1
|
Hou Z, Wang W, Wang Y, Chen S, Ye X. Rapid characterization of polysaccharides from marine animals using chemical degradation combined with liquid chromatography mass spectrometry. Int J Biol Macromol 2025; 291:138535. [PMID: 39653205 DOI: 10.1016/j.ijbiomac.2024.138535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Glycosaminoglycans of marine origin have exceptional biological activities, but rapid elucidation strategies for precise structures are still lacking. In this study, the optimal conditions for deacetylation of glycosaminoglycans were optimized first. The hydrazinolysis time of 24 h was determined as the final condition, oligosaccharides with a degree of polymerization of 2-14 are mainly produced after hydrazinolysis. Then mixed oligosaccharides generated by deacetylation-deamination cleavage of polysaccharides were detected with hydrophilic interaction chromatography with tandem mass spectrometry (HILIC-MS/MS), and the total ion chromatography showed excellent resolution. The mass spectrometry data were automatically processed by GlycReSoft, and the corresponding matching results were obtained according to the set parameters. A small amount of keratan sulfate exists in oligosaccharides of Teuthida and Salmo salar, and ion peaks corresponding to IdoA-GalNAc4S exist in oligosaccharides of Scophthalmus maximus and Salmo salar. The results of the manual analysis of the mass spectrometry data verified that the HILIC-MS/MS combined with automatic analysis by software adopted in this study could achieve accurate matching and matching of mixed oligosaccharide components. The establishment of a rapid and accurate analysis strategy for the structure of glycosaminoglycans in this study will help the development of its application and standardized industrial production.
Collapse
Affiliation(s)
- Zhiqiang Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Wenkang Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuying Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linli 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linli 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
2
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
3
|
Mycroft-West CJ, Devlin AJ, Cooper LC, Guimond SE, Procter P, Miller GJ, Guerrini M, Fernig DG, Yates EA, Lima MA, Skidmore MA. A sulphated glycosaminoglycan extract from Placopecten magellanicus inhibits the Alzheimer's disease β-site amyloid precursor protein cleaving enzyme 1 (BACE-1). Carbohydr Res 2023; 525:108747. [PMID: 36773398 DOI: 10.1016/j.carres.2023.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The clinically important anticoagulant heparin, a member of the glycosaminoglycan family of carbohydrates that is extracted predominantly from porcine and bovine tissue sources, has previously been shown to inhibit the β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), a key drug target in Alzheimer's Disease. In addition, heparin has been shown to exert favourable bioactivities through a number of pathophysiological pathways involved in the disease processes of Alzheimer's Disease including inflammation, oxidative stress, tau phosphorylation and amyloid peptide generation. Despite the multi-target potential of heparin as a therapeutic option for Alzheimer's disease, the repurposing of this medically important biomolecule has to-date been precluded by its high anticoagulant potential. An alternative source to mammalian-derived glycosaminoglycans are those extracted from marine environments and these have been shown to display an expanded repertoire of sequence-space and heterogeneity compared to their mammalian counterparts. Furthermore, many marine-derived glycosaminoglycans appear to retain favourable bioactivities, whilst lacking the high anticoagulant potential of their mammalian counterparts. Here we describe a sulphated, marine-derived glycosaminoglycan extract from the Atlantic Sea Scallop, Placopecten magellanicus that displays high inhibitory potential against BACE-1 (IC50 = 4.8 μg.mL-1) combined with low anticoagulant activity; 25-fold less than that of heparin. This extract possesses a more favourable therapeutic profile compared to pharmaceutical heparin of mammalian provenance and is composed of a mixture of heparan sulphate (HS), with a high content of 6-sulphated N-acetyl glucosamine (64%), and chondroitin sulphate.
Collapse
Affiliation(s)
- Courtney J Mycroft-West
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Anthony J Devlin
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK; Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133, Milan, Italy.
| | - Lynsay C Cooper
- University of Gloucestershire, Francis Close Hall Campus, Swindon Rd, Cheltenham, GL50 4AZ, UK.
| | - Scott E Guimond
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Patricia Procter
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Gavin J Miller
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133, Milan, Italy.
| | - David G Fernig
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Marcelo A Lima
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Mark A Skidmore
- Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, UK; Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
4
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
5
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
7
|
Mutalipassi M, Esposito R, Ruocco N, Viel T, Costantini M, Zupo V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021; 10:foods10071495. [PMID: 34203174 PMCID: PMC8303620 DOI: 10.3390/foods10071495] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that “wastes” of industrial processing represent up to 75% of the whole organisms, the loss of profit may be coupled with the loss of ecological sustainability, due to the scarce recycling of natural resources. Fish head, viscera, skin, bones, scales, as well as exoskeletons, pens, ink, and clam shells can be considered as useful wastes, in various weight percentages, according to the considered species and taxa. Besides several protein sources, still underexploited, the most interesting applications of fisheries and aquaculture by-products are foreseen in the biotechnological field. In fact, by-products obtained from marine sources may supply bioactive molecules, such as collagen, peptides, polyunsaturated fatty acids, antioxidant compounds, and chitin, as well as catalysts in biodiesel synthesis. In addition, those sources can be processed via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, to obtain compounds with antioxidant, anti-microbial, anti-cancer, anti-hypertensive, anti-diabetic, and anti-coagulant effects. Here, we review the main discards from fishery and aquaculture practices and analyse several bioactive compounds isolated from seafood by-products. In particular, we focus on the possible valorisation of seafood and their by-products, which represent a source of biomolecules, useful for the sustainable production of high-value nutraceutical compounds in our circular economy era.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
| | - Thomas Viel
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Correspondence: (M.C.); (V.Z.)
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
- Correspondence: (M.C.); (V.Z.)
| |
Collapse
|
8
|
Rodríguez C, Luque N, Blanco I, Sebastian L, Barberà JA, Peinado VI, Tura-Ceide O. Pulmonary Endothelial Dysfunction and Thrombotic Complications in Patients with COVID-19. Am J Respir Cell Mol Biol 2021; 64:407-415. [PMID: 33180562 PMCID: PMC8008805 DOI: 10.1165/rcmb.2020-0359ps] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new strain of a Coronaviridae virus that presents 79% genetic similarity to the severe acute respiratory syndrome coronavirus, has been recently recognized as the cause of a global pandemic by the World Health Organization, implying a major threat to world public health. SARS-CoV-2 infects host human cells by binding through the viral spike proteins to the ACE-2 (angiotensin-converting enzyme 2) receptor, fuses with the cell membrane, enters, and starts its replication process to multiply its viral load. Coronavirus disease (COVID-19) was initially considered a respiratory infection that could cause pneumonia. However, in severe cases, it extends beyond the respiratory system and becomes a multiorgan disease. This transition from localized respiratory infection to multiorgan disease is due to two main complications of COVID-19. On the one hand, it is due to the so-called cytokine storm: an uncontrolled inflammatory reaction of the immune system in which defensive molecules become aggressive for the body itself. On the other hand, it is due to the formation of a large number of thrombi that can cause myocardial infarction, stroke, and pulmonary embolism. The pulmonary endothelium actively participates in these two processes, becoming the last barrier before the virus spreads throughout the body. In this review, we examine the role of the pulmonary endothelium in response to COVID-19, the existence of potential biomarkers, and the development of novel therapies to restore vascular homeostasis and to protect and/or treat coagulation, thrombosis patients. In addition, we review the thrombotic complications recently observed in patients with COVID-19 and its potential threatening sequelae.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain.,Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Neus Luque
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Laura Sebastian
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Víctor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain.,Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
9
|
Mycroft-West CJ, Devlin AJ, Cooper LC, Guimond SE, Procter P, Guerrini M, Miller GJ, Fernig DG, Yates EA, Lima MA, Skidmore MA. Glycosaminoglycans from Litopenaeus vannamei Inhibit the Alzheimer's Disease β Secretase, BACE1. Mar Drugs 2021; 19:203. [PMID: 33916819 PMCID: PMC8067017 DOI: 10.3390/md19040203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Only palliative therapeutic options exist for the treatment of Alzheimer's Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer's Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer's disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal β-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.
Collapse
Affiliation(s)
- Courtney J. Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Anthony J. Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Lynsay C. Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Scott E. Guimond
- School of Medicine, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milan, Italy;
| | - Gavin J. Miller
- School of Chemistry, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - David G. Fernig
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; (D.G.F.); (E.A.Y.)
| | - Edwin A. Yates
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; (D.G.F.); (E.A.Y.)
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Mark A. Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; (D.G.F.); (E.A.Y.)
| |
Collapse
|
10
|
Song Y, Zhang F, Linhardt RJ. Glycosaminoglycans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:103-116. [PMID: 34495531 DOI: 10.1007/978-3-030-70115-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosaminoglycans (GAGs) are important constituents of human glycome. They are negatively charged unbranched polysaccharides that are usually covalently attached to proteins, forming glycan-protein conjugates, called proteoglycans. Glycosaminoglycans play critical roles in numerous biological processes throughout individual development and are also involved in the pathological processes of various diseases. Based on their remarkable bioactivities and their universal involvement in disease progression, GAGs are applied as therapeutics or are being targeted or used in treating diseases. In this chapter, we introduce the characteristics of the four classes of GAGs that constitute the glycosaminoglycan family. The pathological roles of glycosaminoglycans in major diseases including innate disease, infectious disease, and cancer are discussed. The application of GAGs and their mimetics as therapeutics is introduced, as well as those therapeutic methods developed based on GAGs' role in pathogenesis. In addition, we provide a brief and overall lookback at the history of GAG research and sort out some critical techniques that facilitated GAG and glycomics studies.
Collapse
Affiliation(s)
- Yuefan Song
- National R&D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China. .,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
11
|
Zaporozhets TS, Besednova NN. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol 2020; 6:470-494. [PMID: 33364539 PMCID: PMC7755586 DOI: 10.3934/microbiol.2020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the progress made in immunization and drug development, so far there are no prophylactic vaccines and effective therapies for many viral infections, including infections caused by coronaviruses. In this regard, the search for new antiviral substances continues to be relevant, and the enormous potential of marine resources are a stimulus for the study of marine compounds with antiviral activity in experiments and clinical trials. The highly pathogenic human coronaviruses-severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) remain a serious threat to human health. In this review, the authors hope to bring the attention of researchers to the use of biologically active substances of marine origin as potential broad-spectrum antiviral agents targeting common cellular pathways and various stages of the life cycle of different viruses, including coronaviruses. The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to June 2020) and keywords such as 'coronaviruses', 'marine organisms', 'biologically active substances', 'antiviral drugs', 'SARS-CoV', 'MERS-CoV', 'SARS-CoV-2', '3CLpro', 'TMPRSS2', 'ACE2'. After obtaining all reports from the databases, the papers were carefully analysed in order to find data related to the topic of this review (98 references). Biologically active substances of marine origin, such as flavonoids, phlorotannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, lipids and others substances, can affect coronaviruses at the stages of penetration and entry of the viral particle into the cell, replication of the viral nucleic acid and release of the virion from the cell; they also can act on the host's cellular targets. These natural compounds could be a vital resource in the fight against coronaviruses.
Collapse
Affiliation(s)
- Tatyana S. Zaporozhets
- Immunology Laboratory, Somov Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation
| | | |
Collapse
|
12
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Kadkhoda K, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:115-142. [PMID: 33164601 DOI: 10.1080/19390211.2020.1834049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) triggered by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has been declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Oxidative stress and its related metabolic syndromes are potential risk factors in the susceptibility to, and severity of COVID-19. In concert with the earliest reports of COVID-19, obstetricians started to diagnose and treat SARS-CoV-2 infections during pregnancy ("COVID-19-Pregnancy"). High metabolic demand to sustain normal fetal development increases the burden of oxidative stress in pregnancy. Intracellular redox changes intertwined with acute phase responses at the maternal-fetal interface could amplify during pregnancy. Interestingly, mother-to-fetus transmission of SARS-CoV-2 has not been detected in most of the COVID-19-Pregnancy cases. This relative absence of vertical transmission may be related to the presence of lactoferrin in the placenta, amniotic fluid, and lacteal secretions. However, the cytokine-storm induced during COVID-19-Pregnancy may cause severe inflammatory damage to the fetus, and if uncontrolled, may later result in autism spectrum-like disorders and brain development abnormalities in neonates. Considering this serious health threat to child growth and development, the prevention of COVID-19 during pregnancy should be considered a high priority. This review summarizes the intricate virulence factors of COVID-19 and elucidate its pathobiological spectrum during pregnancy and postpartum periods with a focus on the putative and complex roles of endogenous and exogenous lactoferrin in conferring immunological advantage to the host.
Collapse
Affiliation(s)
| | - Roger A Clemens
- University of Southern California, School of Pharmacy, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kamran Kadkhoda
- Immunopathology Laboratory, Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
13
|
Mycroft-West CJ, Devlin AJ, Cooper LC, Procter P, Miller GJ, Fernig DG, Guerrini M, Guimond SE, Lima MA, Yates EA, Skidmore MA. Inhibition of BACE1, the β-secretase implicated in Alzheimer's disease, by a chondroitin sulfate extract from Sardina pilchardus. Neural Regen Res 2020; 15:1546-1553. [PMID: 31997821 PMCID: PMC7059579 DOI: 10.4103/1673-5374.274341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022] Open
Abstract
The pharmaceutical and anticoagulant agent heparin, a member of the glycosaminoglycan family of carbohydrates, has previously been identified as a potent inhibitor of a key Alzheimer's disease drug target, the primary neuronal β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1). The anticoagulant activity of heparin has, however, precluded the repurposing of this widely used pharmaceutical as an Alzheimer's disease therapeutic. Here, a glycosaminoglycan extract, composed predominantly of 4-sulfated chondroitin sulfate, has been isolated from Sardina pilchardus, which possess the ability to inhibit BACE1 (IC50 [half maximal inhibitory concentration] = 4.8 μg/mL), while displaying highly attenuated anticoagulant activities (activated partial thromboplastin time EC50 [median effective concentration] = 403.8 μg/mL, prothrombin time EC50 = 1.3 mg/mL). The marine-derived, chondroitin sulfate extract destabilizes BACE1, determined via differential scanning fluorimetry (ΔTm -5°C), to a similar extent as heparin, suggesting that BACE1 inhibition by glycosaminoglycans may occur through a common mode of action, which may assist in the screening of glycan-based BACE1 inhibitors for Alzheimer's disease.
Collapse
Affiliation(s)
- Courtney J. Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Anthony J. Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Lynsay C. Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J. Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy
| | - Scott E. Guimond
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- School of Medicine, Keele, Staffordshire, ST5 5BG, UK
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Edwin A. Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Mark Andrew Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- School of Medicine, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
14
|
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
15
|
Mycroft-West CJ, Cooper LC, Devlin AJ, Procter P, Guimond SE, Guerrini M, Fernig DG, Lima MA, Yates EA, Skidmore MA. A Glycosaminoglycan Extract from Portunus pelagicus Inhibits BACE1, the β Secretase Implicated in Alzheimer's Disease. Mar Drugs 2019; 17:E293. [PMID: 31100859 PMCID: PMC6562973 DOI: 10.3390/md17050293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/23/2022] Open
Abstract
Therapeutic options for Alzheimer's disease, the most common form of dementia, are currently restricted to palliative treatments. The glycosaminoglycan heparin, widely used as a clinical anticoagulant, has previously been shown to inhibit the Alzheimer's disease-relevant β-secretase 1 (BACE1). Despite this, the deployment of pharmaceutical heparin for the treatment of Alzheimer's disease is largely precluded by its potent anticoagulant activity. Furthermore, ongoing concerns regarding the use of mammalian-sourced heparins, primarily due to prion diseases and religious beliefs hinder the deployment of alternative heparin-based therapeutics. A marine-derived, heparan sulphate-containing glycosaminoglycan extract, isolated from the crab Portunus pelagicus, was identified to inhibit human BACE1 with comparable bioactivity to that of mammalian heparin (IC50 = 1.85 μg mL-1 (R2 = 0.94) and 2.43 μg mL-1 (R2 = 0.93), respectively), while possessing highly attenuated anticoagulant activities. The results from several structural techniques suggest that the interactions between BACE1 and the extract from P. pelagicus are complex and distinct from those of heparin.
Collapse
Affiliation(s)
- Courtney J Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Lynsay C Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Anthony J Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy.
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Scott E Guimond
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy.
| | - David G Fernig
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Marcelo A Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Edwin A Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Mark A Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
16
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|