1
|
Pohlschroder M, Schulze S, Pfeiffer F, Hong Y. Haloferax volcanii: a versatile model for studying archaeal biology. J Bacteriol 2025:e0006225. [PMID: 40366157 DOI: 10.1128/jb.00062-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Archaea, once thought limited to extreme environments, are now recognized as ubiquitous and fundamental players in global ecosystems. While morphologically similar to bacteria, they are a distinct domain of life and are evolutionarily closer to eukaryotes. The development of model archaeal systems has facilitated studies that have underscored unique physiological, biochemical, and genetic characteristics of archaea. Haloferax volcanii stands out as a model archaeon due to its ease of culturing, ability to grow on defined media, amenability to genetic and biochemical methods, as well as the support from a highly collaborative community. This haloarchaeon has been instrumental in exploring diverse aspects of archaeal biology, ranging from polyploidy, replication origins, and post-translational modifications to cell surface biogenesis, metabolism, and adaptation to high-salt environments. The extensive use of Hfx. volcanii further catalyzed the development of new technologies and databases, facilitating discovery-driven research that offers significant implications for biotechnology, biomedicine, and core biological questions.
Collapse
Affiliation(s)
| | - Stefan Schulze
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, USA
| | - Friedhelm Pfeiffer
- Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Yirui Hong
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Chen H, Zheng F, Feng X, Huang Z, Yang W, Zhang C, Du W, Makarova KS, Koonin EV, Zeng Z. Engineering archaeal membrane-spanning lipid GDGT biosynthesis in bacteria: Implications for early life membrane transformations. MLIFE 2025; 4:193-204. [PMID: 40313982 PMCID: PMC12042123 DOI: 10.1002/mlf2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Accepted: 12/25/2024] [Indexed: 05/03/2025]
Abstract
Eukaryotes are hypothesized to be archaeal-bacterial chimeras. Given the different chemical structures of membrane phospholipids in archaea and bacteria, transformations of membranes during eukaryogenesis that led to the bacterial-type membranes of eukaryotic cells remain a major conundrum. One of the possible intermediates of eukaryogenesis could involve an archaeal-bacterial hybrid membrane. So far, organisms with hybrid membranes have not been discovered, and experimentation on such membranes has been limited. To generate mixed membranes, we reconstructed the archaeal membrane lipid biosynthesis pathway in Escherichia coli, creating three strains that individually produced archaeal lipids ranging from simple, such as DGGGOH (digeranylgeranylglycerol) and archaeol, to complex, such as GDGT (glycerol dialkyl glycerol tetraether). The physiological responses became more pronounced as the hybrid membrane incorporated more complex archaeal membrane lipids. In particular, biosynthesis of GDGT induced a pronounced SOS response, accompanied by cellular filamentation, explosive cell lysis, and ATP accumulation. Thus, bacteria seem to be able to incorporate simple archaeal membrane lipids, such as DGGGOH and archaeol, without major fitness costs, compatible with the involvement of hybrid membranes at the early stages of cell evolution and in eukaryogenesis. By contrast, the acquisition of more complex, structurally diverse membrane lipids, such as GDGT, appears to be strongly deleterious to bacteria, suggesting that this type of lipid is an archaeal innovation.
Collapse
Affiliation(s)
- Huahui Chen
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Fengfeng Zheng
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Xi Feng
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Zijing Huang
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Wei Yang
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Chuanlun Zhang
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of MedicineBethesdaMarylandUSA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of MedicineBethesdaMarylandUSA
| | - Zhirui Zeng
- Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
3
|
Ithurbide S, Buan N, Schulze S. Advancing archaeal research through FAIR resource and data sharing, and inclusive community building. Commun Biol 2025; 8:519. [PMID: 40157984 PMCID: PMC11954925 DOI: 10.1038/s42003-025-07962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Over the last two decades archaeal research has expanded into a wide-ranging research field, driven by a fairly small research community. Archaea are now recognized as important players in the One-Health approach and expertise on the biology of archaea has become crucial in the study of a broad range of topics and environments, including the host-associated microbiomes, major nutrient cycles, greenhouse gas metabolism, the cell biology and origin of eukaryotes, adaptation of life to extremes, as well as various biotechnological applications. Here, we summarize existing resources and ongoing efforts in the engaged broader archaeal scientific community to accelerate research and resource sharing guided by FAIR (findable, accessible, interoperable, reusable) data-sharing principles. We highlight ongoing community efforts that: (i) aim to share protocols and best practices for working with archaea (e.g. ARCHAEA.bio), (ii) combine large 'omics datasets for the dissemination of unified, system-wide results (e.g. Archaeal Proteome Project, KBase) and (iii) provide opportunities for scientists to present their work in a supportive environment and to forge connections and collaborations (e.g. Archaea Power Hour). Together, these resources and projects promise to spur and cross-fertilize research, making archaeal research more accessible to a broader and more diverse audience.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nicole Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stefan Schulze
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
4
|
Baltsavia I, Stamoulos G, Tziavaras K, Bouas C, Katikaridou I, Dermaris A, Kothari A, Iliopoulos I, Caspi R, Karp P, Kyrpides N, Ouzounis C. MjCyc: Rediscovering the pathway-genome landscape of the first sequenced archaeon, Methanocaldococcus (Methanococcus) jannaschii. iScience 2025; 28:111546. [PMID: 39834858 PMCID: PMC11742838 DOI: 10.1016/j.isci.2024.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/01/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
The genome of Methanocaldococcus (Methanococcus) jannaschii DSM 2661 was the first Archaeal genome to be sequenced in 1996. Subsequent sequence-based annotation cycles led to its first metabolic reconstruction in 2005. Leveraging new experimental results and function assignments, we have now re-annotated M. jannaschii, creating an updated resource with novel information and testable predictions in a pathway-genome database available at BioCyc.org. This reannotation effort has resulted in 652 function assignments with enzyme roles, accounting for a third of the total protein-coding entries for this genome. The updated resource includes 883 reactions, 540 enzymes, and 142 individual pathways. Despite notable progress in computational genomics, more than a third of the genome remains functionally uncharacterized. The publicly available MjCyc pathway-genome database holds great potential for the wider community to conduct research on the biology of methanogenic Archaea.
Collapse
Affiliation(s)
- I. Baltsavia
- Computational Biology Group, School of Medicine, University of Crete, Heraklion, Greece
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
| | - G. Stamoulos
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, School of Informatics, Aristotle University of Thessalonica, Thessalonica, Greece
| | - K. Tziavaras
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, School of Informatics, Aristotle University of Thessalonica, Thessalonica, Greece
| | - C. Bouas
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, School of Informatics, Aristotle University of Thessalonica, Thessalonica, Greece
| | - I. Katikaridou
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, School of Informatics, Aristotle University of Thessalonica, Thessalonica, Greece
| | - A. Dermaris
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, School of Informatics, Aristotle University of Thessalonica, Thessalonica, Greece
| | - A. Kothari
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, USA
| | - I. Iliopoulos
- Computational Biology Group, School of Medicine, University of Crete, Heraklion, Greece
| | - R. Caspi
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, USA
| | - P.D. Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, USA
| | - N.C. Kyrpides
- DoE Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - C.A. Ouzounis
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, School of Informatics, Aristotle University of Thessalonica, Thessalonica, Greece
- DoE Joint Genome Institute, Berkeley, CA, USA
| |
Collapse
|
5
|
Yang W, Ji J, Fang G. A metric and its derived protein network for evaluation of ortholog database inconsistency. BMC Bioinformatics 2025; 26:6. [PMID: 39773281 PMCID: PMC11707888 DOI: 10.1186/s12859-024-06023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ortholog prediction, essential for various genomic research areas, faces growing inconsistencies amidst the expanding array of ortholog databases. The common strategy of computing consensus orthologs introduces additional arbitrariness, emphasizing the need to examine the causes of such inconsistencies and identify proteins susceptible to prediction errors. RESULTS We introduce the Signal Jaccard Index (SJI), a novel metric rooted in unsupervised genome context clustering, designed to assess protein similarity. Leveraging SJI, we construct a protein network and reveal that peripheral proteins within the network are the primary contributors to inconsistencies in orthology predictions. Furthermore, we show that a protein's degree centrality in the network serves as a strong predictor of its reliability in consensus sets. CONCLUSIONS We present an objective, unsupervised SJI-based network encompassing all proteins, in which its topological features elucidate ortholog prediction inconsistencies. The degree centrality (DC) effectively identifies error-prone orthology assignments without relying on arbitrary parameters. Notably, DC is stable, unaffected by species selection, and well-suited for ortholog benchmarking. This approach transcends the limitations of universal thresholds, offering a robust and quantitative framework to explore protein evolution and functional relationships.
Collapse
Affiliation(s)
- Weijie Yang
- NYU-Shanghai, Shanghai, 200120, China
- Software Engineering Institute, East China Normal University, Shanghai, 200062, China
| | - Jingsi Ji
- NYU-Shanghai, Shanghai, 200120, China
- Software Engineering Institute, East China Normal University, Shanghai, 200062, China
| | - Gang Fang
- NYU-Shanghai, Shanghai, 200120, China.
- Department of Biology, New York University, New York, NY, 10003, USA.
- Software Engineering Institute, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
6
|
Alanzi AR. Exploring Microbial Dark Matter for the Discovery of Novel Natural Products: Characteristics, Abundance Challenges and Methods. J Microbiol Biotechnol 2024; 35:e2407064. [PMID: 39639495 PMCID: PMC11813339 DOI: 10.4014/jmb.2407.07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The objective of this review is to investigate microbial dark matter (MDM) with a focus on its potential for discovering novel natural products (NPs). This first part will examine the characteristics and abundance of these previously unexplored microbial communities, as well as the challenges faced in identifying and harnessing their unique biochemical properties and novel methods in this field. MDMs are thought to hold great potential for the discovery of novel NPs, which could have significant applications in medicine, agriculture, and industry. In recent years, there has been a growing interest in exploring MDM to unlock its potential. In fact, developments in genome-sequencing technologies and sophisticated phylogenetic procedures and metagenomic techniques have contributed to drastically make important changes in our sights on the diversity of microbial life, including the very outline of the tree of life. This has led to the development of novel technologies and methodologies for studying these elusive microorganisms, such as single-cell genomics, metagenomics, and culturomics. These approaches enable researchers to isolate and analyze individual microbial cells, as well as entire communities, providing insights into their genetic and metabolic potential. By delving into the MDM, scientists hope to uncover new compounds and biotechnological advancements that could have far-reaching impacts on various fields.
Collapse
Affiliation(s)
- Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Karavaeva V, Sousa FL. Navigating the archaeal frontier: insights and projections from bioinformatic pipelines. Front Microbiol 2024; 15:1433224. [PMID: 39380680 PMCID: PMC11459464 DOI: 10.3389/fmicb.2024.1433224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Archaea continues to be one of the least investigated domains of life, and in recent years, the advent of metagenomics has led to the discovery of many new lineages at the phylum level. For the majority, only automatic genomic annotations can provide information regarding their metabolic potential and role in the environment. Here, genomic data from 2,978 archaeal genomes was used to perform automatic annotations using bioinformatics tools, alongside synteny analysis. These automatic classifications were done to assess how good these different tools perform in relation to archaeal data. Our study revealed that even with lowered cutoffs, several functional models do not capture the recently discovered archaeal diversity. Moreover, our investigation revealed that a significant portion of archaeal genomes, approximately 42%, remain uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range of unclassified proteins is obtained, with well-studied organisms like Escherichia coli having a substantially lower proportion of uncharacterized regions, ranging from <5 to 25%, and less studied lineages being comparable to archaea with the range of 35-40% of unclassified regions. Leveraging this analysis, we were able to identify metabolic protein markers, thereby providing insights into the metabolism of the archaea in our dataset. Our findings underscore a substantial gap between automatic classification tools and the comprehensive mapping of archaeal metabolism. Despite advances in computational approaches, a significant portion of archaeal genomes remains unexplored, highlighting the need for extensive experimental validation in this domain, as well as more refined annotation methods. This study contributes to a better understanding of archaeal metabolism and underscores the importance of further research in elucidating the functional potential of archaeal genomes.
Collapse
Affiliation(s)
- Val Karavaeva
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Hong Y, Makarova KS, Xu R, Pfeiffer F, Pohlschroder M. Beyond bacterial paradigms: uncovering the functional significance and first biogenesis machinery of archaeal lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609747. [PMID: 39372745 PMCID: PMC11451621 DOI: 10.1101/2024.08.27.609747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Lipoproteins are major constituents of prokaryotic cell surfaces. In bacteria, lipoprotein attachment to membrane lipids is catalyzed by prolipoprotein diacylglyceryl transferase (Lgt). However, no Lgt homologs have been identified in archaea, suggesting the unique archaeal membrane lipids require distinct enzymes for lipoprotein lipidation. Here, we performed in silico predictions for all major archaeal lineages and revealed a high prevalence of lipoproteins across the domain Archaea. Using comparative genomics, we identified the first set of candidates for archaeal lipoprotein biogenesis components (Ali). Genetic and biochemical characterization confirmed two paralogous genes, aliA and aliB , are important for lipoprotein lipidation in the archaeon Haloferax volcanii . Disruption of AliA- and AliB-mediated lipoprotein lipidation results in severe growth defects, decreased motility, and cell-shape alterations, underscoring the importance of lipoproteins in archaeal cell physiology. AliA and AliB also exhibit different enzymatic activities, including potential substrate selectivity, uncovering a new layer of regulation for prokaryotic lipoprotein lipidation.
Collapse
|
9
|
Bhoobalan-Chitty Y, Xu S, Martinez-Alvarez L, Karamycheva S, Makarova KS, Koonin EV, Peng X. Regulatory sequence-based discovery of anti-defense genes in archaeal viruses. Nat Commun 2024; 15:3699. [PMID: 38698035 PMCID: PMC11065993 DOI: 10.1038/s41467-024-48074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.
Collapse
Affiliation(s)
| | - Shuanshuan Xu
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
10
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, origin, and evolution of the ESCRT systems. mBio 2024; 15:e0033524. [PMID: 38380930 PMCID: PMC10936438 DOI: 10.1128/mbio.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Zhao S, Makarova KS, Zheng W, Zhan L, Wan Q, Liu Y, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division. Nat Microbiol 2024; 9:712-726. [PMID: 38443574 DOI: 10.1038/s41564-024-01615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Makarova KS, Zhang C, Wolf YI, Karamycheva S, Whitaker RJ, Koonin EV. Computational analysis of genes with lethal knockout phenotype and prediction of essential genes in archaea. mBio 2024; 15:e0309223. [PMID: 38189270 PMCID: PMC10865827 DOI: 10.1128/mbio.03092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, Origin and Evolution of the ESCRT Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579148. [PMID: 38903064 PMCID: PMC11188069 DOI: 10.1101/2024.02.06.579148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Endosomal Sorting Complexes Required for Transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold, using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The Last Archaeal Common Ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
14
|
Rodríguez Del Río Á, Giner-Lamia J, Cantalapiedra CP, Botas J, Deng Z, Hernández-Plaza A, Munar-Palmer M, Santamaría-Hernando S, Rodríguez-Herva JJ, Ruscheweyh HJ, Paoli L, Schmidt TSB, Sunagawa S, Bork P, López-Solanilla E, Coelho LP, Huerta-Cepas J. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 2024; 626:377-384. [PMID: 38109938 PMCID: PMC10849945 DOI: 10.1038/s41586-023-06955-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Joaquín Giner-Lamia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Universidad de Sevilla-CSIC, Seville, Spain
| | - Carlos P Cantalapiedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge Botas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ziqi Deng
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ana Hernández-Plaza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Martí Munar-Palmer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
15
|
Centurion VB, Rossi A, Orellana E, Ghiotto G, Kakuk B, Morlino MS, Basile A, Zampieri G, Treu L, Campanaro S. A unified compendium of prokaryotic and viral genomes from over 300 anaerobic digestion microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:1. [PMID: 38167520 PMCID: PMC10762816 DOI: 10.1186/s40793-023-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The anaerobic digestion process degrades organic matter into simpler compounds and occurs in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of microorganisms where each species has a unique role and it has relevant biotechnological applications since it is used for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: a better comprehension of the community composition and role of each species is crucial for a cured understanding of the carbon cycle in anaerobic systems and improving biogas production. RESULTS The primary objective of this study was to expand our understanding on the anaerobic digestion microbiome by jointly analyzing its prokaryotic and viral components. By integrating 192 additional datasets into a previous metagenomic database, the binning process generated 11,831 metagenome-assembled genomes from 314 metagenome samples published between 2014 and 2022, belonging to 4,568 non-redundant species based on ANI calculation and quality verification. CRISPR analysis on these genomes identified 76 archaeal genomes with active phage interactions. Moreover, single-nucleotide variants further pointed to archaea as the most critical members of the community. Among the MAGs, two methanogenic archaea, Methanothrix sp. 43zhSC_152 and Methanoculleus sp. 52maCN_3230, had the highest number of SNVs, with the latter having almost double the density of most other MAGs. CONCLUSIONS This study offers a more comprehensive understanding of microbial community structures that thrive at different temperatures. The findings revealed that the fraction of archaeal species characterized at the genome level and reported in public databases is higher than that of bacteria, although still quite limited. The identification of shared spacers between phages and microbes implies a history of phage-bacterial interactions, and specifically lysogenic infections. A significant number of SNVs were identified, primarily comprising synonymous and nonsynonymous variants. Together, the findings indicate that methanogenic archaea are subject to intense selective pressure and suggest that genomic variants play a critical role in the anaerobic digestion process. Overall, this study provides a more balanced and diverse representation of the anaerobic digestion microbiota in terms of geographic location, temperature range and feedstock utilization.
Collapse
Affiliation(s)
| | - Alessandro Rossi
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Esteban Orellana
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Gabriele Ghiotto
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, 12 Somogyi B. U. 4., Szeged, 6720, Hungary
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Arianna Basile
- MRC Toxicology Unit, University of Cambridge, Gleeson Building Tennis Court Road, Cambridge, UK
| | - Guido Zampieri
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Laura Treu
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| |
Collapse
|
16
|
Novikova PV, Bhanu Busi S, Probst AJ, May P, Wilmes P. Functional prediction of proteins from the human gut archaeome. ISME COMMUNICATIONS 2024; 4:ycad014. [PMID: 38486809 PMCID: PMC10939349 DOI: 10.1093/ismeco/ycad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 03/17/2024]
Abstract
The human gastrointestinal tract contains diverse microbial communities, including archaea. Among them, Methanobrevibacter smithii represents a highly active and clinically relevant methanogenic archaeon, being involved in gastrointestinal disorders, such as inflammatory bowel disease and obesity. Herein, we present an integrated approach using sequence and structure information to improve the annotation of M. smithii proteins using advanced protein structure prediction and annotation tools, such as AlphaFold2, trRosetta, ProFunc, and DeepFri. Of an initial set of 873 481 archaeal proteins, we found 707 754 proteins exclusively present in the human gut. Having analysed archaeal proteins together with 87 282 994 bacterial proteins, we identified unique archaeal proteins and archaeal-bacterial homologs. We then predicted and characterized functional domains and structures of 73 unique and homologous archaeal protein clusters linked the human gut and M. smithii. We refined annotations based on the predicted structures, extending existing sequence similarity-based annotations. We identified gut-specific archaeal proteins that may be involved in defense mechanisms, virulence, adhesion, and the degradation of toxic substances. Interestingly, we identified potential glycosyltransferases that could be associated with N-linked and O-glycosylation. Additionally, we found preliminary evidence for interdomain horizontal gene transfer between Clostridia species and M. smithii, which includes sporulation Stage V proteins AE and AD. Our study broadens the understanding of archaeal biology, particularly M. smithii, and highlights the importance of considering both sequence and structure for the prediction of protein function.
Collapse
Affiliation(s)
- Polina V Novikova
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8 BB, United Kingdom
| | - Alexander J Probst
- Environmental Metagenomics, Department of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, for Environmental Microbiology and Biotechnology, University Duisburg-Essen, Duisburg 47057, Germany
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Paul Wilmes
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| |
Collapse
|
17
|
Rafiq M, Hassan N, Rehman M, Hayat M, Nadeem G, Hassan F, Iqbal N, Ali H, Zada S, Kang Y, Sajjad W, Jamal M. Challenges and Approaches of Culturing the Unculturable Archaea. BIOLOGY 2023; 12:1499. [PMID: 38132325 PMCID: PMC10740628 DOI: 10.3390/biology12121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Since Carl Woese's discovery of archaea as a third domain of life, numerous archaeal species have been discovered, yet archaeal diversity is poorly characterized. Culturing archaea is complicated, but several queries about archaeal cell biology, evolution, physiology, and diversity need to be solved by culturing and culture-dependent techniques. Increasing interest in demand for innovative culturing methods has led to various technological and methodological advances. The current review explains frequent hurdles hindering uncultured archaea isolation and discusses features for more archaeal cultivation. This review also discusses successful strategies and available media for archaeal culturing, which might be helpful for future culturing practices.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- FF Institute (Huzhou) Co., Ltd., Huzhou 313000, China
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 266101, China
| | - Gullasht Nadeem
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Sahib Zada
- Guangzhou Institute of Energy Conservation, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| |
Collapse
|
18
|
Mathlouthi NEH, Belguith I, Yengui M, Oumarou Hama H, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. The Archaeome's Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures. Microorganisms 2023; 11:2742. [PMID: 38004753 PMCID: PMC10673094 DOI: 10.3390/microorganisms11112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea's role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. METHODS We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. RESULTS Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. CONCLUSIONS The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea's role in CRC dynamics.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Mariem Yengui
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Ghiles Grine
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
- Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| |
Collapse
|
19
|
Zhao S, Makarova KS, Zheng W, Liu Y, Zhan L, Wan Q, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread PRC barrel proteins play critical roles in archaeal cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534520. [PMID: 37090588 PMCID: PMC10120694 DOI: 10.1101/2023.03.28.534520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cell division is fundamental to all cellular life. Most of the archaea employ one of two alternative division machineries, one centered around the prokaryotic tubulin homolog FtsZ and the other around the endosomal sorting complex required for transport (ESCRT). However, neither of these mechanisms has been thoroughly characterized in archaea. Here, we show that three of the four PRC (Photosynthetic Reaction Center) barrel domain proteins of Haloferax volcanii (renamed Cell division proteins B1/2/3 (CdpB1/2/3)), play important roles in division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologs of CdpB proteins are also involved in cell division in other haloarchaea. Phylogenetic analysis shows that PRC barrel proteins are widely distributed among archaea, including the highly conserved CdvA protein of the crenarchaeal ESCRT-based division system. Thus, diverse PRC barrel proteins appear to be central to cell division in most if not all archaea. Further study of these proteins is expected to elucidate the division mechanisms in archaea and their evolution.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Aulitto M, Martinez-Alvarez L, Fusco S, She Q, Bartolucci S, Peng X, Contursi P. Genomics, Transcriptomics, and Proteomics of SSV1 and Related Fusellovirus: A Minireview. Viruses 2022; 14:2082. [PMID: 36298638 PMCID: PMC9608457 DOI: 10.3390/v14102082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Saccharolobus spindle-shaped virus 1 (SSV1) was one of the first viruses identified in the archaeal kingdom. Originally isolated from a Japanese species of Saccharolobus back in 1984, it has been extensively used as a model system for genomic, transcriptomic, and proteomic studies, as well as to unveil the molecular mechanisms governing the host-virus interaction. The purpose of this mini review is to supply a compendium of four decades of research on the SSV1 virus.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
| | - Laura Martinez-Alvarez
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 250100, China
| | | | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Patrizia Contursi
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
21
|
de Crécy-lagard V, Amorin de Hegedus R, Arighi C, Babor J, Bateman A, Blaby I, Blaby-Haas C, Bridge AJ, Burley SK, Cleveland S, Colwell LJ, Conesa A, Dallago C, Danchin A, de Waard A, Deutschbauer A, Dias R, Ding Y, Fang G, Friedberg I, Gerlt J, Goldford J, Gorelik M, Gyori BM, Henry C, Hutinet G, Jaroch M, Karp PD, Kondratova L, Lu Z, Marchler-Bauer A, Martin MJ, McWhite C, Moghe GD, Monaghan P, Morgat A, Mungall CJ, Natale DA, Nelson WC, O’Donoghue S, Orengo C, O’Toole KH, Radivojac P, Reed C, Roberts RJ, Rodionov D, Rodionova IA, Rudolf JD, Saleh L, Sheynkman G, Thibaud-Nissen F, Thomas PD, Uetz P, Vallenet D, Carter EW, Weigele PR, Wood V, Wood-Charlson EM, Xu J. A roadmap for the functional annotation of protein families: a community perspective. Database (Oxford) 2022; 2022:baac062. [PMID: 35961013 PMCID: PMC9374478 DOI: 10.1093/database/baac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.
Collapse
Affiliation(s)
- Valérie de Crécy-lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
| | - Jill Babor
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Ian Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Crysten Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alan J Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stacey Cleveland
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lucy J Colwell
- Departmenf of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia 46980, Spain
| | - Christian Dallago
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology, i12, Boltzmannstr. 3, Garching/Munich 85748, Germany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, SAR Hong Kong 999077, China
| | - Anita de Waard
- Research Collaboration Unit, Elsevier, Jericho, VT 05465, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Raquel Dias
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, USA
| | - Gang Fang
- NYU-Shanghai, Shanghai 200120, China
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - John Gerlt
- Institute for Genomic Biology and Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua Goldford
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark Gorelik
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025, USA
| | | | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Claire McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Paul Monaghan
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL 32611, USA
| | - Anne Morgat
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Darren A Natale
- Georgetown University Medical Center, Washington, DC 20007, USA
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA 99354, USA
| | - Seán O’Donoghue
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Colbie Reed
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Dmitri Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irina A Rodionova
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Lana Saleh
- New England Biolabs, Ipswich, MA 01938, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Uetz
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry 91057, France
| | - Erica Watson Carter
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | | | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jin Xu
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| |
Collapse
|
22
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
23
|
Zhang H, Gong X, Zhao Q, Mukai T, Vargas-Rodriguez O, Zhang H, Zhang Y, Wassel P, Amikura K, Maupin-Furlow J, Ren Y, Xu X, Wolf YI, Makarova K, Koonin E, Shen Y, Söll D, Fu X. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Res 2022; 50:4601-4615. [PMID: 35466371 PMCID: PMC9071458 DOI: 10.1093/nar/gkac271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.
Collapse
Affiliation(s)
| | | | | | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Huiming Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,Sino-Danish College, University of the Chinese Academy of Sciences, Beijing, China
| | - Paul Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Shen
- Correspondence may also be addressed to Yue Shen.
| | - Dieter Söll
- To whom correspondence should be addressed. Tel: +1 203 4326200;
| | - Xian Fu
- Correspondence may also be addressed to Xian Fu.
| |
Collapse
|
24
|
Zatopek KM, Fossa SL, Bilotti K, Caffrey PJ, Chuzel L, Gehring AM, Lohman GJS, Taron CH, Gardner AF. Capillary Electrophoresis-Based Functional Genomics Screening to Discover Novel Archaeal DNA Modifying Enzymes. Appl Environ Microbiol 2022; 88:e0213721. [PMID: 34788065 PMCID: PMC8788744 DOI: 10.1128/aem.02137-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 12/05/2022] Open
Abstract
It has been predicted that 30 to 80% of archaeal genomes remain annotated as hypothetical proteins with no assigned gene function. Further, many archaeal organisms are difficult to grow or are unculturable. To overcome these technical and experimental hurdles, we developed a high-throughput functional genomics screen that utilizes capillary electrophoresis (CE) to identify nucleic acid modifying enzymes based on activity rather than sequence homology. Here, we describe a functional genomics screening workflow to find DNA modifying enzyme activities encoded by the hyperthermophile Thermococcus kodakarensis (T. kodakarensis). Large DNA insert fosmid libraries representing an ∼5-fold average coverage of the T. kodakarensis genome were prepared in Escherichia coli. RNA-seq showed a high fraction (84%) of T. kodakarensis genes were transcribed in E. coli despite differences in promoter structure and translational machinery. Our high-throughput screening workflow used fluorescently labeled DNA substrates directly in heat-treated lysates of fosmid clones with capillary electrophoresis detection of reaction products. Using this method, we identified both a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and a novel AP lyase DNA repair enzyme family (termed 'TK0353') that is found only in a small subset of Thermococcales. The screening methodology described provides a fast and efficient way to explore the T. kodakarensis genome for a variety of nucleic acid modifying activities and may have implications for similar exploration of enzymes and pathways that underlie core cellular processes in other Archaea. IMPORTANCE This study provides a rapid, simple, high-throughput method to discover novel archaeal nucleic acid modifying enzymes by utilizing a fosmid genomic library, next-generation sequencing, and capillary electrophoresis. The method described here provides the details necessary to create 384-well fosmid library plates from Thermococcus kodakarensis genomic DNA, sequence 384-well fosmids plates using Illumina next-generation sequencing, and perform high-throughput functional read-out assays using capillary electrophoresis to identify a variety of nucleic acid modifying activities, including DNA cleavage and ligation. We used this approach to identify a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and identify a novel AP lyase enzyme (TK0353) that lacks sequence homology to known nucleic acid modifying enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Léa Chuzel
- New England Biolabs, Inc., Ipswich, Massachusetts, USA
| | | | | | | | | |
Collapse
|
25
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
26
|
Klein T, Poghosyan L, Barclay JE, Murrell JC, Hutchings MI, Lehtovirta-Morley LE. OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6551892. [PMID: 35323924 PMCID: PMC9072212 DOI: 10.1093/femsle/fnac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/17/2021] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools. The aim of this study was to develop a reliable method for growing individual colonies from AOA cultures on solid medium. Three phylogenetically distinct AOA strains were tested: ‘Candidatus Nitrosocosmicus franklandus C13’, Nitrososphaera viennensis EN76 and ‘Candidatus Nitrosotalea sinensis Nd2’. Of the gelling agents tested, agar and Bacto-agar severely inhibited growth of all three strains. In contrast, both ‘Ca. N. franklandus C13’ and N. viennensis EN76 tolerated Phytagel™ while the acidophilic ‘Ca. N. sinensis Nd2’ was completely inhibited. Based on these observations, we developed a Liquid-Solid (LS) method that involves immobilising cells in Phytagel™ and overlaying with liquid medium. This approach resulted in the development of visible distinct colonies from ‘Ca. N. franklandus C13’ and N. viennensis EN76 cultures and lays the groundwork for the genetic manipulation of this group of microorganisms.
Collapse
Affiliation(s)
- Timothy Klein
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lianna Poghosyan
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - J Elaine Barclay
- Bioimaging Facility, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Laura E Lehtovirta-Morley
- Corresponding author: School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. Tel: +01603 592192; E-mail:
| |
Collapse
|
27
|
Perez MF, Saona LA, Farías ME, Poehlein A, Meinhardt F, Daniel R, Dib JR. Assessment of the plasmidome of an extremophilic microbial community from the Diamante Lake, Argentina. Sci Rep 2021; 11:21459. [PMID: 34728656 PMCID: PMC8563766 DOI: 10.1038/s41598-021-00753-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L-1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.
Collapse
Affiliation(s)
- María Florencia Perez
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Luis Alberto Saona
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - María Eugenia Farías
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Anja Poehlein
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Friedhelm Meinhardt
- grid.5949.10000 0001 2172 9288Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Rolf Daniel
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Julián Rafael Dib
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina ,grid.108162.c0000000121496664Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán Argentina
| |
Collapse
|
28
|
Makarova KS, Wolf YI, Shmakov SA, Liu Y, Li M, Koonin EV. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR J 2021; 3:156-163. [PMID: 33555973 DOI: 10.1089/crispr.2020.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Castro-Severyn J, Pardo-Esté C, Mendez KN, Fortt J, Marquez S, Molina F, Castro-Nallar E, Remonsellez F, Saavedra CP. Living to the High Extreme: Unraveling the Composition, Structure, and Functional Insights of Bacterial Communities Thriving in the Arsenic-Rich Salar de Huasco Altiplanic Ecosystem. Microbiol Spectr 2021; 9:e0044421. [PMID: 34190603 PMCID: PMC8552739 DOI: 10.1128/spectrum.00444-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Microbial communities inhabiting extreme environments such as Salar de Huasco (SH) in northern Chile are adapted to thrive while exposed to several abiotic pressures and the presence of toxic elements such as arsenic (As). Hence, we aimed to uncover the role of As in shaping bacterial composition, structure, and functional potential in five different sites in this altiplanic wetland using a shotgun metagenomic approach. The sites exhibit wide gradients of As (9 to 321 mg/kg), and our results showed highly diverse communities and a clear dominance exerted by the Proteobacteria and Bacteroidetes phyla. Functional potential analyses show broadly convergent patterns, contrasting with their great taxonomic variability. As-related metabolism, as well as other functional categories such as those related to the CH4 and S cycles, differs among the five communities. Particularly, we found that the distribution and abundance of As-related genes increase as the As concentration rises. Approximately 75% of the detected genes for As metabolism belong to expulsion mechanisms; arsJ and arsP pumps are related to sites with higher As concentrations and are present almost exclusively in Proteobacteria. Furthermore, taxonomic diversity and functional potential are reflected in the 12 reconstructed high-quality metagenome assembled genomes (MAGs) belonging to the Bacteroidetes (5), Proteobacteria (5), Cyanobacteria (1), and Gemmatimonadetes (1) phyla. We conclude that SH microbial communities are diverse and possess a broad genetic repertoire to thrive under extreme conditions, including increasing concentrations of highly toxic As. Finally, this environment represents a reservoir of unknown and undescribed microorganisms, with great metabolic versatility, which needs further study. IMPORTANCE As microbial communities inhabiting extreme environments are fundamental for maintaining ecosystems, many studies concerning composition, functionality, and interactions have been carried out. However, much is still unknown. Here, we sampled microbial communities in the Salar de Huasco, an extreme environment subjected to several abiotic stresses (high UV radiation, salinity and arsenic; low pressure and temperatures). We found that although microbes are taxonomically diverse, functional potential seems to have an important degree of convergence, suggesting high levels of adaptation. Particularly, arsenic metabolism showed differences associated with increasing concentrations of the metalloid throughout the area, and it effectively exerts a significant pressure over these organisms. Thus, the significance of this research is that we describe highly specialized communities thriving in little-explored environments subjected to several pressures, considered analogous of early Earth and other planets, that have the potential for unraveling technologies to face the repercussions of climate change in many areas of interest.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katterinne N. Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Fortt
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Sebastian Marquez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Karaseva AI, Elcheninov AG, Perevalova AA, Zayulina KS, Kochetkova TV, Kublanov IV. Fervidicoccus fontis Strain 3639Fd, the First Crenarchaeon Capable of Growth on Lipids. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172104007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract—
Up to now, ability of prokaryotes to grow on lipids has been shown only for bacteria. Thermococcus sibiricus, member of the phylum Euryarchaeota isolated from a high-temperature oil well and capable of growth on olive oil, is the only exception. The present work reports isolation of a pure culture of a strictly anaerobic archaeon, strain 3639Fd (=VKM B-3509, =KCTC 25228) from a Kamchatka thermal spring, capable of growth on various lipids (tributyrin, triolein, and sesame, cottonseed, and sunflower oil) at 70°C and pH 5.5–6.0. Growth on tributyrin resulted in formation of butyrate, CO2, and hydrogen. According to the results of the 16S rRNA gene sequence analysis and in silico DNA–DNA hybridization, the isolate was classified as a strain of Fervidicoccus fontis, an archaeon of the phylum Crenarchaeota. The closest characterized homologs of the α/β-hydrolases, encoded in the genomes of F. fontis 3639Fd and of the type strain of this species, Kam940T, were various carboxyl esterases (EC 3.1.1), the enzymes responsible for lipid hydrolysis. Thus, F. fontis is the first crenarchaeon able to obtain energy by hydrolysis of lipid substrates.
Collapse
|
31
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Pereira J. GCsnap: Interactive Snapshots for the Comparison of Protein-Coding Genomic Contexts. J Mol Biol 2021; 433:166943. [PMID: 33737026 DOI: 10.1016/j.jmb.2021.166943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
The biological function and evolutionary history of protein-coding genes are not only written in their nucleotide sequences. The comparison of genomic contexts throughout different lineages may highlight genomic mechanisms in the generation of new protein families, while the conservation of gene clusters may unravel, for instance, metabolic pathways. Various tools and databases exist that allow for the analysis and comparison of genomic contexts, but each has its own limitations. Online databases allow for quick comparisons, but only for those genomes for which data were pre-calculated. More advanced tools may allow for the comparison of any genome, but are often limited to a given phylogenetic kingdom or provide only a snapshot of the genomic contexts without further information about the genes involved. Here, we introduce GCsnap, a flexible Python-based tool that allows for the interactive comparison of the genomic contexts of protein-coding genes from any genome at any taxonomic level, integrating them with functional and structural information. By connecting the output to different protein databases, users can navigate through the different genomic contexts from a simple interactive platform, facilitating the further analysis of the contexts found. GCsnap is not limited to a single input format, can perform batch jobs and accepts protein classification maps. Results are stored in detailed, human and machine-readable files, and customizable, publication-ready figures. GCsnap is freely available from https://github.com/JoanaMPereira/GCsnap and can be set up easily on any computer.
Collapse
Affiliation(s)
- Joana Pereira
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
33
|
Wong HL, MacLeod FI, White RA, Visscher PT, Burns BP. Microbial dark matter filling the niche in hypersaline microbial mats. MICROBIOME 2020; 8:135. [PMID: 32938503 PMCID: PMC7495880 DOI: 10.1186/s40168-020-00910-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Shark Bay, Australia, harbours one of the most extensive and diverse systems of living microbial mats that are proposed to be analogs of some of the earliest ecosystems on Earth. These ecosystems have been shown to possess a substantial abundance of uncultivable microorganisms. These enigmatic microbes, jointly coined as 'microbial dark matter' (MDM), are hypothesised to play key roles in modern microbial mats. RESULTS We reconstructed 115 metagenome-assembled genomes (MAGs) affiliated to MDM, spanning 42 phyla. This study reports for the first time novel microorganisms (Zixibacterial order GN15) putatively taking part in dissimilatory sulfate reduction in surface hypersaline settings, as well as novel eukaryote signature proteins in the Asgard archaea. Despite possessing reduced-size genomes, the MDM MAGs are capable of fermenting and degrading organic carbon, suggesting a role in recycling organic carbon. Several forms of RuBisCo were identified, allowing putative CO2 incorporation into nucleotide salvaging pathways, which may act as an alternative carbon and phosphorus source. High capacity of hydrogen production was found among Shark Bay MDM. Putative schizorhodopsins were also identified in Parcubacteria, Asgard archaea, DPANN archaea, and Bathyarchaeota, allowing these members to potentially capture light energy. Diversity-generating retroelements were prominent in DPANN archaea that likely facilitate the adaptation to a dynamic, host-dependent lifestyle. CONCLUSIONS This is the first study to reconstruct and describe in detail metagenome-assembled genomes (MAGs) affiliated with microbial dark matter in hypersaline microbial mats. Our data suggests that these microbial groups are major players in these systems. In light of our findings, we propose H2, ribose and CO/CO2 as the main energy currencies of the MDM community in these mat systems. Video Abstract.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Richard Allen White
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
- RAW Molecular Systems LLC, Spokane, WA, USA
- Department of Bioinformatics and Genomics, The University of North Carolina, Charlotte, NC, USA
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
- Department of Marine Sciences, University of Connecticut, Mansfield, USA
- Biogeosciences, the Université de Bourgogne Franche-Comté, Dijon, France
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
34
|
Abstract
That Bacteria, Archaea and Eukarya (eukaryotes) represent three separate domains of Life, no one having evolved from within any other, has been taken as fact for three decades. Recent work shows this to be untrue. Eukarya arose from well within Archaea and are specifically related to newly discovered archaeal species with eukaryote-like features.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
35
|
The Archaeal Proteome Project advances knowledge about archaeal cell biology through comprehensive proteomics. Nat Commun 2020; 11:3145. [PMID: 32561711 PMCID: PMC7305310 DOI: 10.1038/s41467-020-16784-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022] Open
Abstract
While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeon Haloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation, N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics.
Collapse
|
36
|
Genome Analyses and Genome-Centered Metatranscriptomics of Methanothermobacter wolfeii Strain SIV6, Isolated from a Thermophilic Production-Scale Biogas Fermenter. Microorganisms 2019; 8:microorganisms8010013. [PMID: 31861790 PMCID: PMC7022856 DOI: 10.3390/microorganisms8010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
In the thermophilic biogas-producing microbial community, the genus Methanothermobacter was previously described to be frequently abundant. The aim of this study was to establish and analyze the genome sequence of the archaeal strain Methanothermobacter wolfeii SIV6 originating from a thermophilic industrial-scale biogas fermenter and compare it to related reference genomes. The circular chromosome has a size of 1,686,891 bases, featuring a GC content of 48.89%. Comparative analyses considering three completely sequenced Methanothermobacter strains revealed a core genome of 1494 coding sequences and 16 strain specific genes for M. wolfeii SIV6, which include glycosyltransferases and CRISPR/cas associated genes. Moreover, M. wolfeii SIV6 harbors all genes for the hydrogenotrophic methanogenesis pathway and genome-centered metatranscriptomics indicates the high metabolic activity of this strain, with 25.18% of all transcripts per million (TPM) belong to the hydrogenotrophic methanogenesis pathway and 18.02% of these TPM exclusively belonging to the mcr operon. This operon encodes the different subunits of the enzyme methyl-coenzyme M reductase (EC: 2.8.4.1), which catalyzes the final and rate-limiting step during methanogenesis. Finally, fragment recruitment of metagenomic reads from the thermophilic biogas fermenter on the SIV6 genome showed that the strain is abundant (1.2%) within the indigenous microbial community. Detailed analysis of the archaeal isolate M. wolfeii SIV6 indicates its role and function within the microbial community of the thermophilic biogas fermenter, towards a better understanding of the biogas production process and a microbial-based management of this complex process.
Collapse
|
37
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
38
|
Diversity of " Ca. Micrarchaeota" in Two Distinct Types of Acidic Environments and Their Associations with Thermoplasmatales. Genes (Basel) 2019; 10:genes10060461. [PMID: 31208064 PMCID: PMC6627985 DOI: 10.3390/genes10060461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
“Candidatus Micrarchaeota” are widely distributed in acidic environments; however, their cultivability and our understanding of their interactions with potential hosts are very limited. Their habitats were so far attributed with acidic sites, soils, peats, freshwater systems, and hypersaline mats. Using cultivation and culture-independent approaches (16S rRNA gene clonal libraries, high-throughput amplicon sequencing of V3-V4 region of 16S rRNA genes), we surveyed the occurrence of these archaea in geothermal areas on Kamchatka Peninsula and Kunashir Island and assessed their taxonomic diversity in relation with another type of low-pH environment, acid mine drainage stream (Wales, UK). We detected “Ca. Micrarchaeota” in thermophilic heterotrophic enrichment cultures of Kunashir and Kamchatka that appeared as two different phylotypes, namely “Ca. Mancarchaeum acidiphilum”-, and ARMAN-2-related, alongside their potential hosts, Cuniculiplasma spp. and other Thermoplasmatales archaea without defined taxonomic position. These clusters of “Ca. Micrarchaeota” together with three other groups were also present in mesophilic acid mine drainage community. Present work expands our knowledge on the diversity of “Ca. Micrarchaeota” in thermophilic and mesophilic acidic environments, suggests cultivability patterns of acidophilic archaea and establishes potential links between low-abundance species of thermophilic “Ca. Micrarchaeota” and certain Thermoplasmatales, such as Cuniculiplasma spp. in situ.
Collapse
|