1
|
Cruz-Sanabria F, Carmassi C, Bruno S, Bazzani A, Carli M, Scarselli M, Faraguna U. Melatonin as a Chronobiotic with Sleep-promoting Properties. Curr Neuropharmacol 2023; 21:951-987. [PMID: 35176989 PMCID: PMC10227911 DOI: 10.2174/1570159x20666220217152617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
The use of exogenous melatonin (exo-MEL) as a sleep-promoting drug has been under extensive debate due to the lack of consistency of its described effects. In this study, we conduct a systematic and comprehensive review of the literature on the chronobiotic, sleep-inducing, and overall sleep-promoting properties of exo-MEL. To this aim, we first describe the possible pharmacological mechanisms involved in the sleep-promoting properties and then report the corresponding effects of exo-MEL administration on clinical outcomes in: a) healthy subjects, b) circadian rhythm sleep disorders, c) primary insomnia. Timing of administration and doses of exo-MEL received particular attention in this work. The exo-MEL pharmacological effects are hereby interpreted in view of changes in the physiological properties and rhythmicity of endogenous melatonin. Finally, we discuss some translational implications for the personalized use of exo-MEL in the clinical practice.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa - Italy
| | - Simone Bruno
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Andrea Bazzani
- Institute of Management, Scuola Superiore Sant’Anna, Pisa – Italy
| | - Marco Carli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Marco Scarselli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Pisa, Italy
| |
Collapse
|
2
|
Vlasova AS, Petrov SA, Malishevskaya TN, Gubin DG, Kolomeychuk SN. The connection of polymorphism and diurnal changes of the biological clock gene expression with the risk of progression of primary open-angle glaucoma. RUSSIAN OPHTHALMOLOGICAL JOURNAL 2021; 14:38-45. [DOI: 10.21516/2072-0076-2021-14-4-38-45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purpose of this work is to study the connection betweengenetic factors (polymorphism and expression of key genes of the biological clock (KGBC), key genes controlled by KGBC, melatonin receptors) and the diurnal oscillation of melatonin in patients with stable and progressing primary open-angle glaucoma. Materials and methods. The study involved 115 patients aged 53–86 (averagely, 68.8 ± 7.9 years) with stable and progressive glaucoma. All patients underwent primary ophthalmological examination, tested for diurnal body temperature profile, intraocular pressure (IOP), melatonin (by the DLMO protocol) and were typed for key genes of the biological clock using the real-time polymerase chain reaction. We studied the sleep phase shift to later hours in carriers of the G-allele of the melatonin receptor gene during the progression of glaucoma. Results. The study of the clinical and genotypic features of the POAG course revealed phasal shifts of the circadian rhythms of body temperature, IOP, salivary melatonin levels and sleep phases which contributed to the progression of glaucomatous optic neuropathy. Certain polymorphic variants of genes contribute to individual frequent manifestations of desynchronosis. The clock rs1801260 and MTNR1B rs10830963 gene polymorphism was found to be related to disturbances in melatonin production and sleep phase. Conclusion. Complex manifestations of circadian desynchronization accompanying the progressive course of glaucoma are the late phase of rhythms and a decrease in sleep duration, body temperature, salivary melatonin and IOP, internal desynchronization between IOP and body temperature, IOP and sleep, evening dyslipidemia. The revealed patterns open up prospects for future studies of the relationship between polymorphism and daily changes of the expression of key genes in the biological clock with the risk of progression of primary open angle glaucoma.
Collapse
Affiliation(s)
- A. S. Vlasova
- West Siberian Institute of Postgraduate Medical Education
| | - S. A. Petrov
- West Siberian Institute of Postgraduate Medical Education
| | | | | | | |
Collapse
|
3
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
4
|
Diatroptov ME, Panchelyuga VA, Panchelyuga MS, Surov AV. Circahoralian Rhythms of Body Temperature in Mammals and Birds with Different Metabolism Levels. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 494:228-231. [PMID: 33083878 DOI: 10.1134/s0012496620050038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
The time course of intraperitoneal body temperature has been analyzed in two species of mammals (laboratory C57Bl/6 mice and white-breasted hedgehogs (Erinaceus roumanicus) and in two species of passerine birds (common greenfinch Chloris chloris and Japanese quail Coturnix japonica) with different body weights. Similar sets of basic harmonics appearing synchronously in different individuals have been found in the body temperature spectra of the species studied. The level of basal metabolism in those animal species considerably vary; therefore, the period of fluctuations of body temperature in the range of 10-120 min is not determined by the internal characteristics of the body and, presumably, reflects the influence of an external biotropic environmental factor.
Collapse
Affiliation(s)
- M E Diatroptov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071, Moscow, Russia.
| | - V A Panchelyuga
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142292, Pushchino, Moscow oblast, Russia
| | - M S Panchelyuga
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142292, Pushchino, Moscow oblast, Russia
| | - A V Surov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
5
|
|
6
|
Vorotelyak EA, Malchenko LA, Rogovaya OS, Lazarev DS, Butorina NN, Brodsky VY. Melatonin Stimulates Epithelium Migration in Wound Models In Vitro and In Vivo. Bull Exp Biol Med 2019; 168:242-246. [PMID: 31776954 DOI: 10.1007/s10517-019-04683-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/11/2022]
Abstract
We studied the effect of bovine brain gangliosides, individual ganglioside GM1, and melatonin on the rate of wound closure under in vitro conditions and the effect of melatonin on the rate of wound healing under in vivo conditions. It was shown that bovine brain gangliosides and melatonin reliably increased cell migration in the experimental wound model. This effect was detected when the cell cultures were treated with the test preparations after wound infliction and when the cultures of human keratinocytes were pretreated before wounding. Analysis of the effect of melatonin on the rate of wound healing in vivo showed that melatonin accelerated this process, especially at the middle stages corresponding to the proliferation phase (days 3-6 after surgery). Histological analysis revealed intensification of epidermal cell proliferation at the edges of the wound starting from day 4 after surgery.
Collapse
Affiliation(s)
- E A Vorotelyak
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - L A Malchenko
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - O S Rogovaya
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - D S Lazarev
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N N Butorina
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - V Y Brodsky
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Brodsky VY. Biochemistry of Direct Cell−Cell Interactions. Signaling Factors Regulating Orchestration of Cell Populations. BIOCHEMISTRY (MOSCOW) 2018; 83:890-906. [DOI: 10.1134/s0006297918080035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Brodsky VY, Malchenko LA, Lazarev DS, Butorina NN, Dubovaya TK, Zvezdina ND. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory. BIOCHEMISTRY (MOSCOW) 2018; 83:294-298. [PMID: 29625548 DOI: 10.1134/s0006297918030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.
Collapse
Affiliation(s)
- V Y Brodsky
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117808, Russia.
| | | | | | | | | | | |
Collapse
|
9
|
Shift-work: is time of eating determining metabolic health? Evidence from animal models. Proc Nutr Soc 2018; 77:199-215. [DOI: 10.1017/s0029665117004128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The circadian disruption in shift-workers is suggested to be a risk factor to develop overweight and metabolic dysfunction. The conflicting time signals given by shifted activity, shifted food intake and exposure to light at night occurring in the shift-worker are proposed to be the cause for the loss of internal synchrony and the consequent adverse effects on body weight and metabolism. Because food elicited signals have proven to be potent entraining signals for peripheral oscillations, here we review the findings from experimental models of shift-work and verify whether they provide evidence about the causal association between shifted feeding schedules, circadian disruption and altered metabolism. We found mainly four experimental models that mimic the conditions of shift-work: protocols of forced sleep deprivation, of forced activity during the normal rest phase, exposure to light at night and shifted food timing. A big variability in the intensity and duration of the protocols was observed, which led to a diversity of effects. A common result was the disruption of temporal patterns of activity; however, not all studies explored the temporal patterns of food intake. According to studies that evaluate time of food intake as an experimental model of shift-work and studies that evaluate shifted food consumption, time of food intake may be a determining factor for the loss of balance at the circadian and metabolic level.
Collapse
|
10
|
Brodsky VY, Malchenko LA, Butorina NN, Lazarev Konchenko DS, Zvezdina ND, Dubovaya TK. Glutamic acid as enhancer of protein synthesis kinetics in hepatocytes from old rats. BIOCHEMISTRY (MOSCOW) 2017; 82:957-961. [PMID: 28941464 DOI: 10.1134/s0006297917080119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- V Y Brodsky
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117808, Russia.
| | | | | | | | | | | |
Collapse
|
11
|
van der Veen DR, Gerkema MP. Unmasking ultradian rhythms in gene expression. FASEB J 2016; 31:743-750. [PMID: 27871062 PMCID: PMC5240665 DOI: 10.1096/fj.201600872r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 11/11/2022]
Abstract
Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non-spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.-Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression.
Collapse
Affiliation(s)
- Daan R van der Veen
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; and
| | - Menno P Gerkema
- Department of Chronobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
12
|
Brodsky VY, Malchenko LA, Konchenko DS, Zvezdina ND, Dubovaya TK. Glutamic acid – amino acid, neurotransmitter, and drug – is responsible for protein synthesis rhythm in hepatocyte populations in vitro and in vivo. BIOCHEMISTRY (MOSCOW) 2016; 81:892-8. [DOI: 10.1134/s0006297916080101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Brodskii VY, Sharova NP, Mal’chenko LA, Konchenko DS, Dubovaya TK, Zvezdina ND. Blockade of proteasome activity disturbs the rhythm of synthesis of the protein marker of direct cell-cell interactions. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
HAN KYUNGREEM, KIM JINWOONG, CHOI MOOYOUNG. COMPUTER SIMULATIONS UNVEIL THE DYNAMICS OF AUTOPHAGY AND ITS IMPLICATIONS FOR THE CELLULAR QUALITY CONTROL. J BIOL SYST 2014. [DOI: 10.1142/s0218339014500260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the discovery of autophagy half a century ago, a number of physiological and molecular-level studies of autophagy have been carried out, revealing the basic mechanism and role of autophagy in the protein and organelle quality control. However, a reliable assessment method for the autophagy-mediated protein/organelle quality control with the help of an adequate mathematical model has not yet been reported. Based on the previous mathematical modeling of autophagy, we have carried out simulations to prove whether and how basal autophagy achieves substrate specificity and contributes to the cellular protein/organelle quality control. By means of numerical simulations, we probe the selective autophagic mode and observe that autophagic fluxes from abnormal protein/organelle are much greater than those from resident protein/organelle. Such a selective autophagic mode is found to correlate with the fractional abnormal protein/organelle concentration. Finally, it is shown that the fractional abnormal protein/organelle concentration against cellular damaging is efficiently controlled and regulated by suppression or promotion of the autophagosome formation rate. Mathematical modeling and numerical simulations allow one to analyze the autophagic protein/organelle quality control in a specific and quantitative manner and disclose that autophagy serves as a critical cellular quality control mechanism.
Collapse
Affiliation(s)
- KYUNGREEM HAN
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul, 151-747, Korea
| | - JINWOONG KIM
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | - MOOYOUNG CHOI
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul, 151-747, Korea
| |
Collapse
|
15
|
Pévet P. The internal time-giver role of melatonin. A key for our health. Rev Neurol (Paris) 2014; 170:646-52. [PMID: 25287733 DOI: 10.1016/j.neurol.2014.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 10/24/2022]
Abstract
Daily rhythms in physiological and behavioural processes are controlled by a network of circadian clocks. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissues expressing melatonin receptors. In some target tissues, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.
Collapse
Affiliation(s)
- P Pévet
- UPR 3212, CNRS-university of Strasbourg, institute for cellular and integrative neurosciences, 5, rue Blaise-Pascal, 67084 Strasbourg, France.
| |
Collapse
|
16
|
Han K, Kim J, Choi M. Quantitative indices of autophagy activity from minimal models. Theor Biol Med Model 2014; 11:31. [PMID: 24997483 PMCID: PMC4106221 DOI: 10.1186/1742-4682-11-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A number of cellular- and molecular-level studies of autophagy assessment have been carried out with the help of various biochemical and morphological indices. Still there exists ambiguity for the assessment of the autophagy status and of the causal relationship between autophagy and related cellular changes. To circumvent such difficulties, we probe new quantitative indices of autophagy which are important for defining autophagy activation and further assessing its roles associated with different physiopathological states. METHODS Our approach is based on the minimal autophagy model that allows us to understand underlying dynamics of autophagy from biological experiments. Specifically, based on the model, we reconstruct the experimental context-specific autophagy profiles from the target autophagy system, and two quantitative indices are defined from the model-driven profiles. The indices are then applied to the simulation-based analysis, for the specific and quantitative interpretation of the system. RESULTS Two quantitative indices measuring autophagy activities in the induction of sequestration fluxes and in the selective degradation are proposed, based on the model-driven autophagy profiles such as the time evolution of autophagy fluxes, levels of autophagosomes/autolysosomes, and corresponding cellular changes. Further, with the help of the indices, those biological experiments of the target autophagy system have been successfully analyzed, implying that the indices are useful not only for defining autophagy activation but also for assessing its role in a specific and quantitative manner. CONCLUSIONS Such quantitative autophagy indices in conjunction with the computer-aided analysis should provide new opportunities to characterize the causal relationship between autophagy activity and the corresponding cellular change, based on the system-level understanding of the autophagic process at good time resolution, complementing the current in vivo and in vitro assays.
Collapse
Affiliation(s)
| | - Jinwoong Kim
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea.
| | | |
Collapse
|
17
|
Administration of Dopamine to Rats Disorganizes the Rhythm of Protein Synthesis in Hepatocytes. Bull Exp Biol Med 2014; 157:220-3. [DOI: 10.1007/s10517-014-2529-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Indexed: 10/25/2022]
|
18
|
|
19
|
Effect of Protein Synthesis Rhythm-Organizing Signal Persists for a Day after Single Administration of Melatonin to Rat. Bull Exp Biol Med 2014; 156:323-6. [DOI: 10.1007/s10517-014-2340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/26/2022]
|
20
|
Tordjman S, Najjar I, Bellissant E, Anderson GM, Barburoth M, Cohen D, Jaafari N, Schischmanoff O, Fagard R, Lagdas E, Kermarrec S, Ribardiere S, Botbol M, Fougerou C, Bronsard G, Vernay-Leconte J. Advances in the research of melatonin in autism spectrum disorders: literature review and new perspectives. Int J Mol Sci 2013; 14:20508-42. [PMID: 24129182 PMCID: PMC3821628 DOI: 10.3390/ijms141020508] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/03/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in melatonin physiology may be involved or closely linked to the pathophysiology and behavioral expression of autistic disorder, given its role in neurodevelopment and reports of sleep-wake rhythm disturbances, decreased nocturnal melatonin production, and beneficial therapeutic effects of melatonin in individuals with autism. In addition, melatonin, as a pineal gland hormone produced from serotonin, is of special interest in autistic disorder given reported alterations in central and peripheral serotonin neurobiology. More specifically, the role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators opens interesting perspectives to ascertain better the mechanisms underlying the significant relationship found between lower nocturnal melatonin excretion and increased severity of autistic social communication impairments, especially for verbal communication and social imitative play. In this article, first we review the studies on melatonin levels and the treatment studies of melatonin in autistic disorder. Then, we discuss the relationships between melatonin and autistic behavioral impairments with regard to social communication (verbal and non-verbal communication, social interaction), and repetitive behaviors or interests with difficulties adapting to change. In conclusion, we emphasize that randomized clinical trials in autism spectrum disorders are warranted to establish potential therapeutic efficacy of melatonin for social communication impairments and stereotyped behaviors or interests.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
- Laboratory of Psychology of Perception, CNRS UMR 8158, Paris 75270, France; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-6-15-38-07-48; Fax: +33-2-99-64-18-07
| | - Imen Najjar
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Eric Bellissant
- Inserm CIC 0203 Clinical Investigation Centre, University Hospital, Rennes 1 University, Rennes 35033, France; E-Mails: (E.B.); (C.F.)
- Department of Clinical Pharmacology, University Hospital, Rennes 1 University, Rennes 35033, France
| | - George M. Anderson
- Laboratory of Developmental Neurochemistry, Yale Child Study Center, New Haven, CT 06519, USA; E-Mail:
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Marianne Barburoth
- Laboratory of Psychology of Perception, CNRS UMR 8158, Paris 75270, France; E-Mail:
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-SalpétrièreHospital, Paris 6 University, Paris 75013, France; E-Mail:
| | - Nemat Jaafari
- CIC INSERM U 802, CHU de Poitiers, Unité de recherche clinique intersectorielle en psychiatrie du Centre Hospitalier Henri Laborit, Poitiers 86022, France; E-Mail:
| | - Olivier Schischmanoff
- INSERM UMR U978, University of Paris 13, Bobigny 93009, France; E-Mails: (O.S.); (R.F.)
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Avicenne, APHP, Bobigny 93009, France
| | - Rémi Fagard
- INSERM UMR U978, University of Paris 13, Bobigny 93009, France; E-Mails: (O.S.); (R.F.)
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Avicenne, APHP, Bobigny 93009, France
| | - Enas Lagdas
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Solenn Kermarrec
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Sophie Ribardiere
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| | - Michel Botbol
- Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent de Brest, UBO, Brest 29238, France; E-Mail:
| | - Claire Fougerou
- Inserm CIC 0203 Clinical Investigation Centre, University Hospital, Rennes 1 University, Rennes 35033, France; E-Mails: (E.B.); (C.F.)
- Department of Clinical Pharmacology, University Hospital, Rennes 1 University, Rennes 35033, France
| | - Guillaume Bronsard
- Maison Départementale de l’Adolescent et Centre Médico-Psycho-Pédagogique, Conseil Général des Bouches-du-Rhône; Laboratoire de Santé Publique EA3279, Faculté de Médecine de la Timone, Marseille 13256, France; E-Mail:
| | - Julie Vernay-Leconte
- Hospital-University Department of Child and Adolescent Psychiatry, Guillaume Régnier Hospital, Rennes 1 University, Rennes 35000, France; E-Mails: (I.N.); (E.L.); (S.K.); (S.R.); (J.V.-L.)
| |
Collapse
|
21
|
Melatonin: both master clock output and internal time-giver in the circadian clocks network. ACTA ACUST UNITED AC 2011; 105:170-82. [PMID: 21914478 DOI: 10.1016/j.jphysparis.2011.07.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.
Collapse
|