1
|
Iannuzzi V, Narboux-Nême N, Lehoczki A, Levi G, Giuliani C. Stay social, stay young: a bioanthropological outlook on the processes linking sociality and ageing. GeroScience 2025; 47:721-744. [PMID: 39527178 PMCID: PMC11872968 DOI: 10.1007/s11357-024-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
In modern human societies, social interactions and pro-social behaviours are associated with better individual and collective health, reduced mortality, and increased longevity. Conversely, social isolation is a predictor of shorter lifespan. The biological processes through which sociality affects the ageing process, as well as healthspan and lifespan, are still poorly understood. Unveiling the physiological, neurological, genomic, epigenomic, and evolutionary mechanisms underlying the association between sociality and longevity may open new perspectives to understand how lifespan is determined in a broader socio/evolutionary outlook. Here we summarize evidence showing how social dynamics can shape the evolution of life history traits through physiological and genetic processes directly or indirectly related to ageing and lifespan. We start by reviewing theories of ageing that incorporate social interactions into their model. Then, we address the link between sociality and lifespan from two separate points of view: (i) considering evidences from comparative evolutionary biology and bioanthropology that demonstrates how sociality contributes to natural variation in lifespan over the course of human evolution and among different human groups in both pre-industrial and post-industrial society, and (ii) discussing the main physiological, neurological, genetic, and epigenetic molecular processes at the interface between sociality and ageing. We highlight that the exposure to chronic social stressors deregulates neurophysiological and immunological pathways and promotes accelerated ageing and thereby reducing lifespan. In conclusion, we describe how sociality and social dynamics are intimately embedded in human biology, influencing healthy ageing and lifespan, and we highlight the need to foster interdisciplinary approaches including social sciences, biological anthropology, human ecology, physiology, and genetics.
Collapse
Affiliation(s)
- Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire Et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Giovanni Levi
- Physiologie Moléculaire Et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France.
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Agache I, Hernandez ML, Radbel JM, Renz H, Akdis CA. An Overview of Climate Changes and Its Effects on Health: From Mechanisms to One Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:253-264. [PMID: 39725316 DOI: 10.1016/j.jaip.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Human activities, primarily the burning of fossil fuels, widespread deforestation, soil erosion or machine-intensive farming methods, manufacturing, food processing, mining, construction, and the iron, cement, steel, and chemicals industries, have been the main drivers of the observed increase in Earth's average surface temperature and climate change. Rising global temperatures, extreme weather events, ecosystems disruption, agricultural impacts, water scarcity, problems in access to good quality water, food and housing, and profound environmental disruptions such as biodiversity loss and extreme pollution are expected to steeply increase the prevalence and severity of acute and chronic diseases. Its long-term effects cannot be adequately predicted or mitigated without a comprehensive understanding of the adaptive ecosystems. Studying the complex interaction between environmental aggressors and the resilient adaptive responses requires the exposomic and the One Health approaches. The problem is broad and affects the whole ecosystem, plants, pets, and animals in addition to humans. The central role of the epithelial barrier, microbiome, and diet as key pillars for an adaptive tolerogenic immune response should be explored for increasing resilience at the individual level. A radical change in mindset worldwide, with sustainable solutions and adaptive strategies and climate resilience and health equity policies at their center, should be achieved quickly through increased awareness based on solid scientific data.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Michelle L Hernandez
- Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC; Children's Research Institute, University of North Carolina, Chapel Hill, NC
| | - Jared M Radbel
- Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL) and the Lung Centre of the Universities of Giessen and Marburg (UGMLC), Philipps University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
3
|
Monferrer-Marín J, Roldán A, Helge JW, Blasco-Lafarga C. Metabolic flexibility and resting autonomic function in active menopausal women. Eur J Appl Physiol 2024; 124:3649-3659. [PMID: 39052042 PMCID: PMC11568999 DOI: 10.1007/s00421-024-05568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The present study aims to analyze the relationship between cardiac autonomic control at rest-i.e., baseline Heart Rate Variability (HRV)-and metabolic flexibility assessed by means of the FATox and CHOox oxidation rates at the intensities of maximum fat and carbohydrate oxidation (MFO and MCO, respectively). METHODS Twenty-four active over-60 women (66.8 ± 4.4 years) had their HRV assessed with 10 min recordings under resting conditions, and this was analyzed with Kubios Scientific software. After this, an incremental submaximal cycling test, starting at 30 watts, with increments of 10 watts every 3 min 15 s was performed. FATox and CHOox were calculated in the last 60 s at each step, using Frayn's equation. MFO and MCO were further obtained. RESULTS Nonlinear SampEn and 1-DFAα1 (Detrending Fluctuation Analysis score) at rest were both moderate and significantly (p < 0.05) related to FATox (r = 0.43, r = -0.40) and CHOox (r = -0.59, r = 0.41), as well as RER (r = -0.43, r = 0.43) at FATmax intensity. At the MCO intensity, no association was observed between HRV and oxidation rates. However, DFAα1 (r = -0.63, p < 0.05), the frequency ratio LF/HF (r = -0.63, p < 0.05), and the Poincaré ratio SD1/SD2 (r = 0.48, p < 0.05) were correlated with blood lactate concentration. CONCLUSION These results support the autonomic resources hypothesis, suggesting that better autonomic function at rest is related to enhanced metabolic flexibility in postmenopausal women. They also underpin a comprehensive analysis of cardiovascular-autonomic health with aging. The results imply that non-linear DFAα1 and SampEn are appropriate to analyze this association in health of the aging cardiovascular-autonomic system.
Collapse
Affiliation(s)
- Jordi Monferrer-Marín
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sports Department, University of Valencia, Valencia, Spain
| | - Ainoa Roldán
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sports Department, University of Valencia, Valencia, Spain
| | - Jørn Wulff Helge
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Blasco-Lafarga
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sports Department, University of Valencia, Valencia, Spain.
| |
Collapse
|
4
|
Zhang H, Deji Q, Zhang N, Xiang Y, Zhang Y, Cai J, Yang T, Yin J, Wei Y, Ding X, Xiao X, Zhao X. Associations of three healthy dietary patterns with homeostatic dysregulation: results from the China Multi-Ethnic Cohort study. J Nutr Health Aging 2024; 28:100394. [PMID: 39418751 DOI: 10.1016/j.jnha.2024.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Homeostatic dysregulation (HD), the measure of aging-related physiological dysregulation, serves as an essential intervenable indicator of aging. OBJECTIVE To explore the associations of three healthy dietary patterns with HD, investigate the most recommended dietary patterns, and identify the significant beneficial and harmful food groups METHODS: This prospective cohort study included 8,288 participants aged 30-79 years from the China Multi-Ethnic Cohort (CMEC), with a female majority (61.6%). Dietary information was obtained through the baseline food frequency questionnaire (FFQ). Three dietary patterns were constructed: Dietary Approaches to Stop Hypertension (DASH), alternative Mediterranean diets (aMED), and Healthy Diet Score (HDS). HD was constructed based on clinical biomarkers and anthropometric measurements. Follow-up analyses adjusted for baseline data were employed to assess the longitudinal associations of three dietary patterns at baseline with HD at follow-up. Additionally, quantile G-computation was utilized to evaluate the relative contribution of each food group to the association with HD. RESULTS Over a follow-up period of 2.0 years, all healthy dietary patterns exhibited negative associations with HD, with βQ5/Q1 = -0.112, 95%CI (-0.172, -0.051) for HDS, with βQ5/Q1 = -0.073, 95%CI (-0.134, -0.012) for aMED, with βQ5/Q1 = -0.047, 95%CI (-0.107,0.014) for DASH. The results of the component analyses revealed that soybean products were the most significant beneficial food group (relative contribution of 24.0%), while alcohol was identified as the major harmful food group (relative contribution of 76.9%). CONCLUSION Healthy dietary patterns, especially HDS, are negatively associated with HD. Additionally, soybean products and alcohol are the most significant beneficial and detrimental food groups respectively. Developing appropriate nutritional strategies may help reduce the burden of disease and promote healthy aging.
Collapse
Affiliation(s)
- Hongmei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Quzong Deji
- School of Medicine, Tibet University, Tibet, China
| | - Ning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yi Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiajie Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yonglan Wei
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xianbin Ding
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
6
|
Wang Z, Xue H, Sun Y, Wang Q, Sun W, Zhang H. Deciphering the Biological Aging Impact on Alveolar Bone Loss: Insights From α-Klotho and Renal Function Dynamics. J Gerontol A Biol Sci Med Sci 2024; 79:glae172. [PMID: 38995226 DOI: 10.1093/gerona/glae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 07/13/2024] Open
Abstract
Alveolar bone loss is generally considered a chronological age-related disease. As biological aging process is not absolutely determined by increasing age, whether alveolar bone loss is associated with increasing chronological age or biological aging remains unclear. Accurately distinguishing whether alveolar bone loss is chronological age-related or biological aging-related is critical for selecting appropriate clinical treatments. This study aimed to identify the relationship between alveolar bone loss and body aging. In total, 3 635 participants from the National Health and Nutrition Examination Survey and 71 living kidney transplant recipients from Gene Expression Omnibus Datasets were enrolled. Multivariate regression analysis, smooth curve fittings, and generalized additive models were used to explore the association among alveolar bone loss, age, serum α-Klotho level, renal function markers, as well as between preoperative creatinine and renal cortex-related α-Klotho gene expression level. Meanwhile, a 2-sample Mendelian randomization (MR) study was conducted to assess the causal relationship between α-Klotho and periodontal disease (4 376 individuals vs 361 194 individuals). As a biological aging-related indicator, the α-Klotho level was negatively correlated with impaired renal function and alveolar bone loss. Correspondingly, accompanied by decreasing renal function, it was manifested with a downregulated expression level of α-Klotho in the renal cortex and aggravated alveolar bone loss. The MR analysis further identified the negative association between higher genetically predicted α-Klotho concentrations with alveolar bone loss susceptibility using the IVW (odds ratio [OR] = 0.999, p = .005). However, an inversely U-shaped association was observed between chronological age and alveolar bone loss, which is especially stable in men (the optimal cutoff values were both 62 years old). For men above 62 years old, increasing age is converted to protective factor and is accompanied by alleviated alveolar bone loss. Alveolar bone loss that is directly associated with decreased renal function and α-Klotho level was related to biological aging rather than chronological age. The renal-alveolar bone axis could provide a new sight of clinical therapy in alveolar bone loss.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Hao Xue
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiang Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Qing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54:e14229. [PMID: 38676423 DOI: 10.1111/eci.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress (OS) develops in critically ill patients as a metabolic consequence of the immunoinflammatory and degenerative processes of the tissues. These induce increased and/or dysregulated fluxes of reactive species enhancing their pro-oxidant activity and toxicity. At the same time, OS sustains its own inflammatory and immunometabolic pathogenesis, leading to a pervasive and vitious cycle of events that contribute to defective immunity, organ dysfunction and poor prognosis. Protein damage is a key player of these OS effects; it generates increased levels of protein oxidation products and misfolded proteins in both the cellular and extracellular environment, and contributes to forms DAMPs and other proteinaceous material to be removed by endocytosis and proteostasis processes of different cell types, as endothelial cells, tissue resident monocytes-macrophages and peripheral immune cells. An excess of OS and protein damage in critical illness can overwhelm such cellular processes ultimately interfering with systemic proteostasis, and consequently with innate immunity and cell death pathways of the tissues thus sustaining organ dysfunction mechanisms. Extracorporeal therapies based on biocompatible/bioactive membranes and new adsorption techniques may hold some potential in reducing the impact of OS on the defective proteostasis of patients with critical illness. These can help neutralizing reactive and toxic species, also removing solutes in a wide spectrum of molecular weights thus improving proteostasis and its immunometabolic corelates. Pharmacological therapy is also moving steps forward which could help to enhance the efficacy of extracorporeal treatments. This narrative review article explores the aspects behind the origin and pathogenic role of OS in intensive care and critically ill patients, with a focus on protein damage as a cause of impaired systemic proteostasis and immune dysfunction in critical illness.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- Department of Medicine, International Renal Research Institute of Vicenza, University of Padova, San Bortolo Hospital Vicenza, Vicenza, Italy
| |
Collapse
|
8
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Marečáková N, Kačírová J, Tóthová C, Maďari A, Maďar M, Farbáková J, Horňák S. Determination of the reference interval for urinary klotho to creatinine ratio of healthy dogs. Front Vet Sci 2024; 11:1423390. [PMID: 39113723 PMCID: PMC11305118 DOI: 10.3389/fvets.2024.1423390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
For several years, alpha klotho has been considered as a candidate biomarker in chronic kidney disease (CKD), progression of CKD and CKD mineral bone disorders (CKD-MBD). The evidence on the relationship between klotho and kidney function is controversial in some areas. The aim of the study was to identify the influence of age, sex and breed on urinary alpha klotho, values in the early stages of CKD within the studied population and determine a reference interval in a group of healthy dogs. Significantly higher values were measured in older dogs over 6 years old (p = 0.026, p = 0.0007) and in the breed German Shepherd than Belgian Shepherd (p = 0.0401). On the basis of sex and in small breed dogs, no significant differences were noted. In dogs with CKD stage 2, alpha klotho values were significantly lower (p = 0.0135) than in healthy dogs. Within the studied population, a reference interval for urinary klotho to creatinine ratio (UrKl/Cr) was determined in the range of 3.94-23.55 pg/gCr. Since our findings show that alpha klotho is associated with older age, we assume that this may have influenced the results in the group of dogs with CKD stage 1 due to the presence of predominantly old dogs in this group. Future studies would be needed to consider age as a factor affecting urinary alpha klotho in dogs with CKD.
Collapse
Affiliation(s)
- Nikola Marečáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Kačírová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Aladár Maďari
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Farbáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Slavomír Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| |
Collapse
|
10
|
Zhou Y, Wang L, Yang K, Huang J, Li Y, Li W, Zhang P, Fan F, Yin Y, Yu T, Chen S, Luo X, Tan S, Wang Z, Feng W, Tian B, Tian L, Li CSR, Tan Y. Correlation of allostatic load and perceived stress with clinical features in first-episode schizophrenia. J Psychiatr Res 2024; 172:156-163. [PMID: 38382239 DOI: 10.1016/j.jpsychires.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Stress plays an important role in the etiology of schizophrenia. However, the mechanisms by which chronic physiological stress and perceived stress relate to the clinical features of schizophrenia may differ. We aimed to elucidate the relationships among chronic physiological stress indexed by allostatic load (AL), perceived stress, and clinical symptoms in individuals with first-episode schizophrenia (FES). METHODS Individuals with FES (n = 90, mean age = 28.26years old, 49%female) and healthy controls (111, 28.88, 51%) were recruited. We collected data of 13 biological indicators to calculate the AL index, assessed subjective stress with the Perceived Stress Scale-14 (PSS-14), and compared AL and perceived stress between groups. Patients with FES were also evaluated with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS). RESULTS Individuals with FES had higher AL and PSS score than healthy controls. There were no significant correlations between AL and PSS score in either patients or controls. Among individuals with FES, the AL index was associated with the severity of positive symptoms, while the PSS score was positively associated with CDSS score. Both elevated AL and PSS were correlated with the occurrence of schizophrenia. CONCLUSIONS Physiological stress, as reflected by AL, may be more related to positive symptoms, while perceived stress appear to be associated with depressive symptoms in individuals with FES. Longitudinal studies are necessary to explore the relationships between interventions for different stressor types and specific clinical outcomes in FES.
Collapse
Affiliation(s)
- Yanfang Zhou
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Leilei Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Kebing Yang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China.
| | - Junchao Huang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanli Li
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Li
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ping Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yi Yin
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Yu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Song Chen
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Feng
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Baopeng Tian
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| |
Collapse
|
11
|
Ozdemir C, Kucuksezer UC, Ogulur I, Pat Y, Yazici D, Agache I, Jutel M, Nadeau KC, Akdis M, Akdis CA. How does global warming contribute to disorders originating from an impaired epithelial barrier? Ann Allergy Asthma Immunol 2023; 131:703-712. [PMID: 37619777 DOI: 10.1016/j.anai.2023.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
The epithelial barrier represents the point of contact between the host and the external environment. It is the first line of defense against external insults in the skin and in the gastrointestinal and upper and lower respiratory tracts. The steep increase in chronic disorders in recent decades, including allergies and autoimmune disorders, has prompted studies to investigate the immune mechanisms of their underlying pathogeneses, all of which point to a thought-provoking shared finding: disrupted epithelial barriers. Climate change with global warming has increased the frequency of unpredictable extreme weather events, such as wildfires, droughts, floods, and aberrant and longer pollination seasons, among many others. These increasingly frequent natural disasters can synergistically damage the epithelial barrier integrity in the presence of environmental pollution. A disrupted epithelial barrier induces proinflammatory activation of epithelial cells and alarmin production, namely, epithelitis. The "opened" epithelial barrier facilitates the entry of the external exposome into and underneath the epithelium, triggering an expulsion response driven by inflammatory cells in the area and chronic inflammation. These changes are associated with microbial dysbiosis with colonizing opportunistic pathogens and decreased commensals. These cellular and molecular events are key mechanisms in the pathogenesis of numerous chronic inflammatory disorders. This review summarizes the impact of global warming on epithelial barrier functions in the context of allergic diseases. Further studies in the impact of climate change on the dysfunction of the epithelial barriers are warranted to improve our understanding of epithelial barrier-related diseases and raise awareness of the environmental insults that pose a threat to our health.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Türkiye; Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Umut Can Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Türkiye
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
12
|
Wallace D, Cooper NR, Sel A, Russo R. Do non-traumatic stressful life events and ageing negatively impact working memory performance and do they interact to further impair working memory performance? PLoS One 2023; 18:e0290635. [PMID: 38019767 PMCID: PMC10686508 DOI: 10.1371/journal.pone.0290635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 08/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stress and normal ageing produce allostatic load, which may lead to difficulties with cognition thereby degrading quality of life. The current study's objective was to assess whether ageing and cumulative stress interact to accelerate cognitive decline. With 60 participants, Marshall et al. found that ageing and cumulative stress interact significantly to impair working memory performance in older adults, suggesting vulnerability to the cumulative effects of life events beyond 60 years old. To replicate and extend this finding, we increased the sample size by conducting 3 independent studies with 156 participants and improved the statistical methods by conducting an iterative Bayesian meta-analysis with Bayes factors. Bayes factors deliver a more comprehensive result because they provide evidence for either the null hypothesis (H0), the alternative hypothesis (H1) or for neither hypothesis due to evidence not being sufficiently sensitive. Young (18-35 yrs) and older (60-85 yrs) healthy adults were categorised as high or low stress based on their life events score derived from the Life Events Scale for Students or Social Readjustment Rating Scale, respectively. We measured accuracy and reaction time on a 2-back working memory task to provide: a) Bayes factors and b) Bayesian meta-analysis, which iteratively added each study's effect sizes to evaluate the overall strength of evidence that ageing, cumulative stress and/or the combination of the two detrimentally affect working memory performance. Using a larger sample (N = 156 vs. N = 60) and a more powerful statistical approach, we did not replicate the robust age by cumulative stress interaction effect found by Marshall et al.. The effects of ageing and cumulative stress also fell within the anecdotal range (⅓
Collapse
Affiliation(s)
- Denise Wallace
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
| | - Nicholas R. Cooper
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
| | - Alejandra Sel
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
| | - Riccardo Russo
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, Essex, United Kingdom
- Department of Behavioral and Brain Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Panagiotou N, McGuinness D, Jaminon AMG, Mees B, Selman C, Schurgers L, Shiels PG. Microvesicle-Mediated Tissue Regeneration Mitigates the Effects of Cellular Ageing. Cells 2023; 12:1707. [PMID: 37443741 PMCID: PMC10340655 DOI: 10.3390/cells12131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| | - Dagmara McGuinness
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
| | - Armand M. G. Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University,
Maastricht, 6229 ER Maastricht, NetherlandsThe Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Centre (MUMC),
Maastricht, The Netherlands;
| | - Colin Selman
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Leon Schurgers
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Paul G. Shiels
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| |
Collapse
|
14
|
Hamilton KL, Selman C. Can exercise prevent the age-related decline in adaptive homeostasis? Evidence across organisms and tissues. J Physiol 2023. [PMID: 37130065 DOI: 10.1113/jp284583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Karyn L Hamilton
- Department of Health and Exercise Science and The Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Agache I, Laculiceanu A, Spanu D, Grigorescu D. The Concept of One Health for Allergic Diseases and Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:290-302. [PMID: 37188486 DOI: 10.4168/aair.2023.15.3.290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
The worldwide prevalence of allergic disease is rising as a result of complex gene-environment interactions that shape the immune system and host response. Climate change and loss of biodiversity are existential threats to humans, animals, plants, and ecosystems. While there is significant progress in the development of targeted therapeutic options to treat allergies and asthma, these approaches are inadequate to meet the challenges faced by climate change. The exposomic approach is needed with the recognition of the bidirectional effect between human beings and the environment. All stakeholders need to work together toward mitigating the effects of climate change and promoting a One Health concept in order to decrease the burden of asthma and allergy and to improve immune health. Healthcare professionals should strive to incorporate One Health counseling, environmental health precepts, and advocacy into their practice.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Daniela Spanu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Dan Grigorescu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| |
Collapse
|
16
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
17
|
de Oliveira C, Sabbah W, Bernabé E. Allostatic load and depressive symptoms in older adults: An analysis of 12-year panel data. Psychoneuroendocrinology 2023; 152:106100. [PMID: 36989564 DOI: 10.1016/j.psyneuen.2023.106100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Whether changes in allostatic load (AL) and depressive symptoms relate over time has not been yet fully explored. This study evaluated the association between AL and depressive symptoms over 12 years among community-dwelling older adults. METHODS Panel data from 8291 participants in the English Longitudinal Study of Ageing were analysed. Depressive symptoms were assessed with the 8-item Centre for Epidemiologic Studies Depression Scale (CES-D). The AL score was derived from nine metabolic, cardiovascular and immune biomarkers. The association between AL and depressive symptoms was modelled in a linear hybrid model adjusting for time-invariant (sex, ethnicity) and time-variant confounders (age, marital status, education, wealth, physical activity, smoking status, alcohol intake, limitations in daily living, comorbidities). RESULTS The mean AL score was 3.1 (SD: 2.1), 3.5 (2.3), 3.2 (2.3) and 3.3 (2.5) whereas the mean CES-D score was 1.4 (SD: 1.8), 1.2 (1.8), 1.2 (1.8) and 1.2 (1.7) in waves 2, 4, 6 and 8, respectively. In the adjusted model, the between-person differences (coefficient: 0.02, 95% CI: 0.01, 0.04) but not the within-individual differences (0.01; 95% CI: -0.01, 0.03) in the AL score were associated with CES-D score. The between-person coefficient indicates that participants with greater AL scores also had slightly higher CES-D scores. The within-person coefficient indicates that changes in the AL score were not associated with changes in the CES-D score. CONCLUSION AL was associated with depressive symptoms. However, most of the association was driven by differences in AL between individuals rather than changes in AL over time.
Collapse
Affiliation(s)
- Cesar de Oliveira
- Department of Epidemiology & Public Health, University College London, Torrington Place, London W1CE 6BT, United Kingdom.
| | - Wael Sabbah
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Bessemer Road, London SE5 9RS, United Kingdom.
| | - Eduardo Bernabé
- Faculty of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, United Kingdom.
| |
Collapse
|
18
|
Chen Y, Wu J, Yu D, Liu M. Plant or Animal-Based or PLADO Diets: Which Should Chronic Kidney Disease Patients Choose? J Ren Nutr 2023; 33:228-235. [PMID: 35809890 DOI: 10.1053/j.jrn.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Nutrition therapy is the cornerstone treatment for chronic kidney disease (CKD). Although much attention has been given to dietary protein intake in CKD patients, many findings now demonstrate that the type of dietary protein intake may be more critical for CKD patients. In protein bioavailability and malnutrition prevention, many physicians recommend that CKD patients adhere to a low protein diet and restrict their plant foods, such as vegetables, fruits, and soybeans. However, nephrologists should not ignore the potential benefits of plant foods for CKD patients. It is not advisable to restrict the intake of plant foods in the later stage of CKD simply to prevent the development of hyperkalemia and malnutrition. This article highlights the benefits and possible problems of a plant-dominant low protein diet (PLADO) diet, defined as an LPD with dietary protein intake of 0.6-0.8 g/kg/day with at least 50% plant-based source for CKD patients. We hope to provide new opinions for clinical work and CKD patients.
Collapse
Affiliation(s)
- Ye Chen
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinlan Wu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Yu
- Department of Clinical Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Maodong Liu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
19
|
Lev IV, Agarkov NM. [Allostatic load in patients with diabetic retinopathy]. Vestn Oftalmol 2023; 139:7-12. [PMID: 38235624 DOI: 10.17116/oftalma20231390617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Diabetic retinopathy (DR) occupies a special place among the causes of progressive decline and loss of visual acuity, it significantly impairs the quality of life and viability of elderly patients, and allostatic load is considered its integral indicator. However, the allostatic load in patients suffering from diabetic retinopathy, as well as in other ophthalmological diseases, has not been extensively studied, so biomarkers characterizing the allostatic load of patients with diabetic retinopathy remain unknown. PURPOSE This study investigates the allostatic load in patients with diabetic retinopathy and attempts to identify the biomarkers that determine it to the fullest extent. MATERIAL AND METHODS Allostatic load was studied in 78 elderly patients with diabetic retinopathy and type 2 diabetes mellitus, and in 62 patients with type 2 diabetes mellitus without diabetic retinopathy. Allostatic load was evaluated by analyzing systolic and diastolic blood pressure, body mass index, glycated hemoglobin, total cholesterol, triglycerides, albumins, C-reactive protein, homocysteine in the blood and glomerular filtration rate. RESULTS It was found that in patients with diabetic retinopathy the most pronounced and statistically significant excess was in the content of glycated hemoglobin in the blood up to 10.2% versus 7.4%, and homocysteine up to 15.5 mmol/L versus 7.9 mmol/L compared to patients with diabetes mellitus without diabetic retinopathy, respectively. The value of the allostatic index was significantly higher in patients with diabetic retinopathy, amounting to 4.6±0.4 points, versus 2.9±0.3 points in patients with diabetes mellitus without the studied ophthalmic pathology (p<0.001). Factor analysis made it possible to identify biomarkers of allostatic load in patients with diabetic retinopathy - glycated hemoglobin, homocysteine, triglycerides and albumins. CONCLUSION The identified biomarkers can be used for assessing the viability and the effectiveness of rehabilitation measures carried out in patients with diabetic retinopathy.
Collapse
Affiliation(s)
- I V Lev
- Tambov branch of the S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Tambov, Russia
| | - N M Agarkov
- South-Western State University, Kursk, Russia
- Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|
20
|
Zhao Y, Wu X, Tang M, Shi L, Gong S, Mei X, Zhao Z, He J, Huang L, Cui W. Late-life depression: Epidemiology, phenotype, pathogenesis and treatment before and during the COVID-19 pandemic. Front Psychiatry 2023; 14:1017203. [PMID: 37091719 PMCID: PMC10119596 DOI: 10.3389/fpsyt.2023.1017203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Late-life depression (LLD) is one of the most common mental disorders among the older adults. Population aging, social stress, and the COVID-19 pandemic have significantly affected the emotional health of older adults, resulting in a worldwide prevalence of LLD. The clinical phenotypes between LLD and adult depression differ in terms of symptoms, comorbid physical diseases, and coexisting cognitive impairments. Many pathological factors such as the imbalance of neurotransmitters, a decrease in neurotrophic factors, an increase in β-amyloid production, dysregulation of the hypothalamic-pituitary-adrenal axis, and changes in the gut microbiota, are allegedly associated with the onset of LLD. However, the exact pathogenic mechanism underlying LLD remains unclear. Traditional selective serotonin reuptake inhibitor therapy results in poor responsiveness and side effects during LLD treatment. Neuromodulation therapies and complementary and integrative therapies have been proven safe and effective for the treatment of LLD. Importantly, during the COVID-19 pandemic, modern digital health intervention technologies, including socially assistive robots and app-based interventions, have proven to be advantageous in providing personal services to patients with LLD.
Collapse
Affiliation(s)
- Yuanzhi Zhao
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiangping Wu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Min Tang
- Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Lingli Shi
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shuang Gong
- Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Xi Mei
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zheng Zhao
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiayue He
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Translational Medicine Center of Pain, Emotion and Cognition, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- *Correspondence: Wei Cui,
| |
Collapse
|
21
|
Shiels P, Tran N, McCavitt J, Neytchev O, Stenvinkel P. Chronic Kidney Disease and the Exposome of Ageing. Subcell Biochem 2023; 103:79-94. [PMID: 37120465 DOI: 10.1007/978-3-031-26576-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gap between improvements in lifespan and age-related health is widening. Globally, the demographic of ageing is increasing and there has emerged a 'diseasome of ageing', typified by a range of non-communicable diseases which share a common underlying component of a dysregulated ageing process. Within this, chronic kidney disease is an emerging global epidemic.The extensive inter-individual variation displayed in how people age and how their diseasome manifests and progresses, has required a renewed focus on their life course exposures and the interplay between the environment and the (epi)genome. Termed the exposome, life course abiotic and biotic factors have a significant impact on renal health.We explore how the exposome of renal ageing can predispose and affect CKD progression. We discuss how the kidney can be used as a model to understand the impact of the exposome in health and chronic kidney disease and how this might be manipulated to improve health span.Notably, we discuss the manipulation of the foodome to mitigate acceleration of ageing processes by phosphate and to explore use of emerging senotherapies. A range of senotherapies, for removing senescent cells, diminishing inflammatory burden and either directly targeting Nrf2, or manipulating it indirectly via modification of the microbiome are discussed.
Collapse
Affiliation(s)
- Paul Shiels
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK.
| | - Ngoc Tran
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK
| | - Jen McCavitt
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK
| | - Ognian Neytchev
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J Clin Med 2022; 11:jcm11175155. [PMID: 36079082 PMCID: PMC9457065 DOI: 10.3390/jcm11175155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with “post-COVID” syndrome manifest with a variety of signs and symptoms that continue/develop after acute COVID-19. Among the most common are gastrointestinal (GI) and mental symptoms. The reason for symptom occurrence lies in the SARS-CoV-2 capability of binding to exact receptors, among other angiotensin converting enzyme 2 (ACE2) receptors in gastrointestinal lining and neuropilin-1 (NRP-1) in the nervous system, which leads to loss of gastrointestinal and blood-brain barriers integrity and function. The data are mounting that SARS-CoV-2 can trigger systemic inflammation and lead to disruption of gut-brain axis (GBA) and the development of disorders of gut brain interaction (DGBIs). Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are the most common DGBIs syndromes. On the other hand, emotional disorders have also been demonstrated as DGBIs. Currently, there are no official recommendations or recommended procedures for the use of probiotics in patients with COVID-19. However, it can be assumed that many doctors, pharmacists, and patients will want to use a probiotic in the treatment of this disease. In such cases, strains with documented activity should be used. There is a constant need to plan and conduct new trials on the role of probiotics and verify their clinical efficacy for counteracting the negative consequences of COVID-19 pandemic. Quality control is another important but often neglected aspect in trials utilizing probiotics in various clinical entities. It determines the safety and efficacy of probiotics, which is of utmost importance in patients with post-acute COVID-19 syndrome.
Collapse
|
23
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
24
|
Mafra D, Ugochukwu SA, Borges NA, Cardozo LFMF, Stenvinkel P, Shiels PG. Food for healthier aging: power on your plate. Crit Rev Food Sci Nutr 2022; 64:603-616. [PMID: 35959705 DOI: 10.1080/10408398.2022.2107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inflammageing is a persistent low-level inflammatory burden that accompanies age-related dysregulation of the immune system during normative aging and within the diseasome of aging. A healthy diet containing a balanced amount of macronutrients, vitamins and minerals, adequate in calories and rich in poly(phenols), has an essential role in mitigating the effects of inflammageing and extending healthspan through modulation of the activity of a range of factors. These include transcription factors, such as nuclear factor erythroid-derived 2 related factor 2 (Nrf2) and nuclear factor-κB (NF-kB), the inflammasome and the activities of the gut microbiota. The aim of this narrative review is to discuss the potential of food to ameliorate the effects of the diseasome of aging.
Collapse
Affiliation(s)
- Denise Mafra
- Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Natalia A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Post-Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
- Post-Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Xu H, Yang T, Guo B, Silang Y, Dai Y, Baima K, Gao Y, Tang S, Wei J, Jiang Y, Feng S, Li S, Xiao X, Zhao X. Increased allostatic load associated with ambient air pollution acting as a stressor: Cross-sectional evidence from the China multi-ethnic cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:155658. [PMID: 35523330 DOI: 10.1016/j.scitotenv.2022.155658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Allostatic load measures the cumulative biological burden imposed by chronic stressors. Emerging experimental evidence supports that air pollution acting as a stressor activates the neuroendocrine system and then produces multi-organ effects, leading to allostatic load. However, relevant epidemiological evidence is limited. OBJECTIVES We aim to explore the relationships between chronic exposure to ambient air pollution (PM1, PM2.5, PM10, and O3) and allostatic load in Chinese adults. METHODS This cross-sectional study included 85,545 participants aged 30-79 from the baseline data of the China Multi-Ethnic Cohort (CMEC). Ambient air pollution levels were evaluated by a satellite-based random forest approach. The previous three-year average exposure concentrations were calculated for each participant based on the residential address. The outcome allostatic load was identified through the sum of the sex-specific scores of twelve biomarkers belonging to four major categories: cardiovascular, metabolic, anthropometric, and inflammatory parameters. We performed statistical analysis using a doubly robust approach which relies on inverse probability weighting and outcome model to adjust for confounding. RESULTS Long-term exposure to ambient air pollution was significantly associated with an increased risk of allostatic load, with relative risk (95% confidence interval) of 1.040 (1.024, 1.057), 1.029 (1. 018, 1. 039), and 1.087 (1.074, 1.101) for each 10 μg/m3 increase in ambient PM2.5, PM10, and O3, respectively. No significant relationship was observed between chronic exposure to PM1 and allostatic load. The associations between air pollution and allostatic load are modified by some intrinsic factors and non-chemical stressors. The people with older, minority, lower education, and lower-income levels had a significantly higher allostatic load induced by air pollution. CONCLUSIONS Chronic exposure to ambient PM2.5, PM10, and O3 may increase the allostatic load. This finding provides epidemiological evidence that air pollution may be a chronic stressor, leading to widespread physiological burdens.
Collapse
Affiliation(s)
- Huan Xu
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangzong Silang
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet, China
| | - Yingxue Dai
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Kangzhuo Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Yang Gao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Simei Tang
- Heqing Center for Disease Control and Prevention, Dali Prefecture, Yunnan, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Ye Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Galli F, Bonomini M, Bartolini D, Zatini L, Reboldi G, Marcantonini G, Gentile G, Sirolli V, Di Pietro N. Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:989. [PMID: 35624853 PMCID: PMC9137556 DOI: 10.3390/antiox11050989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin E (alpha-tocopherol) is an essential micronutrient and fat-soluble antioxidant with proposed role in protecting tissues from uncontrolled lipid peroxidation. This vitamin has also important protein function and gene modulation effects. The metabolism of vitamin E depends on hepatic binding proteins that selectively retain food alpha-tocopherol for incorporation into nascent VLDL and tissue distribution together with esterified cholesterol and triglycerides. Chronic kidney disease (CKD) is a condition of oxidative stress and increased lipid peroxidation, that are associated with alterations of alpha-tocopherol metabolism and function. Specific changes have been reported for the levels of its enzymatic metabolites, including both short-chain and long-chain metabolites, the latter being endowed with regulatory functions on enzymatic and gene expression processes important for the metabolism of lipids and xenobiotics detoxification, as well as for the control of immune and inflammatory processes. Vitamin E therapy has been investigated in CKD using both oral vitamin E protocols and vitamin E-coated hemodialyzers, showing promising results in the secondary prevention of cardiovascular disease, as well as of immune and hematological complications. These therapeutic approaches are reviewed in the present article, together with a narrative excursus on the main findings indicating CKD as a condition of relative deficiency and impaired metabolism of vitamin E.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Mario Bonomini
- Department of Medicine and Aging, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (V.S.)
| | - Desirée Bartolini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Linda Zatini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Gianpaolo Reboldi
- Department of Medicine and Surgery, Centro di Ricerca Clinica e Traslazionale, CERICLET, University of Perugia, 06126 Perugia, Italy;
| | - Giada Marcantonini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Giorgio Gentile
- Royal Cornwall Hospitals, NHS Trust, Cornwall, Truro TR1 3LJ, UK;
- Department of Nephrology, University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Vittorio Sirolli
- Department of Medicine and Aging, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (V.S.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
27
|
Malecki KMC, Andersen JK, Geller AM, Harry GJ, Jackson CL, James KA, Miller GW, Ottinger MA. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Front Aging Neurosci 2022; 14:824921. [PMID: 35264945 PMCID: PMC8901047 DOI: 10.3389/fnagi.2022.824921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual’s neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
Collapse
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Kristen M. C. Malecki,
| | | | - Andrew M. Geller
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC, United States
| | - G. Jean Harry
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chandra L. Jackson
- Division of Intramural Research, Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
28
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
29
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Erlandsson H, Qureshi AR, Scholz T, Lundgren T, Bruchfeld A, Stenvinkel P, Wennberg L, Lindnér P. Observational study of risk factors associated with clinical outcome among elderly kidney transplant recipients in Sweden - a decade of follow-up. Transpl Int 2021; 34:2363-2370. [PMID: 34346109 DOI: 10.1111/tri.14004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Kidney transplantation (Ktx) in elderly has become increasingly accepted worldwide despite their higher burden of comorbidities. We investigated important risk factors affecting long-term patient and graft survival. METHODS We included all (n=747) Ktx patients >60 years from 2000 to 2012 in Sweden. Patients were age-stratified; 60-64, 65-69 and >70 years. Follow-up time was up to 10 years (median 7.9 years, 75% percentile >10 years). Primary outcome was 10-year patient survival in age-stratified groups. Secondary outcomes were 5- year patient and graft-survival in age-stratified groups and the impact of risk factors including Charlson comorbidity index on patient and graft-survival. RESULTS Mortality was higher in patients >70 years, after 10 years (HR 1.94; 95% CI 1.24-3.04; p=0.004). Males had a higher 10-year risk of death (HR 1.39; CI 95% 1.04-1.86; p=0.024). Five-year patient survival did not differ between age-groups. In multivariate Cox analysis (n=500) hazard ratio for 10-year mortality was 4.6 in patients with Charlson comorbidity index ≥7 vs <4 (95% CI 2.42-8.62; p=0.0001) CONCLUSION: Higher Charlson comorbidity index identified ESKD patients with 4.6 times higher risk of death after Ktx. We suggest that this index should be used as a part of the pre-operative evaluation in elderly.
Collapse
Affiliation(s)
- Helen Erlandsson
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Department of Health, Medicine and Caring Sciences, Linköping University, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Scholz
- Department of Transplantation, Uppsala University Hospital, Uppsala, Sweden
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Per Lindnér
- The Transplant Institute, Institute of Clinical Sciences, Sahlgrenska University Hospital, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Shiels PG, Painer J, Natterson-Horowitz B, Johnson RJ, Miranda JJ, Stenvinkel P. Manipulating the exposome to enable better ageing. Biochem J 2021; 478:2889-2898. [PMID: 34319404 PMCID: PMC8331090 DOI: 10.1042/bcj20200958] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
The sum total of life course exposures creates an exposome that has a significant impact on age-related health. Understanding the interplay between exposome factors and the (epi) genome, offers pertinent insights into the ageing process and its relationship with the accumulation of allostatic load. We propose to exploit this to develop a biomimetic approach that will provide insight into how evolution through natural selection in other species has solved many age related human health issues. In particular, we will emphasise the need to reconnect a more mechanistic approach to medical science with a broader natural sciences approach, using biomimetics to mitigate the global burden of age related ill health. In particular, we will discuss how such an approach indicates leverage of the activities of the Nrf 2 gene to enhance health span via reintroduction of the classical 'Food as Medicine' concept, including modulation of the microbiome and the creation of more salutogenic and biophilic environments. Additionally, we will discuss how this approach integrates with novel and developing senotherapies.
Collapse
Affiliation(s)
- Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstreet 1, 1160 Vienna, Austria
| | - Barbara Natterson-Horowitz
- Department of Human Evolutionary Biology, UCLA Division of Cardiology, Co-Director, Evolutionary Medicine Program at UCLA, Harvard University, California, U.S.A
| | - Richard J. Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, U.S.A
| | - Jaime J. Miranda
- CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|
32
|
Stenvinkel P, Avesani CM, Gordon LJ, Schalling M, Shiels PG. Biomimetics provides lessons from nature for contemporary ways to improve human health. J Clin Transl Sci 2021; 5:e128. [PMID: 34367673 PMCID: PMC8327543 DOI: 10.1017/cts.2021.790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Carla M. Avesani
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Line J. Gordon
- Stockholm Resilience Centre Stockholm University, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
33
|
The association of child maltreatment and systemic inflammation in adulthood: A systematic review. PLoS One 2021; 16:e0243685. [PMID: 33831008 PMCID: PMC8031439 DOI: 10.1371/journal.pone.0243685] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Child maltreatment (CM) is associated with mental and physical health disorders in adulthood. Some studies have identified elevated markers of systemic inflammation in adult survivors of CM, and inflammation may mediate the association between CM and later health problems. However, there are methodological inconsistencies in studies of the association between CM and systemic inflammation and findings are conflicting. We performed a systematic review to examine the association of CM with systemic inflammation in adults. Methods A pre-registered systematic review was performed following PRISMA guidelines. Medline, Embase, Scopus and PsychInfo were searched for studies of the association of CM with blood markers of inflammation in adults. Quality was assessed using the Crowe Critical Appraisal Tool. We had intended to perform a meta-analysis, but this was not possible due to variation in study design and reporting. Results Forty-four articles met criteria for inclusion in the review. The most widely reported biomarkers were C-Reactive Protein (CRP) (n = 27), interleukin-6 (IL-6) (n = 24) and Tumour Necrosis Factor-alpha (TNF-a) (n = 17). Three studies were prospective (all relating to CRP) and the remainder were retrospective. 86% of studies were based in high income countries. In the prospective studies, CM was associated with elevated CRP in adulthood. Results of retrospective studies were conflicting. Methodological issues relating to the construct of CM, methods of analysis, and accounting for confounding or mediating variables (particularly Body Mass Index) may contribute to the uncertainty in the field. Conclusions There is some robust evidence from prospective studies that CM is associated with elevated CRP in adulthood. We have identified significant methodological inconsistencies in the literature and have proposed measures that future researchers could employ to improve consistency across studies. Further prospective, longitudinal, research using robust and comparable measures of CM with careful consideration of confounding and mediating variables is required to bring clarity to this field.
Collapse
|
34
|
Juul-Nielsen C, Shen J, Stenvinkel P, Scholze A. Systematic review of the nuclear factor erythroid 2-related factor 2 (NRF2) system in human chronic kidney disease: alterations, interventions, and relation to morbidity. Nephrol Dial Transplant 2021; 37:904-916. [PMID: 33547785 DOI: 10.1093/ndt/gfab031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND NRF2 and its effectors NAD(P)H:quinoneoxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) are of interest in kidney disease. We therefore reviewed studies about their status in patients with chronic kidney disease (CKD). METHODS We undertook systematic searches of PubMed and EMBASE databases. Alterations of NRF2, NQO1 and HO-1 in CKD, their responses to interventions and their relation to clinically relevant parameters were reported. RESULTS We identified 1373 articles, of which 32 studies met the inclusion criteria. NRF2 levels were decreased in the majority of analyses of CKD patients. Half of the analyses showed a similar or increased NQO1 level vs. control, whereas NQO1 was decreased in half of the analyses. Most of the studies reported either an increased or similar HO-1 level in CKD patients compared to controls. For patients with CKD stages 1-4, studies reported positive correlations to markers of kidney disease severity. Also, positive associations of NQO1/HO-1 levels to inflammation and comorbidities were reported. One third of the studies showed discordant changes between gene expression and protein level of NRF2 system components. Two thirds of intervention studies (50% dietary, such as using resistant starch) reported an increase of NRF2, NQO1, or HO-1. CONCLUSIONS In patients with CKD, NRF2 expression was downregulated, while NQO1 and HO-1 showed varying alterations related to inflammation, comorbidities, and severity of kidney damage. Interventions that increased NRF2 system components were described, but their effectiveness and clinical relevance require further clinical studies of high quality. Research on gene expression together with protein analyses is indispensable to understand NRF2 system alterations in CKD.
Collapse
Affiliation(s)
| | - Jianlin Shen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Kallen V, Tahir M, Bedard A, Bongers B, van Riel N, van Meeteren N. Aging and Allostasis: Using Bayesian Network Analytics to Explore and Evaluate Allostatic Markers in the Context of Aging. Diagnostics (Basel) 2021; 11:diagnostics11020157. [PMID: 33494482 PMCID: PMC7912325 DOI: 10.3390/diagnostics11020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Allostatic load reflects the cumulative strain on organic functions that may gradually evolve into overt disease. Our aim was to evaluate the allostatic parameters in the context of aging, and identify the parameters that may be suitable for an allostatic load index for elderly people (>60 years). From previously published studies, 11 allostatic (bio)markers could be identified that sustain sufficient variability with aging to capture meaningful changes in health status. Based on reported statistics (prevalence of a biomarker and its associated outcome, and/or an odds/risk ratio relating these two), seven of these could be adopted in a Bayesian Belief Network (BBN), providing the probability of “disturbed” allostasis in any given elder. Additional statistical analyses showed that changes in IL-6 and BMI contributed the most to a “disturbed” allostasis, indicating their prognostic potential in relation to deteriorating health in otherwise generally healthy elderly. In this way, and despite the natural decline in variance that irrevocably alters the prognostic relevance of most allostatic (bio)markers with aging, it appeared possible to outline an allostatic load index specifically for the elderly. The allostatic parameters here identified might consequently be considered a useful basis for future quantitative modelling in the context of (healthy) aging.
Collapse
Affiliation(s)
- Victor Kallen
- Department of Microbiology & Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, The Netherlands; (M.T.); (A.B.)
- The Physical Activity and Nutrition INfluences In Ageing (PANINI) Consortium: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (B.B.); (N.v.R.); (N.v.M.)
- Correspondence:
| | - Muhammad Tahir
- Department of Microbiology & Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, The Netherlands; (M.T.); (A.B.)
- The Physical Activity and Nutrition INfluences In Ageing (PANINI) Consortium: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (B.B.); (N.v.R.); (N.v.M.)
| | - Andrew Bedard
- Department of Microbiology & Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, The Netherlands; (M.T.); (A.B.)
| | - Bart Bongers
- The Physical Activity and Nutrition INfluences In Ageing (PANINI) Consortium: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (B.B.); (N.v.R.); (N.v.M.)
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism/Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Natal van Riel
- The Physical Activity and Nutrition INfluences In Ageing (PANINI) Consortium: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (B.B.); (N.v.R.); (N.v.M.)
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5300 Eindhoven, The Netherlands
| | - Nico van Meeteren
- The Physical Activity and Nutrition INfluences In Ageing (PANINI) Consortium: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (B.B.); (N.v.R.); (N.v.M.)
- Health~Holland, Top Sector Life Sciences and Health, Wilhelmina van Pruisenweg 104, 2595 AN The Hague, The Netherlands
- Erasmus Medical Center, Department of Anesthesiology, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
36
|
Kooman JP, Stenvinkel P, Shiels PG, Feelisch M, Canaud B, Kotanko P. The oxygen cascade in patients treated with hemodialysis and native high-altitude dwellers: lessons from extreme physiology to benefit patients with end-stage renal disease. Am J Physiol Renal Physiol 2020; 320:F249-F261. [PMID: 33356957 DOI: 10.1152/ajprenal.00540.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patients treated with hemodialysis (HD) repeatedly undergo intradialytic low arterial oxygen saturation and low central venous oxygen saturation, reflecting an imbalance between upper body systemic oxygen supply and demand, which are associated with increased mortality. Abnormalities along the entire oxygen cascade, with impaired diffusive and convective oxygen transport, contribute to the reduced tissue oxygen supply. HD treatment impairs pulmonary gas exchange and reduces ventilatory drive, whereas ultrafiltration can reduce tissue perfusion due to a decline in cardiac output. In addition to these factors, capillary rarefaction and reduced mitochondrial efficacy can further affect the balance between cellular oxygen supply and demand. Whereas it has been convincingly demonstrated that a reduced perfusion of heart and brain during HD contributes to organ damage, the significance of systemic hypoxia remains uncertain, although it may contribute to oxidative stress, systemic inflammation, and accelerated senescence. These abnormalities along the oxygen cascade of patients treated with HD appear to be diametrically opposite to the situation in Tibetan highlanders and Sherpa, whose physiology adapted to the inescapable hypobaric hypoxia of their living environment over many generations. Their adaptation includes pulmonary, vascular, and metabolic alterations with enhanced capillary density, nitric oxide production, and mitochondrial efficacy without oxidative stress. Improving the tissue oxygen supply in patients treated with HD depends primarily on preventing hemodynamic instability by increasing dialysis time/frequency or prescribing cool dialysis. Whether dietary or pharmacological interventions, such as the administration of L-arginine, fermented food, nitrate, nuclear factor erythroid 2-related factor 2 agonists, or prolyl hydroxylase 2 inhibitors, improve clinical outcome in patients treated with HD warrants future research.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Bernard Canaud
- Montpellier University, School of Medicine, Montpellier, France & Global Medical Office, Fresenius Medical Care, Bad Homburg, Germany
| | - Peter Kotanko
- Renal Research Institute, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
37
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin Nutr 2020; 39:3594-3600. [DOI: 10.1016/j.clnu.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
39
|
Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol 2020; 17:153-171. [PMID: 32963366 DOI: 10.1038/s41581-020-00345-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The observation that unhealthy diets (those that are low in whole grains, fruits and vegetables, and high in sugar, salt, saturated fat and ultra-processed foods) are a major risk factor for poor health outcomes has boosted interest in the concept of 'food as medicine'. This concept is especially relevant to metabolic diseases, such as chronic kidney disease (CKD), in which dietary approaches are already used to ameliorate metabolic and nutritional complications. Increased awareness that toxic uraemic metabolites originate not only from intermediary metabolism but also from gut microbial metabolism, which is directly influenced by diet, has fuelled interest in the potential of 'food as medicine' approaches in CKD beyond the current strategies of protein, sodium and phosphate restriction. Bioactive nutrients can alter the composition and metabolism of the microbiota, act as modulators of transcription factors involved in inflammation and oxidative stress, mitigate mitochondrial dysfunction, act as senolytics and impact the epigenome by altering one-carbon metabolism. As gut dysbiosis, inflammation, oxidative stress, mitochondrial dysfunction, premature ageing and epigenetic changes are common features of CKD, these findings suggest that tailored, healthy diets that include bioactive nutrients as part of the foodome could potentially be used to prevent and treat CKD and its complications.
Collapse
|
40
|
The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109951. [PMID: 32335265 DOI: 10.1016/j.pnpbp.2020.109951] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that patients with severe mental disorders, including major depression, bipolar disorder and schizophrenia present with various alterations of the gut microbiota and increased intestinal permeability. In addition, the hypothalamic-pituitary-adrenal (HPA) axis dysregulation and subclinical inflammation have been reported in this group of patients. Although it has been found that the HPA axis dysregulation appears as a consequence of psychosocial stress, especially traumatic life events, the exact mechanisms of this observation remain unclear. Animal model studies have unraveled several mechanisms linking the gut microbiota with the HPA axis dysfunction. Indeed, the gut microbiota can activate the HPA axis through several mediators that cross the blood-brain barrier and include microbial antigens, cytokines and prostaglandins. There is also evidence that various microbial species can affect ileal corticosterone production that may impact the activity of the HPA axis. However, some metabolites released by various microbes, e.g., short-chain fatty acids, can attenuate the HPA axis response. Moreover, several bacteria release neurotransmitters that can directly interact with vagal afferents. It has been postulated that the HPA axis activation can impact the gut microbiota and intestinal permeability. In this article, we discuss various mechanisms linking the gut microbiota with the HPA axis activity and summarize current evidence for a cross-talk between the gut-brain axis and the HPA axis from studies of patients with mood and psychotic disorders. Finally, we show potential clinical implications that can arise from future studies investigating the HPA axis activity with respect to the gut microbiota in severe mental disorders.
Collapse
|
41
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
Fanton S, Cardozo LFMF, Combet E, Shiels PG, Stenvinkel P, Vieira IO, Narciso HR, Schmitz J, Mafra D. The sweet side of dark chocolate for chronic kidney disease patients. Clin Nutr 2020; 40:15-26. [PMID: 32718711 DOI: 10.1016/j.clnu.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is a widely appreciated foodstuff with historical appreciation as a food from the gods. In addition to its highly palatable taste, it is a rich source of (poly)phenolics, which have several proposed salutogenic effects, including neuroprotective anti-inflammatory, anti-oxidant and cardioprotective capabilities. Despite the known benefits of this ancient foodstuff, there is a paucity of information on the effects of chocolate in the context of chronic kidney disease (CKD). This review focusses on the potential salutogenic contribution of chocolate intake, to mitigate inflammatory and oxidative burden in CKD, its potential, for cardiovascular protection and on the maintenance of diversity in gut microbiota, as well as clinical perspectives, on regular chocolate intake by CKD patients.
Collapse
Affiliation(s)
- Susane Fanton
- Renal Vida Association, Blumenau, SC, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil
| | - Emilie Combet
- School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | | | | | | | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil; Graduate Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| |
Collapse
|
43
|
Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, de Cabo R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020; 59:101037. [PMID: 32109604 DOI: 10.1016/j.arr.2020.101037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. The development of pharmacological interventions aimed at delaying or preventing the onset of chronic conditions and other age-related diseases has been at the forefront of the aging field. Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity on reaching the desired health- and lifespan-promoting pharmacological responses in model organisms. Translating the safety and efficacy of these interventions to humans and the lack of reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will survey current pharmacological interventions that promote lifespan extension and/or increased healthspan in animals and humans, and review the various anti-aging interventions selected for inclusion in the NIA's Interventions Testing Program as well as the ClinicalTrials.gov database that target aging or age-related diseases in humans.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Cardiovascular and Metabolic Diseases Group, Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - David Hauser
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, IMDEA Food, CEI, UAM/CSIC, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| |
Collapse
|
44
|
Lu Y, Zhou L, He S, Ren HL, Zhou N, Hu ZM. Lycopene alleviates disc degeneration under oxidative stress through the Nrf2 signaling pathway. Mol Cell Probes 2020; 51:101559. [PMID: 32151764 DOI: 10.1016/j.mcp.2020.101559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a main cause of diseases such as discogenic low back pain, cervical and lumbar disc herniation, degenerative spinal stenosis, and lumbar spondylolisthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important transcription factor, regulates antioxidant genes and induces cellular defense mechanisms against oxidative stress. In this study, the protective effect of plant antioxidant lycopene on nucleus pulposus cells (NPCs) under oxidative stress was investigated. The results indicated that Nrf2 expression decreased in degenerated NPCs. We further found that lycopene was protective in NP tissue under oxidative stress and alleviated oxidative stress-induced apoptosis of degenerative human NPCs via Nrf2. The results also showed that lycopene reduced H2O2-induced decomposition of cartilage extracellular matrix in NPCs. In conclusion, our findings suggested that lycopene may alleviate disc degeneration under oxidative stress through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Li Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Shan He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Hong-Lei Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| | - Zhen-Ming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|