabou G. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration. Front Neurosci 2019; 13:894. [PMID: 31551675 PMCID: PMC6748355 DOI: 10.3389/fnins.2019.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide affecting 2-3% of the population over 65 years. This prevalence is expected to rise as life expectancy increases and diagnostic and therapeutic protocols improve. PD encompasses a multitude of clinical, genetic, and molecular forms of the disease. Even though the mechanistic of the events leading to neurodegeneration remain largely unknown, some molecular hallmarks have been repeatedly reported in most patients and models of the disease. Neuroinflammation, protein misfolding, disrupted endoplasmic reticulum-mitochondria crosstalk, mitochondrial dysfunction and consequent bioenergetic failure, oxidative stress and autophagy deregulation, are amongst the most commonly described. Supporting these findings, numerous familial forms of PD are caused by mutations in genes that are crucial for mitochondrial and autophagy proper functioning. For instance, late and early onset PD associated to mutations in Leucine-rich repeat kinase 2 (LRRK2) and Parkin (PRKN) genes, responsible for the most frequent dominant and recessive inherited forms of PD, respectively, have emerged as promising examples of disease due to their established role in commanding bioenergetic and autophagic balance. Concomitantly, the development of animal and cell models to investigate the etiology of the disease, potential biomarkers and therapeutic approaches are being explored. One of the emerging approaches in this context is the use of patient's derived cells models, such as skin-derived fibroblasts that preserve the genetic background and some environmental cues of the patients. An increasing number of reports in these PD cell models postulate that deficient mitochondrial function and impaired autophagic flux may be determinant in PD accelerated nigral cell death in terms of limitation of cell energy supply and accumulation of obsolete and/or unfolded proteins or dysfunctional organelles. The reliance of neurons on mitochondrial oxidative metabolism and their post-mitotic nature, may explain their increased vulnerability to undergo degeneration upon mitochondrial challenges or autophagic insults. In this scenario, proper mitochondrial function and turnover through mitophagy, are gaining in strength as protective targets to prevent neurodegeneration, together with the use of patient-derived fibroblasts to further explore these events. These findings point out the presence of molecular damage beyond the central nervous system (CNS) and proffer patient-derived cell platforms to the clinical and scientific community, which enable the study of disease etiopathogenesis and therapeutic approaches focused on modifying the natural history of PD through, among others, the enhancement of mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Diana Luz Juárez-Flores
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Constanza Morén
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| |
Collapse
|
31
|
Katzeff JS, Phan K, Purushothuman S, Halliday GM, Kim WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019; 7:117. [PMID: 31340844 PMCID: PMC6651992 DOI: 10.1186/s40478-019-0769-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple system atrophy (MSA) is a devastating neurodegenerative disease characterized by the clinical triad of parkinsonism, cerebellar ataxia and autonomic failure, impacting on striatonigral, olivopontocerebellar and autonomic systems. At early stage of the disease, the clinical symptoms of MSA can overlap with those of Parkinson's disease (PD). The key pathological hallmark of MSA is the presence of glial cytoplasmic inclusions (GCI) in oligodendrocytes. GCI comprise insoluble proteinaceous filaments composed chiefly of α-synuclein aggregates, and therefore MSA is regarded as an α-synucleinopathy along with PD and dementia with Lewy bodies. The etiology of MSA is unknown, and the pathogenesis of MSA is still largely speculative. Much data suggests that MSA is a sporadic disease, although some emerging evidence suggests rare genetic variants increase susceptibility. Currently, there is no general consensus on the susceptibility genes as there have been differences due to geographical distribution or ethnicity. Furthermore, many of the reported studies have been conducted on patients that were only clinically diagnosed without pathological verification. The purpose of this review is to bring together available evidence to cross-examine the susceptibility genes and genetic pathomechanisms implicated in MSA. We explore the possible involvement of the SNCA, COQ2, MAPT, GBA1, LRRK2 and C9orf72 genes in MSA pathogenesis, highlight the under-explored areas of MSA genetics, and discuss future directions of research in MSA.
Collapse
Affiliation(s)
- Jared S Katzeff
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Chen X, Kordich JK, Williams ET, Levine N, Cole-Strauss A, Marshall L, Labrie V, Ma J, Lipton JW, Moore DJ. Parkinson's disease-linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proc Natl Acad Sci U S A 2019; 116:5765-5774. [PMID: 30842285 PMCID: PMC6431187 DOI: 10.1073/pnas.1814909116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene represent a cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, D620N, is considered pathogenic based upon its segregation with disease in multiple families with PD. At present, the mechanism(s) by which familial VPS35 mutations precipitate neurodegeneration in PD are poorly understood. Here, we employ a germline D620N VPS35 knockin (KI) mouse model of PD to formally establish the age-related pathogenic effects of the D620N mutation at physiological expression levels. Our data demonstrate that a heterozygous or homozygous D620N mutation is sufficient to reproduce key neuropathological hallmarks of PD as indicated by the progressive degeneration of nigrostriatal pathway dopaminergic neurons and widespread axonal pathology. Unexpectedly, endogenous D620N VPS35 expression induces robust tau-positive somatodendritic pathology throughout the brain as indicated by abnormal hyperphosphorylated and conformation-specific tau, which may represent an important and early feature of mutant VPS35-induced neurodegeneration in PD. In contrast, we find no evidence for α-synuclein-positive neuropathology in aged VPS35 KI mice, a hallmark of Lewy body pathology in PD. D620N VPS35 expression also fails to modify the lethal neurodegenerative phenotype of human A53T-α-synuclein transgenic mice. Finally, by crossing VPS35 KI and null mice, our data demonstrate that a single D620N VPS35 allele is sufficient for survival and early maintenance of dopaminergic neurons, indicating that the D620N VPS35 protein is fully functional. Our data raise the tantalizing possibility of a pathogenic interplay between mutant VPS35 and tau for inducing neurodegeneration in PD.
Collapse
Affiliation(s)
- Xi Chen
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Jennifer K Kordich
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Erin T Williams
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Nathan Levine
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Allyson Cole-Strauss
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | - Lee Marshall
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Jack W Lipton
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503;
| |
Collapse
|
33
|
Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, Lee E. LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS One 2019; 14:e0210248. [PMID: 30645642 PMCID: PMC6333340 DOI: 10.1371/journal.pone.0210248] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson's disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced inflammation and pathogenesis. In this study, we investigated the role of LRRK2 in Mn-induced toxicity using human microglial cells (HMC3), LRRK2-wild-type (WT) and LRRK2-knockout (KO) RAW264.7 macrophage cells. Results showed that Mn activated LRRK2 kinase by phosphorylation of its serine residue at the 1292 position (S1292) as a marker of its kinase activity in macrophage and microglia, while inhibition with GSK2578215A (GSK) and MLi-2 abolished Mn-induced LRRK2 activation. LRRK2 deletion and its pharmacological inhibition attenuated Mn-induced apoptosis in macrophages and microglia, along with concomitant decreases in the pro-apoptotic Bcl-2-associated X (Bax) protein. LRRK2 deletion also attenuated Mn-induced production of reactive oxygen species (ROS) and the pro-inflammatory cytokine TNF-α. Mn-induced phosphorylation of mitogen-activated protein kinase (MAPK) p38 and ERK signaling proteins was significantly attenuated in LRRK2 KO cells and GSK-treated cells. Moreover, inhibition of MAPK p38 and ERK as well as LRRK2 attenuated Mn-induced oxidative stress and cytotoxicity. These findings suggest that LRRK2 kinase activity plays a critical role in Mn-induced toxicity via downstream activation of MAPK signaling in macrophage and microglia. Collectively, these results suggest that LRRK2 could be a potential molecular target for developing therapeutics to treat Mn-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| |
Collapse
|
34
|
Bolognin S, Fossépré M, Qing X, Jarazo J, Ščančar J, Moreno EL, Nickels SL, Wasner K, Ouzren N, Walter J, Grünewald A, Glaab E, Salamanca L, Fleming RMT, Antony PMA, Schwamborn JC. 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800927. [PMID: 30643711 PMCID: PMC6325628 DOI: 10.1002/advs.201800927] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/31/2018] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD)-specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient-specific neurons, derived from induced pluripotent stem cells carrying the LRRK2-G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease-relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High-content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2-G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2-G2019S-dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2-G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development.
Collapse
Affiliation(s)
- Silvia Bolognin
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Marie Fossépré
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Xiaobing Qing
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Janez Ščančar
- Department of Environmental SciencesJožef Stefan InstituteJamova 391000LjubljanaSlovenia
| | - Edinson Lucumi Moreno
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Sarah L. Nickels
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Kobi Wasner
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Nassima Ouzren
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Jonas Walter
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Institute of NeurogeneticsUniversity of Lübeck23562LübeckGermany
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Ronan M. T. Fleming
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Paul M. A. Antony
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| |
Collapse
|
35
|
Korecka JA, Talbot S, Osborn TM, de Leeuw SM, Levy SA, Ferrari EJ, Moskites A, Atkinson E, Jodelka FM, Hinrich AJ, Hastings ML, Woolf CJ, Hallett PJ, Isacson O. Neurite Collapse and Altered ER Ca 2+ Control in Human Parkinson Disease Patient iPSC-Derived Neurons with LRRK2 G2019S Mutation. Stem Cell Reports 2018; 12:29-41. [PMID: 30595548 PMCID: PMC6335600 DOI: 10.1016/j.stemcr.2018.11.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
The Parkinson disease (PD) genetic LRRK2 gain-of-function mutations may relate to the ER pathological changes seen in PD patients at postmortem. Human induced pluripotent stem cell (iPSC)-derived neurons with the PD pathogenic LRRK2 G2019S mutation exhibited neurite collapse when challenged with the ER Ca2+ influx sarco/ER Ca2+-ATPase inhibitor thapsigargin (THP). Baseline ER Ca2+ levels measured with the ER Ca2+ indicator CEPIA-ER were lower in LRRK2 G2019S human neurons, including in differentiated midbrain dopamine neurons in vitro. After THP challenge, PD patient-derived neurons displayed increased Ca2+ influx and decreased intracellular Ca2+ buffering upon membrane depolarization. These effects were reversed following LRRK2 mutation correction by antisense oligonucleotides and gene editing. Gene expression analysis in LRRK2 G2019S neurons identified modified levels of key store-operated Ca2+ entry regulators, with no alterations in ER Ca2+ efflux. These results demonstrate PD gene mutation LRRK2 G2019S ER calcium-dependent pathogenic effects in human neurons. Parkinson-linked LRRK2 G2019S induces neurite collapse upon ER Ca2+ influx block LRRK2 G2019S mutation alters Ca2+ uptake and buffering upon ER Ca2+ influx block The LRRK2 G2019S mutation decreases basal ER Ca2+ levels in human iPSC neurons The LRRK2 G2019S mutation modifies gene expression of key SOCE regulators
Collapse
Affiliation(s)
- Joanna A Korecka
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA.
| | - Sebastien Talbot
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Teresia M Osborn
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Sherida M de Leeuw
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Simon A Levy
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Eliza J Ferrari
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Alyssa Moskites
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Elise Atkinson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Francine M Jodelka
- Center for Genetics Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Anthony J Hinrich
- Center for Genetics Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michelle L Hastings
- Center for Genetics Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
36
|
The role of LRRK2 in cell signalling. Biochem Soc Trans 2018; 47:197-207. [PMID: 30578345 DOI: 10.1042/bst20180464] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a common late-onset neurodegenerative disorder known primarily for its motor features. Mutations and risk variants in LRRK2 cause familial and idiopathic forms of PD. Mutations segregating with disease are found in the LRRK2 GTPase and kinase domains, affecting catalytic activity and protein-protein interactions. This likely results in an overall gain of LRRK2 cell signalling function contributing to PD pathogenesis. This concept supports the development of LRRK2 kinase inhibitors as disease-modifying treatments, at least for a subset of patients. However, the function of LRRK2 as a cell signalling protein with two catalytic and several protein-protein interaction domains is highly complex. For example, LRRK2 plays important roles in several inflammatory diseases, raising the possibility that it may mediate immune responses in PD. Consistently, LRRK2-mediated cell signalling was not only shown to be important for neuronal function, including neuronal development and homeostasis, but also for peripheral and central immune responses. The catalytic activity of LRRK2 is regulated by autophosphorylation, protein monomer/dimer cycling, and upstream kinases and GTPases, affecting its subcellular localisation and downstream signalling. Part of LRRK2-mediated signalling is likely facilitated by Rab protein phosphorylation, affecting primarily membrane trafficking, including vesicle release at the trans-Golgi network. However, LRRK2 also displays intrinsic GTPase activity and functions as a signalling scaffold. As an example, LRRK2 was suggested to be part of the NRON complex and β-catenin destruction complex, inhibiting NFAT and canonical Wnt signalling, respectively. In summary, continuous research into LRRK2 signalling function contributes to novel diagnostic and therapeutic concepts in PD.
Collapse
|
37
|
Isolated nigral degeneration without pathological protein aggregation in autopsied brains with LRRK2 p.R1441H homozygous and heterozygous mutations. Acta Neuropathol Commun 2018; 6:105. [PMID: 30333048 PMCID: PMC6192197 DOI: 10.1186/s40478-018-0617-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most common causative gene for autosomal dominant Parkinson’s disease (PD) and is also known to be a susceptibility gene for sporadic PD. Although clinical symptoms with LRRK2 mutations are similar to those in sporadic PD, their pathologies are heterogeneous and include nigral degeneration with abnormal inclusions containing alpha-synuclein, tau, TAR DNA-binding protein 43, and ubiquitin, or pure nigral degeneration with no protein aggregation pathologies. We discovered two families harboring heterozygous and homozygous c.4332 G > A; p.R1441H in LRRK2 with consanguinity, sharing a common founder. They lived in the city of Makurazaki, located in a rural area of the southern region, the Kagoshima prefecture, in Kyushu, Japan. All patients presented late-onset parkinsonism without apparent cognitive decline and demonstrated a good response to levodopa. We obtained three autopsied cases that all presented with isolated nigral degeneration with no alpha-synuclein or other protein inclusions. This is the first report of neuropathological findings in patients with LRRK2 p.R1441H mutations that includes both homozygous and heterozygous mutations. Our findings in this study suggest that isolated nigral degeneration is the primary pathology in patients with LRRK2 p.R1441H mutations, and that protein aggregation of alpha-synuclein or tau might be secondary changes.
Collapse
|
38
|
Obergasteiger J, Frapporti G, Pramstaller PP, Hicks AA, Volta M. A new hypothesis for Parkinson's disease pathogenesis: GTPase-p38 MAPK signaling and autophagy as convergence points of etiology and genomics. Mol Neurodegener 2018; 13:40. [PMID: 30071902 PMCID: PMC6090926 DOI: 10.1186/s13024-018-0273-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
The combination of genetics and genomics in Parkinson´s disease has recently begun to unveil molecular mechanisms possibly underlying disease onset and progression. In particular, catabolic processes such as autophagy have been increasingly gaining relevance as post-mortem evidence and experimental models suggested a participation in neurodegeneration and alpha-synuclein Lewy body pathology. In addition, familial Parkinson´s disease linked to LRRK2 and alpha-synuclein provided stronger correlation between etiology and alterations in autophagy. More detailed cellular pathways are proposed and genetic risk factors that associate with idiopathic Parkinson´s disease provide further clues in dissecting contributions of single players. Nevertheless, the fine-tuning of these processes remains elusive, as the initial stages of the pathways are not yet clarified.In this review, we collect literature evidence pointing to autophagy as the common, downstream target of Parkinsonian dysfunctions and augment current knowledge on the factors that direct the subsequent steps. Cell and molecular biology evidence indicate that p38 signaling underlies neurodegeneration and autoptic observations suggest a participation in neuropathology. Moreover, alpha-synuclein and LRRK2 also appear involved in the p38 pathway with additional roles in the regulation of GTPase signaling. Small GTPases are critical modulators of p38 activation and thus, their functional interaction with aSyn and LRRK2 could explain much of the detailed mechanics of autophagy in Parkinson´s disease.We propose a novel hypothesis for a more comprehensive working model where autophagy is controlled by upstream pathways, such as GTPase-p38, that have been so far underexplored in this context. In addition, etiological factors (LRRK2, alpha-synuclein) and risk loci might also combine in this common mechanism, providing a powerful experimental setting to dissect the cause of both familial and idiopathic disease.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research – Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research – Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research – Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
- Department of Neurology, General Central Hospital, Via Böhler 5, 39100 Bolzano, Italy
- Department of Neurology, University of Lübeck, Ratzeburger Allee, 23538 Lübeck, Germany
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research – Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research – Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| |
Collapse
|
39
|
Aufschnaiter A, Kohler V, Walter C, Tosal-Castano S, Habernig L, Wolinski H, Keller W, Vögtle FN, Büttner S. The Enzymatic Core of the Parkinson's Disease-Associated Protein LRRK2 Impairs Mitochondrial Biogenesis in Aging Yeast. Front Mol Neurosci 2018; 11:205. [PMID: 29977190 PMCID: PMC6021522 DOI: 10.3389/fnmol.2018.00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/22/2018] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction is a prominent trait of cellular decline during aging and intimately linked to neuronal degeneration during Parkinson's disease (PD). Various proteins associated with PD have been shown to differentially impact mitochondrial dynamics, quality control and function, including the leucine-rich repeat kinase 2 (LRRK2). Here, we demonstrate that high levels of the enzymatic core of human LRRK2, harboring GTPase as well as kinase activity, decreases mitochondrial mass via an impairment of mitochondrial biogenesis in aging yeast. We link mitochondrial depletion to a global downregulation of mitochondria-related gene transcripts and show that this catalytic core of LRRK2 localizes to mitochondria and selectively compromises respiratory chain complex IV formation. With progressing cellular age, this culminates in dissipation of mitochondrial transmembrane potential, decreased respiratory capacity, ATP depletion and generation of reactive oxygen species. Ultimately, the collapse of the mitochondrial network results in cell death. A point mutation in LRRK2 that increases the intrinsic GTPase activity diminishes mitochondrial impairment and consequently provides cytoprotection. In sum, we report that a downregulation of mitochondrial biogenesis rather than excessive degradation of mitochondria underlies the reduction of mitochondrial abundance induced by the enzymatic core of LRRK2 in aging yeast cells. Thus, our data provide a novel perspective for deciphering the causative mechanisms of LRRK2-associated PD pathology.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sergi Tosal-Castano
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
40
|
Xiong Y, Yu J. Modeling Parkinson's Disease in Drosophila: What Have We Learned for Dominant Traits? Front Neurol 2018; 9:228. [PMID: 29686647 PMCID: PMC5900015 DOI: 10.3389/fneur.2018.00228] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/23/2018] [Indexed: 01/19/2023] Open
Abstract
Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder after Alzheimer’s disease. Unfortunately, there is no cure or proven disease modifying therapy for PD. The recent discovery of a number of genes involved in both sporadic and familial forms of PD has enabled disease modeling in easily manipulable model systems. Various model systems have been developed to study the pathobiology of PD and provided tremendous insights into the molecular mechanisms underlying dopaminergic neurodegeneration. Among all the model systems, the power of Drosophila has revealed many genetic factors involved in the various pathways, and provided potential therapeutic targets. This review focuses on Drosophila models of PD, with emphasis on how Drosophila models have provided new insights into the mutations of dominant genes causing PD and what are the convergent mechanisms.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Jianzhong Yu
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| |
Collapse
|
41
|
Rui Q, Ni H, Gao F, Dang B, Li D, Gao R, Chen G. LRRK2 Contributes to Secondary Brain Injury Through a p38/Drosha Signaling Pathway After Traumatic Brain Injury in Rats. Front Cell Neurosci 2018; 12:51. [PMID: 29545743 PMCID: PMC5837969 DOI: 10.3389/fncel.2018.00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is widely expressed in the brain and exerts neurotoxicity in Parkinson's disease. The p38/Drosha signaling activation has been reported to increase cell death under stress. This study was designed to investigate the potential role and mechanism of LRRK2 in secondary brain injury after traumatic brain injury (TBI). A total of 130 male Sprague-Dawley rats were examined using a weight-drop model of TBI. The rats received the specific LRRK2 inhibitor PF-06447475 or LRRK2 pDNA alone or in combination with Drosha pDNA. Real-time PCR, western blot, immunofluorescence, neuronal apoptosis, brain water content, and neurological score analyses were conducted. Our results showed that after TBI, endogenous LRRK2 expression and p38 phosphorylation were increased, whereas Drosha expression was inhibited. Administration of the LRRK2 inhibitor PF-06447475 significantly reduced neuronal apoptosis, brain water content, and blood-brain barrier permeability 12 h after TBI and ameliorated neurological deficits 72 h after TBI, which was concomitant with decreased p38 phosphorylation and increased Drosha expression. Conversely, LRRK2 overexpression induced the opposite effect. Moreover, the neurotoxic effects of LRRK2 on TBI were also eliminated by Drosha overexpression. Altogether, these findings demonstrate the importance of TBI-induced LRRK2 upregulation during the induction of post-traumatic neurological injury, which may be partially mediated through a p38/Drosha signaling pathway.
Collapse
Affiliation(s)
- Qin Rui
- Department of Laboratory, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Di Li
- Department of Translational Medicine Center, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Rong Gao
- Department of Laboratory, The First People’s Hospital of Zhangjiagang, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson's Disease. Mov Disord 2018; 33:717-729. [PMID: 29418019 DOI: 10.1002/mds.27296] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
Preclinical research on Parkinson's disease has relied heavily on mouse and rat animal models. Initially, PD animal models were generated primarily by chemical neurotoxins that induce acute loss of dopaminergic neurons in the substantia nigra. On the discovery of genetic mutations causally linked to PD, mice were used more than rats to generate laboratory animals bearing PD-linked mutations because mutagenesis was more difficult in rats. Recent advances in technology for mammalian genome engineering and optimization of viral expression vectors have increased the use of genetic rat models of PD. Emerging research tools include "knockout" rats with disruption of genes in which mutations have been causally linked to PD, including LRRK2, α-synuclein, Parkin, PINK1, and DJ-1. Rats have also been increasingly used for transgenic and viral-mediated overexpression of genes relevant to PD, particularly α-synuclein. It may not be realistic to obtain a single animal model that completely reproduces every feature of a human disease as complex as PD. Nevertheless, compared with mice with the same mutations, many genetic rat animal models of PD better reproduce key aspects of PD including progressive loss of dopaminergic neurons in the substantia nigra, locomotor behavior deficits, and age-dependent formation of abnormal α-synuclein protein aggregates. Here we briefly review new developments in genetic rat models of PD that may have greater potential for identifying underlying mechanisms, for discovering novel therapeutic targets, and for developing greatly needed treatments to slow or halt disease progression. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
43
|
Nguyen APT, Daniel G, Valdés P, Islam MS, Schneider BL, Moore DJ. G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain. Hum Mol Genet 2018; 27:120-134. [PMID: 29088368 DOI: 10.1093/hmg/ddx389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 mutations typically give rise to Lewy pathology in the brains of PD subjects yet can induce tau-positive neuropathology in some cases. The pathological interaction between LRRK2 and tau remains poorly defined. To explore this interaction in vivo, we crossed a well-characterized human P301S-tau transgenic mouse model of tauopathy with human G2019S-LRRK2 transgenic mice or LRRK2 knockout (KO) mice. We find that endogenous or pathogenic LRRK2 expression has minimal effects on the steady-state levels, solubility and abnormal phosphorylation of human P301S-tau throughout the mouse brain. We next developed a new model of tauopathy by delivering AAV2/6 vectors expressing human P301S-tau to the hippocampal CA1 region of G2019S-LRRK2 transgenic or LRRK2 KO mice. P301S-tau expression induces hippocampal tau pathology and marked degeneration of CA1 pyramidal neurons in mice, however, this occurs independently of endogenous or pathogenic LRRK2 expression. We further developed new AAV2/6 vectors co-expressing human WT-tau and GFP to monitor the neuron-to-neuron transmission of tau within defined hippocampal neuronal circuits. While endogenous LRRK2 is not required for tau transmission, we find that G2019S-LRRK2 markedly enhances the neuron-to-neuron transmission of tau in mice. Our data suggest that mutant tau-induced neuropathology occurs independently of LRRK2 expression in two mouse models of tauopathy but identifies a novel pathogenic role for G2019S-LRRK2 in promoting the neuronal transmission of WT-tau protein. These findings may have important implications for understanding the development of tau neuropathology in LRRK2-linked PD brains.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Pamela Valdés
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Md Shariful Islam
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bernard L Schneider
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Laboratory of Molecular Neurodegenerative Research
| |
Collapse
|