1
|
Zhang Y, Ma Y, Zhang K, Wang Y, Sun X, Kan C, Han F. KRAS Mutations in Cancer: From Molecular Insights to Therapeutic Strategies. Am J Clin Oncol 2025:00000421-990000000-00275. [PMID: 40167108 DOI: 10.1097/coc.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The global burden of cancer remains a major public health challenge, with Kirsten rat sarcoma viral oncogene homolog (KRAS) emerging as the most common mutated oncogene across diverse malignancies. Once considered "undruggable" due to its unique structure, KRAS has garnered intense research focus, resulting in significant advancements. This paper aims to review recent developments in our understanding of KRAS biology, including its structural and functional aspects, and to explore the latest insights into its mutations across various cancer types. Emphasis is placed on prognosis, predictive roles, and emerging therapeutic strategies targeting KRAS. This review aspires to deepen our comprehension of KRAS and potentially enhance treatment outcomes for cancer patients harboring KRAS mutations in the future.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Fang Han
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Avădănei ER, Căruntu ID, Nucă I, Balan RA, Lozneanu L, Giusca SE, Pricope DL, Dascalu CG, Amalinei C. KRAS Mutation Status in Relation to Clinicopathological Characteristics of Romanian Colorectal Cancer Patients. Curr Issues Mol Biol 2025; 47:120. [PMID: 39996841 PMCID: PMC11854687 DOI: 10.3390/cimb47020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Our study's aim was to evaluate the clinicopathological profile of colorectal cancer (CRC) patients from North-East Romania in relation to the Kirsten rat sarcoma viral oncogene homolog (KRAS). We designed a retrospective study on 108 CRC patients using the fully automated real-time PCR-based molecular testing system, IdyllaTMKRAS Mutation Test (Biocartis, Mechelen, Belgium). Of the patients, 64 (59.3%) were men and 62 (57.4%) were older than the group average, with left bowel location in 38 cases (35.2%), adenocarcinoma NOS in 102 cases (94.4%), mixed histological pattern in 65 cases (60.2%), T3 in 60 patients (55.6%), N2 in 46 patients (42.6%), and 7-12 tumour buds registered in 58 tumours (53.7%). A total of 54 tumour samples (50%) showed KRAS mutation. Statistical comparative analyses associated KRAS mutations with the histopathological pattern (p = 0.018), tumour grade (p = 0.030), depth of invasion (pT) (p < 0.001), lymph node involvement (pN) (p < 0.001), venous vascular invasion (p = 0.048), and tumour buds' number (p = 0.007). Our results demonstrate the relationship between KRAS mutation and clinicopathological features, with possible impact in clinical tumour stratification and therapeutic management.
Collapse
Affiliation(s)
- Elena-Roxana Avădănei
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
- Praxis Medical Investigation Laboratory, 35 Moara de Vant Street, 700376 Iasi, Romania;
| | - Irina-Draga Căruntu
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
- Romanian Medical Science Academy, 1 I.C. Bratianu Boulevard, 030171 Bucharest, Romania
| | - Irina Nucă
- Praxis Medical Investigation Laboratory, 35 Moara de Vant Street, 700376 Iasi, Romania;
- Department of Mother and Child Medicine-Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Raluca Anca Balan
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 1 Independentei Street, 700111 Iasi, Romania
| | - Simona-Eliza Giusca
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
| | - Diana Lavinia Pricope
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
| | - Cristina Gena Dascalu
- Department of Preventive Medicine and Interdisciplinarity-Medical Informatics and Biostatistics, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Cornelia Amalinei
- Department of Morpho-Functional Sciences I-Histology, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.-D.C.); (R.A.B.); (L.L.); (S.-E.G.); (D.L.P.); (C.A.)
- Department of Histopathology, Institute of Legal Medicine, 4 Buna Vestire Street, 700455 Iasi, Romania
| |
Collapse
|
3
|
Pandey D, Roy KK. Decoding KRAS dynamics: Exploring the impact of mutations and inhibitor binding. Arch Biochem Biophys 2025; 764:110279. [PMID: 39710177 DOI: 10.1016/j.abb.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
KRAS (Kirsten rat sarcoma viral oncogene homologue), the most common mutated protein in human cancers, is the leading cause of morbidity and mortality. Before Sotorasib (AMG-510) was approved for non-small cell lung cancer treatment in 2020, the oncogenic KRAS mutations were believed to be non-druggable. High-resolution X-ray crystal structures of GDP-bound KRAS mutants with and without inhibitor are resolved and deposited in the Protein Data Bank (PDB). Nevertheless, to develop inhibitors targeting oncogenic KRAS mutants, understanding the dynamics of protein conformations and respective binding sites is crucial. In the present study, multiple molecular dynamics (MD) simulations were conducted on wild-type and mutant KRAS structures to understand how G12C or G12D mutations lead to the stabilization of the active state and how KRAS inhibitors lock the mutated conformations in their inactive state. The study found that the guanosine diphosphate (GDP)-bound KRAS mutants, G12C and G12D, were locked in the inactive state, in terms of stability, when the KRAS inhibitors, AMG-510 and MRTX1133, respectively, bind to the respective Switch-II (S-II) pocket. Covalent inhibitor AMG-510 locked the inactive GDP-bound KRASG12C mutant more efficiently when compared to the non-covalent inhibitor MRTX1133. The Cα atom distance between key highly dynamic amino acids from P-loop, Switch-I, and Switch-II domains, lying within 4 Å of the inhibitor, were stable in the KRAS mutant with bound inhibitors (AMG-510 or MRTX1133), but were varying largely in the absence of any inhibitor throughout the microsecond simulation. According to the per-residue energy decomposition results, S-II amino acids in inhibitor-free KRASG12C and KRASG12D mutants showed larger variations in energy values as compared to AMG-510-bound KRASG12C and MRTX1133-bound KRASG12D, respectively. For example, the inhibitor-free KRASG12C exhibited larger variations in energy values in the S-II residues, namely, Thr58, Gln61, Glu63, and Arg68, as compared to the AMG-510-bound KRASG12C. The study found that the higher stability of AMG-510 in torsion angles was due to its covalent nature of binding to the KRASG12C mutant. The S-II amino acids, namely, Thr58, Glu63, and Arg68 remained stable in AMG-510-bound KRASG12C. The study showed that AMG-510 binding significantly stabilizes the amino acids surrounding it, surpassing that of MRTX1133. The insights gained in the present study is expected to be useful in the design and development of new KRAS-targeted drugs.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
4
|
Chen Y, Yin Z, Westover KD, Zhou Z, Shu L. Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia. Mol Cancer Ther 2025; 24:33-46. [PMID: 39404173 DOI: 10.1158/1535-7163.mct-24-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025]
Abstract
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhenghao Yin
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Kenneth D Westover
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Zhiwei Zhou
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Liping Shu
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| |
Collapse
|
5
|
Li N, Liu CF, Zhang W, Rao GW. A New Dawn for Targeted Cancer Therapy: Small Molecule Covalent Binding Inhibitor Targeting K-Ras (G12C). Curr Med Chem 2025; 32:647-677. [PMID: 37936461 DOI: 10.2174/0109298673258913231019113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the "spell" that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.
Collapse
Affiliation(s)
- Na Li
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
6
|
Keane F, Chou JF, Walch H, Schoenfeld J, Singhal A, Cowzer D, Harrold E, O’Connor CA, Park W, Varghese A, El Dika I, Balogun F, Yu KH, Capanu M, Schultz N, Yaeger R, O’Reilly EM. Precision medicine for pancreatic cancer: characterizing the clinicogenomic landscape and outcomes of KRAS G12C-mutated disease. J Natl Cancer Inst 2024; 116:1429-1438. [PMID: 38702822 PMCID: PMC11378314 DOI: 10.1093/jnci/djae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most common oncogene alteration in pancreatic ductal adenocarcinoma, and KRAS glycine to cystine substitution at codon 12 (G12C) mutations (KRAS G12Cmut) are observed in 1%-2%. Several inhibitors of KRAS G12C have recently demonstrated promise in solid tumors, including pancreatic cancer. Little is known regarding clinical, genomics, and outcome data of this population. METHODS Patients with pancreatic cancer and KRAS G12Cmut were identified at Memorial Sloan Kettering Cancer Center and via the American Association of Cancer Research Project Genomics, Evidence, Neoplasia, Information, Exchange database. Clinical, treatment, genomic, and outcomes data were analyzed. A cohort of patients at Memorial Sloan Kettering Cancer Center with non-G12C KRAS pancreatic cancer was included for comparison. RESULTS Among 3571 patients with pancreatic ductal adenocarcinoma, 39 (1.1%) with KRAS G12Cmut were identified. Median age was 67 years, and 56% were female. Median body mass index was 29.2 kg/m2, and 67% had a smoking history. Median overall survival was 13 months (95% CI: 9.4 months, not reached) for stage IV and 26 months (95% CI: 23 months, not reached) for stage I-III. Complete genomic data (via American Association of Cancer Research Project Genomics, Evidence, Neoplasia, Information, Exchange database) was available for 74 patients. Most common co-alterations included TP53 (73%), CDKN2A (33%), SMAD4 (28%), and ARID1A (21%). Compared with a large cohort (n = 2931) of non-G12C KRAS-mutated pancreatic ductal adenocarcinoma, ARID1A co-mutations were more frequent in KRAS G12Cmut (P < .05). Overall survival did not differ between KRAS G12Cmut and non-G12C KRAS pancreatic ductal adenocarcinoma. Germline pathogenic variants were identified in 17% of patients; 2 patients received KRAS G12C-directed therapy. CONCLUSION Pancreatic cancer and KRAS G12Cmut may be associated with a distinct clinical phenotype. Genomic features are similar to non-G12C KRAS-mutated pancreatic cancer, although enrichment of ARID1A co-mutations was observed. Targeting of KRAS G12C in pancreatic cancer provides a precedent for broader KRAS targeting in pancreatic cancer.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anupriya Singhal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine A O’Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eileen M O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
7
|
Salamh S, Sayyed-Ahmad A. Investigating the effects of cysteine-118 oxidation on G12D KRas structure and dynamics: insights from MD simulations. J Biomol Struct Dyn 2024; 42:6968-6981. [PMID: 37480262 DOI: 10.1080/07391102.2023.2238080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Mutations of Ras proteins are believed to be among the most prominent causes of cancer. There is increasing evidence that the activity of Ras may be controlled by the redox state of cysteine residues located within the NKCD motif. This redox signaling is critical to both physiological and pathological processes and occurs when C118 is oxidized in a reversible manner. In this study, we used atomistic molecular dynamics simulations and Markov state models to investigate the structural and conformational effects of C118 oxidation on the oncogenic mutant KRas(G12D). While both mutants share common features and exhibit some distinct conformational states and fluctuations, we have found that the oxidized variant KRas(G12D/C118SOH) is more dynamic than the unoxidized counterpart, particularly in the switch II region. Additionally, C118 oxidation is found to alter the structure of the nucleotide-binding site and the switch regions as well as perturb the conformational equilibrium between Ras active and inactive states. These conformational preferences may alter the affinity to different effectors, resulting in selective downstream activation. Our results are anticipated to help future drug development efforts aimed at KRAS-related anticancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shimaa Salamh
- Department of Physics, Birzeit University, Birzeit, Palestine
| | | |
Collapse
|
8
|
Mondal K, Posa MK, Shenoy RP, Roychoudhury S. KRAS Mutation Subtypes and Their Association with Other Driver Mutations in Oncogenic Pathways. Cells 2024; 13:1221. [PMID: 39056802 PMCID: PMC11274496 DOI: 10.3390/cells13141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS mutation stands out as one of the most influential oncogenic mutations, which directly regulates the hallmark features of cancer and interacts with other cancer-causing driver mutations. However, there remains a lack of precise information on their cooccurrence with mutated variants of KRAS and any correlations between KRAS and other driver mutations. To enquire about this issue, we delved into cBioPortal, TCGA, UALCAN, and Uniport studies. We aimed to unravel the complexity of KRAS and its relationships with other driver mutations. We noticed that G12D and G12V are the prevalent mutated variants of KRAS and coexist with the TP53 mutation in PAAD and CRAD, while G12C and G12V coexist with LUAD. We also noticed similar observations in the case of PIK3CA and APC mutations in CRAD. At the transcript level, a positive correlation exists between KRAS and PIK3CA and between APC and KRAS in CRAD. The existence of the co-mutation of KRAS and other driver mutations could influence the signaling pathway in the neoplastic transformation. Moreover, it has immense prognostic and predictive implications, which could help in better therapeutic management to treat cancer.
Collapse
Affiliation(s)
- Koushik Mondal
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- Department of Cancer Immunology, SwasthyaNiketan Integrated Healthcare & Research Foundation, Koramangala, Bengaluru 560034, Karnataka, India
| | - Mahesh Kumar Posa
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur 302017, Rajasthan, India;
| | - Revathi P. Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Susanta Roychoudhury
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
9
|
Shi JT, Hou SJ, Cheng L, Zhang HJ, Mu HX, Wang QS, Wang ZY, Chen SW. Discovery of novel coumarin-based KRAS-G12C inhibitors from virtual screening and Rational structural optimization. Bioorg Chem 2024; 148:107467. [PMID: 38772290 DOI: 10.1016/j.bioorg.2024.107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 μM and 1.50 μM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.
Collapse
Affiliation(s)
- Jian-Tao Shi
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Su-Juan Hou
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hao-Jie Zhang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hong-Xia Mu
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Qing-Shan Wang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhao-Yang Wang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Shi-Wu Chen
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Tóth LJ, Mokánszki A, Méhes G. The rapidly changing field of predictive biomarkers of non-small cell lung cancer. Pathol Oncol Res 2024; 30:1611733. [PMID: 38953007 PMCID: PMC11215025 DOI: 10.3389/pore.2024.1611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.
Collapse
Affiliation(s)
- László József Tóth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
11
|
Chippalkatti R, Parisi B, Kouzi F, Laurini C, Ben Fredj N, Abankwa DK. RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation. Eur J Cell Biol 2024; 103:151425. [PMID: 38795504 DOI: 10.1016/j.ejcb.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Bianca Parisi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Farah Kouzi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Christina Laurini
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Nesrine Ben Fredj
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg.
| |
Collapse
|
12
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
13
|
Weeks R, Mehta S, Zhang J. Genetically encodable biosensors for Ras activity. RSC Chem Biol 2024; 5:312-320. [PMID: 38576721 PMCID: PMC10989514 DOI: 10.1039/d3cb00185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/02/2024] [Indexed: 04/06/2024] Open
Abstract
Genetically encoded Ras biosensors have been instrumental in illuminating the spatiotemporal dynamics of Ras activity since the beginning of the imaging revolution of the early 21st century. In general, these sensors employ Ras sensing units coupled with fluorescent proteins. These biosensors have not only helped elucidate Ras signalling dynamics at the plasma membrane but also revealed novel roles for Ras signalling within subcellular compartments such as the Golgi apparatus. In this review, we discuss the different classes of biosensors used to measure Ras activity and discuss their importance in uncovering new roles for Ras activity in cellular signalling and behavior.
Collapse
Affiliation(s)
- Ryan Weeks
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla CA 92093 USA +1 (858) 246-0602
- Department of Pharmacology, University of California, San Diego La Jolla CA 92093 USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego La Jolla CA 92093 USA
| | - Jin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla CA 92093 USA +1 (858) 246-0602
- Department of Pharmacology, University of California, San Diego La Jolla CA 92093 USA
- Department of Bioengineering, University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
14
|
Bao H, Wang W, Sun H, Chen J. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. J Biomol Struct Dyn 2024; 42:3363-3381. [PMID: 37216340 DOI: 10.1080/07391102.2023.2213355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Point mutations play a vital role in the conformational transformation of HRAS. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by constructions of free energy landscapes (FELs) were adopted to explore the effect of mutations D33K, A59T and L120A on conformation states of the GDP-bound HRAS. The results from the post-processing analyses on GaMD trajectories suggest that mutations alter the flexibility and motion modes of the switch domains from HRAS. The analyses from FELs show that mutations induce more disordered states of the switch domains and affect interactions of GDP with HRAS, implying that mutations yield a vital effect on the binding of HRAS to effectors. The GDP-residue interaction network revealed by our current work indicates that salt bridges and hydrogen bonding interactions (HBIs) play key roles in the binding of GDP to HRAS. Furthermore, instability in the interactions of magnesium ions and GDP with the switch SI leads to the extreme disorder of the switch domains. This study is expected to provide the energetic basis and molecular mechanism for further understanding the function of HRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
15
|
Shen C, Yin J, Wang M, Yu Z, Xu X, Zhou Z, Hu Y, Xia C, Hu G. Mutations influence the conformational dynamics of the GDP/KRAS complex. J Biomol Struct Dyn 2024:1-14. [PMID: 38529923 DOI: 10.1080/07391102.2024.2331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Mutations near allosteric sites can have a significant impact on the function of KRAS. Three specific mutations, K104Q, G12D/K104Q, and G12D/G75A, which are located near allosteric positions, were selected to investigate the molecular mechanisms behind mutation-induced influences on the activity of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations followed by the principal component analysis (PCA) were performed to improve the sampling of conformational states. The results revealed that these mutations significantly alter the structural flexibility, correlated motions, and dynamic behavior of the switch regions that are essential for KRAS binding to effectors or regulators. Furthermore, the mutations have a significant impact on the hydrogen bonding interactions between GDP and the switch regions, as well as on the electrostatic interactions of magnesium ions (Mg2+) with these regions. Our results verified that these mutations strongly influence the binding of KRAS to its effectors or regulators and allosterically regulate the activity. We believe that this work can provide valuable theoretical insights into a deeper understanding of KRAS function.
Collapse
Affiliation(s)
- Congcong Shen
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Jie Yin
- Qingyun People's Hospital, Dezhou, China
| | - Min Wang
- Qingyun People's Hospital, Dezhou, China
| | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Xin Xu
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Zhongshun Zhou
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yingshi Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
16
|
Clark GJ. K-RAS Is…Complicated. Cancers (Basel) 2023; 15:5480. [PMID: 38001740 PMCID: PMC10670387 DOI: 10.3390/cancers15225480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
There is little argument that the K-RAS onco-protein is the most important single oncoprotein in human cancer [...].
Collapse
Affiliation(s)
- Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville, Rm 417, CTRB, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
17
|
Zhao P, Wang Y, Yu X, Nan Y, Liu S, Li B, Cui Z, Liu Z. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis. Front Med 2023; 17:924-938. [PMID: 37434064 DOI: 10.1007/s11684-023-1004-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 07/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yating Wang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
18
|
Liang HZ, Ma YP, Yang LH, Guo QH, Wang SF, Li C. [Clinical characteristics and prognostic implications of RAS mutations in newly diagnosed acute myeloid leukemia with normal karyotype based on next-generation sequencing analysis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:762-766. [PMID: 38049321 PMCID: PMC10630583 DOI: 10.3760/cma.j.issn.0253-2727.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 12/06/2023]
Affiliation(s)
- H Z Liang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Y P Ma
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - L H Yang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Q H Guo
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - S F Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - C Li
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
19
|
Ibrahim R, Khoury R, Ibrahim T, Assi T, Cesne AL. KRAS G12C mutation: from black sheep to key player in pancreatic cancer treatment. Future Oncol 2023; 19:485-488. [PMID: 36946253 DOI: 10.2217/fon-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
20
|
Wang H, Chi L, Yu F, Dai H, Gao C, Si X, Wang Z, Liu L, Zheng J, Shan L, Liu H, Zhang Q. Annual review of KRAS inhibitors in 2022. Eur J Med Chem 2023; 249:115124. [PMID: 36680986 DOI: 10.1016/j.ejmech.2023.115124] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023]
Abstract
Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Inhibition mechanism of MRTX1133 on KRAS G12D: a molecular dynamics simulation and Markov state model study. J Comput Aided Mol Des 2023; 37:157-166. [PMID: 36849761 DOI: 10.1007/s10822-023-00498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
The mutant KRAS was considered as an "undruggable" target for decades, especially KRASG12D. It is a great challenge to develop the inhibitors for KRASG12D which lacks the thiol group for covalently binding ligands. The discovery of MRTX1133 solved the dilemma. Interestingly, MRTX1133 can bind to both the inactive and active states of KRASG12D. The binding mechanism of MRTX1133 with KRASG12D, especially how MRTX1133 could bind the active state KRASG12D without triggering the active function of KRASG12D, has not been fully understood. Here, we used a combination of all-atom molecular dynamics simulations and Markov state model (MSM) to understand the inhibition mechanism of MRTX1133 and its analogs. The stationary probabilities derived from MSM show that MRTX1133 and its analogs can stabilize the inactive or active states of KRASG12D into different conformations. More remarkably, by scrutinizing the conformational differences, MRTX1133 and its analogs were hydrogen bonded to Gly60 to stabilize the switch II region and left switch I region in a dynamically inactive conformation, thus achieving an inhibitory effect. Our simulation and analysis provide detailed inhibition mechanism of KRASG12D induced by MRTX1133 and its analogs. This study will provide guidance for future design of novel small molecule inhibitors of KRASG12D.
Collapse
|
22
|
Janssen K, Claes F, Van de Velde D, Wehbi VL, Houben B, Lampi Y, Nys M, Khodaparast L, Khodaparast L, Louros N, van der Kant R, Verniers J, Garcia T, Ramakers M, Konstantoulea K, Maragkou K, Duran-Romaña R, Musteanu M, Barbacid M, Scorneaux B, Beirnaert E, Schymkowitz J, Rousseau F. Exploiting the intrinsic misfolding propensity of the KRAS oncoprotein. Proc Natl Acad Sci U S A 2023; 120:e2214921120. [PMID: 36812200 PMCID: PMC9992772 DOI: 10.1073/pnas.2214921120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023] Open
Abstract
Mutant KRAS is a major driver of oncogenesis in a multitude of cancers but remains a challenging target for classical small molecule drugs, motivating the exploration of alternative approaches. Here, we show that aggregation-prone regions (APRs) in the primary sequence of the oncoprotein constitute intrinsic vulnerabilities that can be exploited to misfold KRAS into protein aggregates. Conveniently, this propensity that is present in wild-type KRAS is increased in the common oncogenic mutations at positions 12 and 13. We show that synthetic peptides (Pept-ins™) derived from two distinct KRAS APRs could induce the misfolding and subsequent loss of function of oncogenic KRAS, both of recombinantly produced protein in solution, during cell-free translation and in cancer cells. The Pept-ins exerted antiproliferative activity against a range of mutant KRAS cell lines and abrogated tumor growth in a syngeneic lung adenocarcinoma mouse model driven by mutant KRAS G12V. These findings provide proof-of-concept that the intrinsic misfolding propensity of the KRAS oncoprotein can be exploited to cause its functional inactivation.
Collapse
Affiliation(s)
- Kobe Janssen
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | | | | | | | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Yulia Lampi
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Mieke Nys
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Joffre Verniers
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Katerina Maragkou
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Ramon Duran-Romaña
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Mónica Musteanu
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid28029, Spain
| | | | | | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, 3000Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven3000, Leuven, Belgium
| |
Collapse
|
23
|
The dynamicity of mutant KRAS β2 strand modulates its downstream activation and predicts anticancer KRAS inhibition. Life Sci 2022; 310:121053. [DOI: 10.1016/j.lfs.2022.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
24
|
Agosta F, Kellogg GE, Cozzini P. From oncoproteins to spike proteins: the evaluation of intramolecular stability using hydropathic force field. J Comput Aided Mol Des 2022; 36:797-804. [PMID: 36315295 PMCID: PMC9628575 DOI: 10.1007/s10822-022-00477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Evaluation of the intramolecular stability of proteins plays a key role in the comprehension of their biological behavior and mechanism of action. Small structural alterations such as mutations induced by single nucleotide polymorphism can impact biological activity and pharmacological modulation. Covid-19 mutations, that affect viral replication and the susceptibility to antibody neutralization, and the action of antiviral drugs, are just one example. In this work, the intramolecular stability of mutated proteins, like Spike glycoprotein and its complexes with the human target, is evaluated through hydropathic intramolecular energy scoring originally conceived by Abraham and Kellogg based on the “Extension of the fragment method to calculate amino acid zwitterion and side-chain partition coefficients” by Abraham and Leo in Proteins: Struct. Funct. Genet. 1987, 2:130 − 52. HINT is proposed as a fast and reliable tool for the stability evaluation of any mutated system. This work has been written in honor of Prof. Donald J. Abraham (1936–2021).
Collapse
Affiliation(s)
- Federica Agosta
- Molecular Modeling Laboratory, Food and Drug Department, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Glen E Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 3298-0133, Richmond, VG, USA
| | - Pietro Cozzini
- Molecular Modeling Laboratory, Food and Drug Department, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| |
Collapse
|
25
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
26
|
Ma H, Wu F, Bai Y, Wang T, Ma S, Guo L, Liu G, Leng G, Kong Y, Zhang Y. Licoricidin combats gastric cancer by targeting the ICMT/Ras pathway in vitro and in vivo. Front Pharmacol 2022; 13:972825. [PMID: 36339587 PMCID: PMC9629146 DOI: 10.3389/fphar.2022.972825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Licoricidin, a type of isoflavonoid, is extracted from the root of Glycyrrhiza glabra. It has been widely proven that licoricidin possesses multiple biological activities, including anti-cancer effects and a powerful antimicrobial effect against Helicobacter pylori (H. pylori). However, the exact mechanism of licoricidin against gastric cancer remains unclear. In this study, we comprehensively explored the effects of licoricidin on MGC-803 gastric cancer cells in vitro and in vivo and further elucidated its mechanism of action. Our results revealed that licoricidin exhibited multiple anti-gastric cancer activities, including suppressing proliferation, inducing apoptosis, arresting the cell cycle in G0/G1 phase, and inhibiting the migration and invasion abilities of MGC-803 gastric cancer cells. In addition to this, a total of 5861 proteins were identified by quantitative proteomics research strategy of TMT labeling, of which 19 differential proteins (two upregulated and 17 downregulated) were screened out. Combining bioinformatics analyses and the reported roles in cancer progression of the 19 proteins, we speculated that isoprenyl carboxyl methyltransferase (ICMT) was the most likely target of licoricidin. Western blot assays and IHC assays subsequently proved that licoricidin significantly downregulated the expression of ICMT, both in MGC-803 cells and in xenograft tumors. Moreover, licoricidin effectively reduced the level of active Ras-GTP and blocked the phosphorylation of Raf and Erk, which may be involved in its anti-gastric cancer effects. In summary, we first demonstrated that licoricidin exerted favorable anti-gastric cancer activities via the ICMT/Ras pathway, which suggests that licoricidin, as a natural product, could be a novel candidate for the management of gastric cancer.
Collapse
Affiliation(s)
- Hanwei Ma
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Pediatric Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fahong Wu
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yinliang Bai
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tianwei Wang
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shangxian Ma
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liuqing Guo
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Guiyuan Liu
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Guangxian Leng
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yin Kong
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Youcheng Zhang,
| |
Collapse
|
27
|
Weeks R, Zhou X, Yuan TL, Zhang J. Fluorescent Biosensor for Measuring Ras Activity in Living Cells. J Am Chem Soc 2022; 144:17432-17440. [PMID: 36122391 PMCID: PMC10031818 DOI: 10.1021/jacs.2c05203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The small GTPase Ras is a critical regulator of cell growth and proliferation. Its activity is frequently dysregulated in cancers, prompting decades of work to pharmacologically target Ras. Understanding Ras biology and developing effective Ras therapeutics both require probing Ras activity in its native context, yet tools to measure its activities in cellulo are limited. Here, we developed a ratiometric Ras activity reporter (RasAR) that provides quantitative measurement of Ras activity in living cells with high spatiotemporal resolution. We demonstrated that RasAR can probe live-cell activities of all the primary isoforms of Ras. Given that the functional roles of different isoforms of Ras are intimately linked to their subcellular distribution and regulation, we interrogated the spatiotemporal regulation of Ras utilizing subcellularly targeted RasAR and uncovered the role of Src kinase as an upstream regulator to inhibit HRas. Furthermore, we showed that RasAR enables capture of KRasG12C inhibition dynamics in living cells upon treatment with KRasG12C covalent inhibitors, including ARS1620, Sotorasib, and Adagrasib. We found in living cells a residual Ras activity lingers for hours in the presence of these inhibitors. Together, RasAR represents a powerful molecular tool to enable live-cell interrogation of Ras activity and facilitate the development of Ras inhibitors.
Collapse
Affiliation(s)
- Ryan Weeks
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tina L. Yuan
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: Jin Zhang, 9500 Gilman Drive, BRF-II 1120, La Jolla, CA 92093-0702, phone (858) 246-0602,
| |
Collapse
|
28
|
Cheng Y, Chen J, Shi Y, Fang X, Tang Z. MAPK Signaling Pathway in Oral Squamous Cell Carcinoma: Biological Function and Targeted Therapy. Cancers (Basel) 2022; 14:cancers14194625. [PMID: 36230547 PMCID: PMC9563402 DOI: 10.3390/cancers14194625] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma accounts for 95% of human head and neck squamous cell carcinoma cases. It is highly malignant and aggressive, with a poor prognosis and a 5-year survival rate of <50%. In recent years, basic and clinical studies have been performed on the role of the mitogen-activated protein kinase (MAPK) signaling pathway in oral cancer. The MAPK signaling pathway is activated in over 50% of human oral cancer cases. Herein, we review research progress on the MAPK signaling pathway and its potential therapeutic mechanisms and discuss its molecular targeting to explore its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Yuxin Shi
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (X.F.); (Z.T.)
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (X.F.); (Z.T.)
| |
Collapse
|
29
|
Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022; 27:5710. [PMID: 36080477 PMCID: PMC9457765 DOI: 10.3390/molecules27175710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The Rat Sarcoma (RAS) family (NRAS, HRAS, and KRAS) is endowed with GTPase activity to regulate various signaling pathways in ubiquitous animal cells. As proto-oncogenes, RAS mutations can maintain activation, leading to the growth and proliferation of abnormal cells and the development of a variety of human cancers. For the fight against tumors, the discovery of RAS-targeted drugs is of high significance. On the one hand, the structural properties of the RAS protein make it difficult to find inhibitors specifically targeted to it. On the other hand, targeting other molecules in the RAS signaling pathway often leads to severe tissue toxicities due to the lack of disease specificity. However, computer-aided drug design (CADD) can help solve the above problems. As an interdisciplinary approach that combines computational biology with medicinal chemistry, CADD has brought a variety of advances and numerous benefits to drug design, such as the rapid identification of new targets and discovery of new drugs. Based on an overview of RAS features and the history of inhibitor discovery, this review provides insight into the application of mainstream CADD methods to RAS drug design.
Collapse
Affiliation(s)
- Ge Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuhao Bai
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Jiarui Cui
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zirui Zong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuan Gao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
30
|
Yu Z, Su H, Chen J, Hu G. Deciphering Conformational Changes of the GDP-Bound NRAS Induced by Mutations G13D, Q61R, and C118S through Gaussian Accelerated Molecular Dynamic Simulations. Molecules 2022; 27:5596. [PMID: 36080363 PMCID: PMC9457619 DOI: 10.3390/molecules27175596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
The conformational changes in switch domains significantly affect the activity of NRAS. Gaussian-accelerated molecular dynamics (GaMD) simulations of three separate replicas were performed to decipher the effects of G13D, Q16R, and C118S on the conformational transformation of the GDP-bound NRAS. The analyses of root-mean-square fluctuations and dynamics cross-correlation maps indicated that the structural flexibility and motion modes of the switch domains involved in the binding of NRAS to effectors are highly altered by the G13D, Q61R, and C118Smutations. The free energy landscapes (FELs) suggested that mutations induce more energetic states in NRAS than the GDP-bound WT NRAS and lead to high disorder in the switch domains. The FELs also indicated that the different numbers of sodium ions entering the GDP binding regions compensate for the changes in electrostatic environments caused by mutations, especially for G13D. The GDP-residue interactions revealed that the disorder in the switch domains was attributable to the unstable hydrogen bonds between GDP and two residues, V29 and D30. This work is expected to provide information on the energetic basis and dynamics of conformational changes in switch domains that can aid in deeply understanding the target roles of NRAS in anticancer treatment.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongyi Su
- Laoling People’s Hospital, Dezhou 253600, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- Laoling People’s Hospital, Dezhou 253600, China
| |
Collapse
|
31
|
Differential roles and regulation of the protein kinases PAK4, PAK5 and PAK6 in melanoma cells. Biochem J 2022; 479:1709-1725. [PMID: 35969127 PMCID: PMC9444074 DOI: 10.1042/bcj20220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
The protein kinases PAK4, PAK5 and PAK6 comprise a family of ohnologues. In multiple cancers including melanomas PAK5 most frequently carries non-synonymous mutations; PAK6 and PAK4 have fewer; and PAK4 is often amplified. To help interpret these genomic data, initially we compared the cellular regulation of the sister kinases and their roles in melanoma cells. In common with many ohnologue protein kinases, PAK4, PAK5 and PAK6 each have two 14-3-3-binding phosphosites of which phosphoSer99 is conserved. PAK4 localises to the leading edge of cells in response to phorbol ester-stimulated binding of 14-3-3 to phosphoSer99 and phosphoSer181, which are phosphorylated by two different PKCs or PKDs. These phosphorylations of PAK4 are essential for its phorbol ester-stimulated phosphorylation of downstream substrates. In contrast, 14-3-3 interacts with PAK5 in response to phorbol ester-stimulated phosphorylation of Ser99 and epidermal growth factor-stimulated phosphorylation of Ser288; whereas PAK6 docks onto 14-3-3 and is prevented from localising to cell–cell junctions when Ser133 is phosphorylated in response to cAMP-elevating agents via PKA and insulin-like growth factor 1 via PKB/Akt. Silencing of PAK4 impairs viability, migration and invasive behaviour of melanoma cells carrying BRAFV600E or NRASQ61K mutations. These defects are rescued by ectopic expression of PAK4, more so by a 14-3-3-binding deficient PAK4, and barely by PAK5 or PAK6. Together these genomic, biochemical and cellular data suggest that the oncogenic properties of PAK4 are regulated by PKC–PKD signalling in melanoma, while PAK5 and PAK6 are dispensable in this cancer.
Collapse
|
32
|
Zhuang H, Fan J, Li M, Zhang H, Yang X, Lin L, Lu S, Wang Q, Liu Y. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Front Oncol 2022; 12:915512. [PMID: 36033504 PMCID: PMC9399772 DOI: 10.3389/fonc.2022.915512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Special oncogenic mutations in the RAS proteins lead to the aberrant activation of RAS and its downstream signaling pathways. AMG510, the first approval drug for KRAS, covalently binds to the mutated cysteine 12 of KRASG12C protein and has shown promising antitumor activity in clinical trials. Recent studies have reported that the clinically acquired Y96D mutation could severely affect the effectiveness of AMG510. However, the underlying mechanism of the drug-resistance remains unclear. To address this, we performed multiple microsecond molecular dynamics simulations on the KRASG12C−AMG510 and KRASG12C/Y96D−AMG510 complexes at the atomic level. The direct interaction between the residue 96 and AMG510 was impaired owing to the Y96D mutation. Moreover, the mutation yielded higher flexibility and more coupled motion of the switch II and α3-helix, which led to the departing motion of the switch II and α3-helix. The resulting departing motion impaired the interaction between the switch II and α3-helix and subsequently induced the opening and loosening of the AMG510 binding pocket, which further disrupted the interaction between the key residues in the pocket and AMG510 and induced an increased solvent exposure of AMG510. These findings reveal the resistance mechanism of AMG510 to KRASG12C/Y96D, which will help to offer guidance for the development of KRAS targeted drugs to overcome acquired resistance.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| |
Collapse
|
33
|
Bartolucci D, Pession A, Hrelia P, Tonelli R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics 2022; 14:pharmaceutics14071453. [PMID: 35890348 PMCID: PMC9315662 DOI: 10.3390/pharmaceutics14071453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer incidence and mortality continue to increase, while the conventional chemotherapeutic drugs confer limited efficacy and relevant toxic side effects. Novel strategies are urgently needed for more effective and safe therapeutics in oncology. However, a large number of proteins are considered undruggable by conventional drugs, such as the small molecules. Moreover, the mRNA itself retains oncological functions, and its targeting offers the double advantage of blocking the tumorigenic activities of the mRNA and the translation into protein. Finally, a large family of non-coding RNAs (ncRNAs) has recently emerged that are also dysregulated in cancer, but they could not be targeted by drugs directed against the proteins. In this context, this review describes how the oligonucleotide therapeutics targeting RNA or DNA sequences, are emerging as a new class of drugs, able to tackle the limitations described above. Numerous clinical trials are evaluating oligonucleotides for tumor treatment, and in the next few years some of them are expected to reach the market. We describe the oligonucleotide therapeutics targeting undruggable proteins (focusing on the most relevant, such as those originating from the MYC and RAS gene families), and for ncRNAs, in particular on those that are under clinical trial evaluation in oncology. We highlight the challenges and solutions for the clinical success of oligonucleotide therapeutics, with particular emphasis on the peculiar challenges that render it arduous to treat tumors, such as heterogeneity and the high mutation rate. In the review are presented these and other advantages offered by the oligonucleotide as an emerging class of biotherapeutics for a new era of precision anti-cancer medicine.
Collapse
Affiliation(s)
| | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
- Correspondence:
| |
Collapse
|
34
|
Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, Ferreira LAM, Pavarino ÉC, Castanhole-Nunes MMU, Goloni-Bertollo EM. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. Int J Mol Sci 2022; 23:7483. [PMID: 35806488 PMCID: PMC9267745 DOI: 10.3390/ijms23137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations and alterations in the expression of VEGFA, KRAS, and NFE2L2 oncogenes play a key role in cancer initiation and progression. These genes are enrolled not only in cell proliferation control, but also in angiogenesis, drug resistance, metastasis, and survival of tumor cells. MicroRNAs (miRNAs) are small, non-coding regulatory RNA molecules that can regulate post-transcriptional expression of multiple target genes. We aimed to investigate if miRNAs hsa-miR-17-5p, hsa-miR-140-5p, and hsa-miR-874-3p could interfere in VEGFA, KRAS, and NFE2L2 expression in cell lines derived from head and neck cancer (HNC). FADU (pharyngeal cancer) and HN13 (oral cavity cancer) cell lines were transfected with miR-17-5p, miR-140-5p, and miR-874-3p microRNA mimics. RNA and protein expression analyses revealed that miR-17-5p, miR-140-5p and miR-874-3p overexpression led to a downregulation of VEGFA, KRAS, and NFE2L2 gene expression in both cell lines analyzed. Taken together, our results provide evidence for the establishment of new biomarkers in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Caroline Izak Cuzziol
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Ludimila Leite Marzochi
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Vitória Scavacini Possebon
- Institute of Biosciences, Humanities and Exact Sciences, Campus Sao Jose do Rio Preto, São Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, Brazil; (V.S.P.); (V.S.J.)
| | - Rosa Sayoko Kawasaki-Oyama
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Marlon Fraga Mattos
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Vilson Serafim Junior
- Institute of Biosciences, Humanities and Exact Sciences, Campus Sao Jose do Rio Preto, São Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, Brazil; (V.S.P.); (V.S.J.)
| | - Letícia Antunes Muniz Ferreira
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Érika Cristina Pavarino
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Márcia Maria Urbanin Castanhole-Nunes
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Eny Maria Goloni-Bertollo
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| |
Collapse
|
35
|
Weiss A, Lorthiois E, Barys L, Beyer KS, Bomio-Confaglia C, Burks H, Chen X, Cui X, de Kanter R, Dharmarajan L, Fedele C, Gerspacher M, Guthy DA, Head V, Jaeger A, Núñez EJ, Kearns JD, Leblanc C, Maira SM, Murphy J, Oakman H, Ostermann N, Ottl J, Rigollier P, Roman D, Schnell C, Sedrani R, Shimizu T, Stringer R, Vaupel A, Voshol H, Wessels P, Widmer T, Wilcken R, Xu K, Zecri F, Farago AF, Cotesta S, Brachmann SM. Discovery, Preclinical Characterization, and Early Clinical Activity of JDQ443, a Structurally Novel, Potent, and Selective Covalent Oral Inhibitor of KRASG12C. Cancer Discov 2022; 12:1500-1517. [PMID: 35404998 PMCID: PMC9394399 DOI: 10.1158/2159-8290.cd-22-0158] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023]
Abstract
Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Louise Barys
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kim S. Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Heather Burks
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xiaoming Cui
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Ruben de Kanter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Gerspacher
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Victoria Head
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ashley Jaeger
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Jeffrey D. Kearns
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Jason Murphy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Helen Oakman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Danielle Roman
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Rowan Stringer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kun Xu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Frederic Zecri
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Anna F. Farago
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Saskia M. Brachmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| |
Collapse
|
36
|
Novoplansky O, Jagadeeshan S, Regev O, Menashe I, Elkabets M. Worldwide Prevalence and Clinical Characteristics of RAS Mutations in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:838911. [PMID: 35600380 PMCID: PMC9121358 DOI: 10.3389/fonc.2022.838911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In light of the development of RAS inhibitors, a reliable assessment of the prevalence of RAS mutations and their correlation with the clinical features of patients with HNC is crucially needed. This meta-analysis compiles the findings of 149 studies with over 8500 HNC patients and assesses the global prevalence of mutations in the HRAS, KRAS and NRAS genes. The available data were stratified according to geographical region, clinical features, and tumor characteristics, including human papillomavirus (HPV) infection status and tumor stage. In addition, the distribution of codon substitutions in each RAS gene was assessed. The estimated mutation rate is highest for HRAS (7%), followed by KRAS (2.89%) and NRAS (2.20%). HRAS prevalence in South Asia (15.28%) is twice as high as the global estimate. HRAS mutations are more prevalent in oral cavity and salivary gland tumors. In contrast, KRAS mutations are found more frequently in sinonasal tumors, and NRAS mutations are found chiefly in tumors of the nasopharynx. OR analyses show a significant association between HRAS mutations and a high tumor stage (OR=3.63). In addition, there is a significant association between HPV-positive status and KRAS mutations (OR=2.09). This study highlights RAS as a potential therapeutic target in certain subsets of HNC patients.
Collapse
Affiliation(s)
- Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad Regev
- Joyce & Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Menashe
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
37
|
Cáceres-Gutiérrez RE, Alfaro-Mora Y, Andonegui MA, Díaz-Chávez J, Herrera LA. The Influence of Oncogenic RAS on Chemotherapy and Radiotherapy Resistance Through DNA Repair Pathways. Front Cell Dev Biol 2022; 10:751367. [PMID: 35359456 PMCID: PMC8962660 DOI: 10.3389/fcell.2022.751367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
RAS oncogenes are chief tumorigenic drivers, and their mutation constitutes a universal predictor of poor outcome and treatment resistance. Despite more than 30 years of intensive research since the identification of the first RAS mutation, most attempts to therapeutically target RAS mutants have failed to reach the clinic. In fact, the first mutant RAS inhibitor, Sotorasib, was only approved by the FDA until 2021. However, since Sotorasib targets the KRAS G12C mutant with high specificity, relatively few patients will benefit from this therapy. On the other hand, indirect approaches to inhibit the RAS pathway have revealed very intricate cascades involving feedback loops impossible to overcome with currently available therapies. Some of these mechanisms play different roles along the multistep carcinogenic process. For instance, although mutant RAS increases replicative, metabolic and oxidative stress, adaptive responses alleviate these conditions to preserve cellular survival and avoid the onset of oncogene-induced senescence during tumorigenesis. The resulting rewiring of cellular mechanisms involves the DNA damage response and pathways associated with oxidative stress, which are co-opted by cancer cells to promote survival, proliferation, and chemo- and radioresistance. Nonetheless, these systems become so crucial to cancer cells that they can be exploited as specific tumor vulnerabilities. Here, we discuss key aspects of RAS biology and detail some of the mechanisms that mediate chemo- and radiotherapy resistance of mutant RAS cancers through the DNA repair pathways. We also discuss recent progress in therapeutic RAS targeting and propose future directions for the field.
Collapse
Affiliation(s)
- Rodrigo E. Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marco A. Andonegui
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- *Correspondence: Luis A. Herrera, ; José Díaz-Chávez,
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Luis A. Herrera, ; José Díaz-Chávez,
| |
Collapse
|
38
|
SGSM2 inhibits thyroid cancer progression by activating RAP1 and enhancing competitive RAS inhibition. Cell Death Dis 2022; 13:218. [PMID: 35264562 PMCID: PMC8907342 DOI: 10.1038/s41419-022-04598-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
Thyroid cancer (TC) is one of the most common malignancies involving the head and neck, and its incidences are increasing every year. Small G protein signaling modulators 2 (SGSM2) belongs to a newly identified protein group that contributes to numerous cancer progression. However, its role in TC remains unknown. The aim of this study was to explore the functions and underlying molecular mechanism of SGSM2 in the progression of thyroid tumorigenesis. Here, we demonstrated that SGSM2 expression was markedly decreased in TC, and that lower SGSM2 expression was potentially related to worse patient prognosis. Meanwhile, the SGSM2 levels were not directly correlated with BRAF or RAS mutations in TC. Based on our functional analysis, ectopic SGSM2 expression strongly prevented cell proliferation, migration, invasion, and tumorigenic activity in TC cells that harbored wild type RAS. Mechanistically, we demonstrated that SGSM2 interacted with Small G protein Ras-associated protein 1(RAP1) and augmented its activity. Activated RAP1 then competitively suppressed RAS activation and thereby downregulated output of MAPK/ERK and PI3K/Akt networks, which are primary contributors of TC. In summary, the present study reports a tumor suppressive role of SGSM2 in TC. Moreover, we revealed the underlying molecular mechanism, thus providing a potential therapeutic target for TCs that harbor wild type RAS. A schematic model of SGSM2 suppressing the progression of RASWT thyroid cancer.![]()
Collapse
|
39
|
Li Y, Han L, Zhang Z. Understanding the influence of AMG 510 on the structure of KRAS G12C empowered by molecular dynamics simulation. Comput Struct Biotechnol J 2022; 20:1056-1067. [PMID: 35284050 PMCID: PMC8894142 DOI: 10.1016/j.csbj.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
The KRASG12C mutant is often associated with human cancers, and AMG 510 as a promising covalent inhibitor of KRASG12C has achieved surprising efficacy in clinical trials. However, the interaction mechanism between KRASG12C and AMG 510 is not completely understood. Here, we performed all-atom molecular dynamics simulations on the complex of KRASG12C-AMG 510 to explore the influence of this covalent inhibitor on the conformational change of KRASG12C. A PCA (Principal Component Analysis) model was constructed based on known KRAS crystal structures to distinguish different conformations (active, inactive, and other). By mapping simulation trajectories onto the PCA model, we observed that the conformations of KRASG12C bound with AMG 510 were mainly concentrated in the inactive conformation. Further analysis demonstrated that AMG 510 reduced the flexibility of two switch regions to make the complex of KRASG12C-AMG 510 restricted in the inactive conformation. In the meantime, we also identified key interacting residues between KRASG12C and AMG 510 through the calculation of binding energy. Finally, we built a series of KRAS second-site mutation systems (i.e. KRASG12C/mutations) to conduct large-scale screening of potential resistance mutations. By further combining MD simulations and the PCA model, we not only recapitulated the currently known resistance mutations of AMG 510 successfully but also proposed some novel potential resistant mutations. Taken together, these results broaden our insight into the influence of AMG 510 on the conformational change of the KRASG12C mutant at the atomic level, thereby providing crucial hints for the improvement and optimization of drug candidates.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Pavic K, Chippalkatti R, Abankwa D. Drug targeting opportunities en route to Ras nanoclusters. Adv Cancer Res 2022; 153:63-99. [PMID: 35101236 DOI: 10.1016/bs.acr.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.
Collapse
Affiliation(s)
- Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
41
|
Rashid FA, Bhat GH, Khan MS, Tabassum S, Bhat MH. Variations in MAP kinase gladiators and risk of differentiated thyroid carcinoma. Mol Clin Oncol 2022; 16:45. [PMID: 35003743 PMCID: PMC8739702 DOI: 10.3892/mco.2021.2478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Thyroid carcinoma (TC) accounts for ~2.1% of newly diagnosed cancer cases. Mutations in KRAS, HRAS, NRAS and BRAF are primary participants in the development and progression of various types of malignancy, including differentiated TC (DTC). Therefore, the present prospective cohort study aimed to screen patients with DTC for variations in RAS gene family and BRAF gene. Exon 1 and 2 of KRAS, HRAS, NRAS and exon 15 of BRAF gene were screened for hotspot mutations in 72 thyroid tumor and adjacent normal tissue samples using di-deoxy Sanger sequencing. HRAS T81C mutation was found in 21% (15 of 72) of DTC tissue samples, therefore this mutation was investigated in blood samples from patients with DTC and controls as a genetic polymorphism. In addition, HRAS T81C genotypes were determined in 180 patients with DTC and 220 healthy controls by performing restriction fragment length polymorphism. BRAFV600E mutation was confined to classical variant of papillary thyoid cancer (CPTC; 44.4%) and was significantly associated with multifocality and lymph node (LN) metastasis. No mutation was found in exons 1 and 2 of KRAS and NRAS and exon 2 of HRAS genes, however, mutation was detected in exon 1 of HRAS gene (codon 27) at nucleotide position 81 in 21% (15 of 72) of DTC tumor tissue samples. Furthermore, HRAS T81C single nucleotide polymorphism was significantly associated with the risk of DTC with variant genotypes more frequently detected in cases compared with controls (P≤0.05). Moreover, frequency of variant genotypes (TC+CC) was significantly higher among DTC cases with no history of smoking, males, greater age, multifocality and LN metatasis compared with healthy controls (P<0.05). BRAFV600E mutation was primarily present in CPTC and associated with an aggressive tumor phenotype but mutations in RAS gene family were not present in patients with DTC. HRAS T81C polymorphism may be involved in the etiopathogenesis of DTC in a Pakistani cohort. Furthermore, testing for the BRAFV600E mutation may be useful for selecting initial therapy and follow-up monitoring.
Collapse
Affiliation(s)
- Faiza A Rashid
- Department of Biological Sciences, International Islamic University, Islamabad 1243, Pakistan
| | - Ghulam Hassan Bhat
- Department of Biochemistry, Government Medical College and Associated Shri Maharaja Hari Singh and Super Speciality Hospital, Srinagar, Jammu and Kashmir 190010, India
| | - Mosin S Khan
- Department of Biochemistry, Government Medical College and Associated Shri Maharaja Hari Singh and Super Speciality Hospital, Srinagar, Jammu and Kashmir 190010, India
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad 1243, Pakistan
| | - Mohammad Hayat Bhat
- Department of Endocrinology, Government Medical College and Associated Shri Maharaja Hari Singh and Super Speciality Hospital, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|
42
|
Chen J, Zeng Q, Wang W, Hu Q, Bao H. Q61 mutant-mediated dynamics changes of the GTP-KRAS complex probed by Gaussian accelerated molecular dynamics and free energy landscapes. RSC Adv 2022; 12:1742-1757. [PMID: 35425180 PMCID: PMC8978876 DOI: 10.1039/d1ra07936k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular mechanism of the GTP-KRAS binding is significant for improving the target roles of KRAS in cancer treatment. In this work, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations were applied to decode the effect of Q61A, Q61H and Q61L on the activity of KRAS. Dynamics analyses based on MR-GaMD trajectory reveal that motion modes and dynamics behavior of the switch domain in KRAS are heavily affected by the three Q61 mutants. Information of free energy landscapes (FELs) shows that Q61A, Q61H and Q61L induce structural disorder of the switch domain and disturb the activity of KRAS. Analysis of the interaction network uncovers that the decrease in the stability of hydrogen bonding interactions (HBIs) of GTP with residues V29 and D30 induced by Q61A, Q61H and Q61L is responsible for the structural disorder of the switch-I and that in the occupancy of the hydrogen bond between GTP and residue G60 leads to the structural disorder of the switch-II. Thus, the high disorder of the switch domain caused by three current Q61 mutants produces a significant effect on binding of KRAS to its effectors. This work is expected to provide useful information for further understanding function and target roles of KRAS in anti-cancer drug development.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Wei Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Qingquan Hu
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
43
|
Xu P, Zhao Y, Yu T, Yu Y, Ni X, Wang H, Sun L, Han P, Wang L, Sun T, Liu X, Zhou H, Peng J, Hou M, Hou Y, Xu M. Atorvastatin restores imbalance of cluster of differentiation 4 (CD4) + T cells in immune thrombocytopenia in vivo and in vitro. Br J Haematol 2021; 201:530-541. [PMID: 34825359 DOI: 10.1111/bjh.17938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease, in which the overactivation of T cells is crucial in the pathogenesis. Atorvastatin (AT), a lipid-lowering medicine, has shown promising immunomodulatory effects in certain inflammatory conditions. However, the immunoregulatory role of AT in ITP remains elusive. To investigate the effect of AT in the treatment of ITP, cluster of differentiation 4 (CD4)+ T cells were isolated from patients with ITP and cultured with different dosages of AT. We found that AT significantly inhibited cell proliferation, led to cell cycle arrest, induced apoptosis, and repressed the activation of CD4+ T cells in vitro. ITP murine models were then established, and results showed that AT treatment led to faster recovery of the platelet count to normal and exhibited comparable immunomodulatory function. Furthermore, we found the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT) and extracellular signal-regulated kinase (ERK), as well as activation of rat sarcoma virus (RAS) were all reduced dramatically after AT treatment in vitro. In conclusion, our present study demonstrated that AT could reinstate the functions of CD4+ T cells by inhibiting the excessive activation, proliferation, and survival of CD4+ T cells in ITP via the RAS/mitogen-activated protein kinase kinase (MEK)/ERK and the mTOR/phosphatidylinositol-3 kinase (PI3K)/AKT pathway. Therefore, we propose that AT could be used as a potential therapeutic option for ITP by restoring the over-activated cellular immunity.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yafei Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofei Ni
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingjun Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Kim HJ, Lee HN, Jeong MS, Jang SB. Oncogenic KRAS: Signaling and Drug Resistance. Cancers (Basel) 2021; 13:cancers13225599. [PMID: 34830757 PMCID: PMC8616169 DOI: 10.3390/cancers13225599] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
RAS proteins play a role in many physiological signals transduction processes, including cell growth, division, and survival. The Ras protein has amino acids 188-189 and functions as GTPase. These proteins are switch molecules that cycle between inactive GDP-bound and active GTP-bound by guanine nucleotide exchange factors (GEFs). KRAS is one of the Ras superfamily isoforms (N-RAS, H-RAS, and K-RAS) that frequently mutate in cancer. The mutation of KRAS is essentially performing the transformation in humans. Since most RAS proteins belong to GTPase, mutated and GTP-bound active RAS is found in many cancers. Despite KRAS being an important molecule in mostly human cancer, including pancreatic and breast, numerous efforts in years past have persisted in cancer therapy targeting KRAS mutant. This review summarizes the biological characteristics of these proteins and the recent progress in the exploration of KRAS-targeted anticancer, leading to new insight.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; (H.J.K.); (H.N.L.)
| | - Han Na Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; (H.J.K.); (H.N.L.)
| | - Mi Suk Jeong
- Institute for Plastic Information and Energy Materials and Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (S.B.J.); Fax: +82-51-581-2544 (S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; (H.J.K.); (H.N.L.)
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (S.B.J.); Fax: +82-51-581-2544 (S.B.J.)
| |
Collapse
|
45
|
Castel P, Dharmaiah S, Sale MJ, Messing S, Rizzuto G, Cuevas-Navarro A, Cheng A, Trnka MJ, Urisman A, Esposito D, Simanshu DK, McCormick F. RAS interaction with Sin1 is dispensable for mTORC2 assembly and activity. Proc Natl Acad Sci U S A 2021; 118:e2103261118. [PMID: 34380736 PMCID: PMC8379911 DOI: 10.1073/pnas.2103261118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Srisathiyanarayanan Dharmaiah
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Simon Messing
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Gabrielle Rizzuto
- Department of Anatomic Pathology, University of California, San Francisco, CA 94158
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Anatoly Urisman
- Department of Anatomic Pathology, University of California, San Francisco, CA 94158
| | - Dominic Esposito
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Dhirendra K Simanshu
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702;
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158;
| |
Collapse
|
46
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
47
|
Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021; 21:510-525. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Basdemirci M, Zamani A, Zamani AG, Findik S, Yildirim MS. Extended-spectrum of KRAS and NRAS mutations in lung cancer tissue specimens obtained with bronchoscopy. Indian J Cancer 2021; 59:236-243. [PMID: 34380837 DOI: 10.4103/ijc.ijc_766_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Mutations in the RAS genes, HRAS, KRAS, and NRAS, are the most common modifications in many types of human tumors and are found in approximately 30% of all human cancers. These mutations are usually found in codons 12, 13, or 61. Methods The aim of this study is to evaluate mutations in codons 59, 117, and 146 of KRAS and NRAS genes in addition to codons 12,13, and 61 of KRAS gene in lung cancer tissue specimens obtained with bronchoscopy. KRAS and NRAS mutation analyses with pyrosequencing were performed on DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue samples of 64 patients histopathologically diagnosed as lung cancer after bronchoscopic biopsy. Results In all, 20 patients (31.2%) had mutations in KRAS gene (8/27 squamous cell carcinoma, 8/11 adenocarcinoma, 3/16 small cell carcinoma, and 1/1 pleomorphic carcinoma). The most common mutation in codon 12 was in c.35G>T (G12V). When the mutation rate of adenocarcinoma (72.7%) and squamous cell carcinoma (22.9%) patients was compared with each other, a statistically significant difference was observed (P = 0.008). There were no mutations in codons 59, 117, or 146 of KRAS and NRAS genes in patients with lung cancer. Conclusion In this study, we firstly examined mutations in codons 59, 117, and 146 of KRAS and NRAS genes in addition to codons 12, 13, and 61 of KRAS gene in Turkish lung cancer patients both in non-small cell lung cancer and small cell lung cancer. Although no mutation was detected in codons 59, 117, and 146 of KRAS and NRAS genes, the frequency of KRAS gene mutation was higher than the rate of mutation in both Asian and Western countries, and multicenter studies including more cases should be performed to further explore our results.
Collapse
Affiliation(s)
- Muserref Basdemirci
- Department of Medical Genetics, Konya Training and Research Hospital, Konya, Turkey
| | - Adil Zamani
- Department of Pulmonary Medicine, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ayse G Zamani
- Department of Medical Genetics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Siddika Findik
- Department of Pathology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mahmut S Yildirim
- Department of Medical Genetics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
49
|
Hood FE, Sahraoui YM, Jenkins RE, Prior I. Absolute Quantitation of GTPase Protein Abundance. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:65-90. [PMID: 33977471 DOI: 10.1007/978-1-0716-1190-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ras proteins and other small molecular weight GTPases are molecular switches controlling a wide range of cellular functions. High homology and functional redundancy between closely related family members are commonly observed. Antibody-based methods are commonly used to characterize their protein expression. However, these approaches are typically semi-quantitative, and the requirement to use different antibodies means that this strategy is not suited for comparative analysis of the relative expression of proteins expressed by different genes. We present a mass spectrometry-based method that precisely quantifies the protein copy number per cell of a protein of interest. We provide detailed protocols for the generation of isotopically labeled protein standards, cell/tissue processing, mass-spectrometry optimization, and subsequent utilization for the absolute quantitation of the abundance of a protein of interest. As examples, we provide instructions for the quantification of HRAS, KRAS4A, KRAS4B, NRAS, RALA, and RALB in cell line and tissue-derived samples.
Collapse
Affiliation(s)
- Fiona E Hood
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Yasmina M Sahraoui
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rosalind E Jenkins
- Centre for Drug Safety Science Bioanalytical Facility, Division of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ian Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
50
|
Eren M, Tuncbag N, Jang H, Nussinov R, Gursoy A, Keskin O. Normal Mode Analysis of KRas4B Reveals Partner Specific Dynamics. J Phys Chem B 2021; 125:5210-5221. [PMID: 33978412 PMCID: PMC9969846 DOI: 10.1021/acs.jpcb.1c00891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ras GTPase interacts with its regulators and downstream effectors for its critical function in cellular signaling. Targeting the disrupted mechanisms in Ras-related human cancers requires understanding the distinct dynamics of these protein-protein interactions. We performed normal mode analysis (NMA) of KRas4B in wild-type or mutant monomeric and neurofibromin-1 (NF1), Son of Sevenless 1 (SOS1) or Raf-1 bound dimeric conformational states to reveal partner-specific dynamics of the protein. Gaussian network model (GNM) analysis showed that the known KRas4B lobes further partition into subdomains upon binding to its partners. Furthermore, KRas4B interactions with different partners suppress the flexibility in not only their binding sites but also distant residues in the allosteric lobe in a partner-specific way. The conformational changes can be driven by intrinsic residue fluctuations of the open state KRas4B-GDP, as we illustrated with anisotropic network model (ANM) analysis. The allosteric paths connecting the nucleotide binding residues to the allosteric site at α3-L7 portray differences in the inactive and active states. These findings help in understanding the partner-specific KRas4B dynamics, which could be utilized for therapeutic targeting.
Collapse
Affiliation(s)
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, and School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|