1
|
Rice SA, Ten Have GAM, Engelen MPKJ, Deutz NEP. Muscle protein catabolism and splanchnic arginine consumption drive arginine dysregulation during Pseudomonas Aeruginosa induced early acute sepsis in swine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G673-G684. [PMID: 39224070 PMCID: PMC11559638 DOI: 10.1152/ajpgi.00257.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Human sepsis is characterized by increased protein breakdown and changes in arginine and citrulline metabolism. However, it is unclear whether this is caused by changes in transorgan metabolism. We therefore studied in a Pseudomonas aeruginosa induced pig sepsis model the changes in protein and arginine related metabolism on whole body (Wb) and transorgan level. We studied 22 conscious pigs for 18 hours during sepsis, induced by infusing live bacteria (Pseudomonas aeruginosa) or after placebo infusion (control). We used stable isotope tracers to measure Wb and skeletal muscle protein synthesis and breakdown, as well as Wb, splanchnic, skeletal muscle, hepatic and portal drained viscera (PDV) arginine and citrulline disposal and production rates. During sepsis, arginine Wb production (p=0.0146), skeletal muscle release (p=0.0035) and liver arginine uptake were elevated (p=0.0031). Wb de novo arginine synthesis, citrulline production, and transorgan PDV release of citrulline, glutamine and arginine did not differ between sepsis and controls. However, Wb (p<0.0001) and muscle (p<0.001) protein breakdown were increased, suggesting that the enhanced arginine production is predominantly derived from muscle breakdown in sepsis. In conclusion, live-bacterium sepsis increases muscle arginine release and liver uptake, mirroring previous pig endotoxemia studies. In contrast to observations in humans, acute live-bacterium sepsis in pigs does not change citrulline production or arterial arginine concentration. We therefore conclude that the arginine dysregulation observed in human sepsis is possibly initiated by enhanced protein catabolism and splanchnic arginine catabolism, while decreased arterial arginine concentration and citrulline metabolism may require more time to fully manifest in patients.
Collapse
Affiliation(s)
- Sarah A Rice
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Gabriella A M Ten Have
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Marielle P K J Engelen
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity. Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Kamenshchikov NO, Duong N, Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023; 11:1085. [PMID: 37189703 PMCID: PMC10135597 DOI: 10.3390/biomedicines11041085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Perioperative organ injury remains a medical, social and economic problem in cardiac surgery. Patients with postoperative organ dysfunction have increases in morbidity, length of stay, long-term mortality, treatment costs and rehabilitation time. Currently, there are no pharmaceutical technologies or non-pharmacological interventions that can mitigate the continuum of multiple organ dysfunction and improve the outcomes of cardiac surgery. It is essential to identify agents that trigger or mediate an organ-protective phenotype during cardiac surgery. The authors highlight nitric oxide (NO) ability to act as an agent for perioperative protection of organs and tissues, especially in the heart-kidney axis. NO has been delivered in clinical practice at an acceptable cost, and the side effects of its use are known, predictable, reversible and relatively rare. This review presents basic data, physiological research and literature on the clinical application of NO in cardiac surgery. Results support the use of NO as a safe and promising approach in perioperative patient management. Further clinical research is required to define the role of NO as an adjunct therapy that can improve outcomes in cardiac surgery. Clinicians also have to identify cohorts of responders for perioperative NO therapy and the optimal modes for this technology.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Nicolette Duong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Fike CD, Avachat C, Birnbaum AK, Aschner JL, Sherwin CM. Pharmacokinetics of L-Citrulline in Neonates at Risk of Developing Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension. Paediatr Drugs 2023; 25:87-96. [PMID: 36316628 PMCID: PMC10039462 DOI: 10.1007/s40272-022-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Options to treat pulmonary hypertension (PH) in neonates with bronchopulmonary dysplasia (BPD) are few and largely ineffective. Improving the bioavailability of nitric oxide (NO) might be an efficacious treatment for BPD-PH. When administered orally, the NO-L-arginine precursor, L-citrulline, increases NO production in children and adults, however, pharmacokinetic (PK) studies of oral L-citrulline have not been performed in infants and children. OBJECTIVES This study characterized the PK of enterally administered L-citrulline in neonates at risk of developing BPD-PH to devise a model-informed dosing strategy. METHODS AND RESULTS Ten premature neonates (≤ 28 weeks gestation) were administered a single dose of 150 mg/kg (powder form solubilized in sterile water) oral L-citrulline at 32 ± 1 weeks postmenstrual age. Due to the need to limit blood draws, time windows were used to maximize the sampling over the dosing interval by assigning neonates to one of two groups (ii) samples collected pre-dose and at 1- and 2.5-h post-dose, and (ii) pre-dose and 0.25- and 3-h post-dose. The L-arginine concentrations (µmol/L) and the L-citrulline (µmol/L) plasma concentration-time data were evaluated using non-compartmental analysis (Phoenix WinNonlin version 8.1). Optimal dosage strategies were derived using a simulation-based methodology. Simulated doses of 51.5 mg or 37.5 mg/kg given four times a day produced steady-state concentrations close to a target of 50 µmol/L. The volume of distribution (V/F) and clearance (CL/F) were 302.89 ml and 774.96 ml/h, respectively, with the drug exhibiting a half-life of 16 minutes. The AUC from the time of dosing to the time of last concentration was 1473.3 h*μmol/L, with Cmax and Tmax of 799 μmol/L and 1.55 h, respectively. CONCLUSION This is the first PK study in neonates presenting data that can be used to inform dosing strategies in future randomized controlled trials evaluating enteral L-citrulline as a potential treatment to reduce PH associated with BPD in premature neonates. REGISTRATION Clinical trials.gov Identifier: NCT03542812.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, The University of Utah Health, Salt Lake City, UT, USA
| | - Charul Avachat
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Birnbaum
- Department of Pediatrics, The University of Utah Health, Salt Lake City, UT, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Catherine M Sherwin
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.
- Dayton Children's Hospital, Dayton, OH, USA.
| |
Collapse
|
4
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Singh J, Lee Y, Kellum JA. A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care 2022; 26:246. [PMID: 35962414 PMCID: PMC9373887 DOI: 10.1186/s13054-022-04075-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The nitric oxide pathway plays a critical role in vascular homeostasis. Increased levels of systemic nitric oxide (NO) are observed in preclinical models of sepsis and endotoxemia. This has led to the postulation that vasodilation by inducible nitric oxide synthase (iNOS) generated NO may be a mechanism of hypotension in sepsis. However, contrary to the expected pharmacological action of a nitric oxide synthase (NOS) inhibitor, clinical studies with L-NAME produced adverse cardiac and pulmonary events, and higher mortality in sepsis patients. Thus, the potential adverse effects of NO in human sepsis and shock have not been fully established. In recent years, the emerging new understanding of the NO pathway has shown that an endogenously produced inhibitor of NOS, asymmetric dimethylarginine (ADMA), a host response to infection, may play an important role in the pathophysiology of sepsis as well as organ damage during ischemia–reperfusion. ADMA induces microvascular dysfunction, proinflammatory and prothrombotic state in endothelium, release of inflammatory cytokines, oxidative stress and mitochondrial dysfunction. High levels of ADMA exist in sepsis patients, which may produce adverse effects like those observed with L-NAME. Several studies have demonstrated the association of plasma ADMA levels with mortality in sepsis patients. Preclinical studies in sepsis and ischemia–reperfusion animal models have shown that lowering of ADMA reduced organ damage and improved survival. The clinical finding with L-NAME and the preclinical research on ADMA “bed to bench” suggest that ADMA lowering could be a potential therapeutic approach to attenuate progressive organ damage and mortality in sepsis. Testing of this approach is now feasible by using the pharmacological molecules that specifically lower ADMA.
Collapse
|
6
|
Wijnands KAP, Meesters DM, Vandendriessche B, Briedé JJ, van Eijk HMH, Brouckaert P, Cauwels A, Lamers WH, Poeze M. Microcirculatory Function during Endotoxemia-A Functional Citrulline-Arginine-NO Pathway and NOS3 Complex Is Essential to Maintain the Microcirculation. Int J Mol Sci 2021; 22:ijms222111940. [PMID: 34769369 PMCID: PMC8584871 DOI: 10.3390/ijms222111940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 μg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3−/− compared to Nos2−/− mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2−/− mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3−/− or Nos2−/−/Nos3−/− mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2−/− mice), as this beneficial effect was absent in Nos3−/− or Nos2−/−/Nos3−/− mice.
Collapse
Affiliation(s)
- Karolina A. P. Wijnands
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Correspondence: ; Tel.: +31-650-513-913
| | - Dennis M. Meesters
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Department of Genetics & Cell Biology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Benjamin Vandendriessche
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Byteflies, 2600 Antwerp, Belgium
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob J. Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Hans M. H. van Eijk
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| | - Peter Brouckaert
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Anje Cauwels
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences, 9052 Ghent, Belgium
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Martijn Poeze
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| |
Collapse
|
7
|
An analysis of urine and serum amino acids in critically ill patients upon admission by means of targeted LC-MS/MS: a preliminary study. Sci Rep 2021; 11:19977. [PMID: 34620961 PMCID: PMC8497565 DOI: 10.1038/s41598-021-99482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis, defined as a dysregulated host response to infection, causes the interruption of homeostasis resulting in metabolic changes. An examination of patient metabolites, such as amino acids, during the early stage of sepsis may facilitate diagnosing and assessing the severity of the sepsis. The aim of this study was to compare patterns of urine and serum amino acids relative to sepsis, septic shock and survival. Urine and serum samples were obtained from healthy volunteers (n = 15) once or patients (n = 15) within 24 h of a diagnosis of sepsis or septic shock. Concentrations of 25 amino acids were measured in urine and serum samples with liquid chromatography-electrospray mass spectrometry. On admission in the whole cohort, AAA, ABA, mHis, APA, Gly-Pro and tPro concentrations were significantly lower in the serum than in the urine and Arg, Gly, His, hPro, Leu, Ile, Lys, Orn, Phe, Sarc, Thr, Tyr, Asn and Gln were significantly higher in the serum than in the urine. The urine Gly-Pro concentration was significantly higher in septic shock than in sepsis. The serum Cit concentration was significantly lower in septic shock than in sepsis. The urine ABA, mHis and Gly-Pro, and serum Arg, hPro and Orn concentrations were over two-fold higher in the septic group compared to the control group. Urine and serum amino acids measured in septic patients on admission to the ICU may shed light on a patient’s metabolic condition during sepsis or septic shock.
Collapse
|
8
|
Boehm T, Ristl R, Joseph S, Petroczi K, Klavins K, Valent P, Jilma B. Metabolome and lipidome derangements during a severe mast cell activation event in a patient with indolent systemic mastocytosis. J Allergy Clin Immunol 2021; 148:1533-1544. [PMID: 33864889 DOI: 10.1016/j.jaci.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The number of mast cells in various organs is elevated manifold in individuals with systemic mastocytosis. Degranulation can lead to life-threatening symptomatology. No data about the alterations of the metabolome and lipidome during an attack have been published. OBJECTIVE Our aim was to analyze changes in metabolomics and lipidomics during the acute phase of a severe mast cell activation event. METHODS A total of 43 metabolites and 11 lipid classes comprising 200 subvariants from multiple plasma samples in duplicate, covering 72 hours of a severe mast cell activation attack with nausea and vomiting, were compared with 2 baseline samples by using quantitative liquid chromatography-mass spectrometry. RESULTS A strong enterocyte dysfunction reflected in an almost 20-fold reduction in the functional small bowel length was extrapolated from strongly reduced ornithine and citrulline concentrations and was very likely secondary to severe endothelial cell dysfunction with hypoperfusion and extensive vascular leakage. Highly increased histamine and lactate concentrations accompanied the peak in clinical symptoms. Elevated asymmetric and symmetric dimethylarginine levels combined with reduced arginine levels compromised endothelial nitric oxide synthase activity and nitric oxide signaling. Specific and extensive depletion of many lysophosphatidylcholine variants indicates localized autotaxin activation and lysophosphatidic acid release. A strong correlation of clinical parameters with histamine concentrations and symptom reduction after 100-fold elevated plasma diamine oxidase concentrations implies that histamine is the key driver of the acute phase. CONCLUSIONS Rapid elimination of elevated histamine concentrations through use of recombinant human diamine oxidase, supplementation of lysophosphatidylcholine for immunomodulation, inhibition of autotaxin activity, and/or blockade of lysophosphatidic acid receptors might represent new treatment options for life-threatening mast cell activation events.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Robin Ristl
- Section for Medical Statistics, Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Saijo Joseph
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Comprehensive metabolic amino acid flux analysis in critically ill patients. Clin Nutr 2021; 40:2876-2897. [PMID: 33946038 DOI: 10.1016/j.clnu.2021.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 01/16/2023]
Abstract
Amino acid (AA) metabolism is severely disturbed in critically ill ICU patients. To be able to make a more scientifically based decision on the type of protein or AA nutrition to deliver in ICU patients, comprehensive AA phenotyping with measurements of plasma concentrations and whole body production (WBP) is needed. Therefore, we studied ICU patients and matched control subjects using a novel pulse isotope method to obtain in-depth metabolic analysis. In 51 critically ill ICU patients (SOFA~6.6) and 49 healthy controls, we measured REE and body composition/phase-angle using BIA. In the postabsorptive state, we collected arterial (ized) blood for CRP and AA. Then, we administered an 8 mL solution containing 18 stable AA tracers as a pulse and calculated WBP. Enrichments: LC-MS/MS and statistics: t-test, ANCOVA. Compared to healthy, critically ill ICU patients had lower phase-angle (p < 0.00001), and higher CRP (p < 0.0001). Most AA concentrations were lower in ICU patients (p < 0.0001), except tau-methylhistidine and phenylalanine. WBP of most AA were significantly (p < 0.0001) higher with increases in glutamate (160%), glutamine (46%), and essential AA. Remarkably, net protein breakdown was lower. There were only weak relationships between AA concentrations and WBP. Critically ill ICU patients (SOFA 8-16) had lower values for phase angle (p = 0.0005) and small reductions of most plasma AA concentrations, but higher tau-methylhistidine (p = 0.0223) and hydroxyproline (p = 0.0028). Remarkably, the WBP of glutamate and glutamine were lower (p < 0.05), as was their clearance, but WBP of tau-methylhistidine (p = 0.0215) and hydroxyproline (p = 0.0028) were higher. Our study in critically ill ICU patients shows that comprehensive metabolic phenotyping was able to reveal severe disturbances in specific AA pathways, in a disease severity dependent way. This information may guide improving nutritional compositions to improve the health of the critically ill patient. CLINICAL TRIAL REGISTRY: Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).
Collapse
|
10
|
Mohammad MA, Didelija IC, Stoll B, Nguyen TC, Marini JC. Pegylated arginine deiminase depletes plasma arginine but maintains tissue arginine availability in young pigs. Am J Physiol Endocrinol Metab 2021; 320:E641-E652. [PMID: 33427052 PMCID: PMC7988784 DOI: 10.1152/ajpendo.00472.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pegylated arginine deiminase (ADI-PEG20) results in the depletion of arginine with the production of isomolar amounts of citrulline. This citrulline has the potential to be utilized by the citrulline recycling pathway regenerating arginine and sustaining tissue arginine availability. The goal of this research was to test the hypothesis that ADI-PEG20 depletes circulating arginine in pigs but maintains tissue arginine concentration and function, and to characterize the kinetics of citrulline and arginine. Two multitracer approaches (bolus dose and primed-continuous infusion) were used to investigate the metabolism of arginine and citrulline in Control (n = 7) and ADI-PEG20 treated (n = 8) pigs during the postprandial period. In addition, blood pressure was monitored by telemetry, and multiple tissues were collected to determine arginine concentration. Plasma arginine was depleted immediately after ADI-PEG20 administration, with an increase in plasma citrulline concentration (P < 0.01). The depletion of arginine did not affect (P > 0.10) blood pressure, whole body protein synthesis, or urea production. Despite the lack of circulating arginine in ADI-PEG20-treated pigs, most tissues were able to maintain concentrations similar (P > 0.10) to those in Control animals. The kinetics of citrulline and arginine indicated the high citrulline turnover and regeneration of arginine through the citrulline recycling pathway. ADI-PEG20 administration resulted in an absolute and almost instantaneous depletion of circulating arginine, thus reducing global availability without affecting cardiovascular parameters and protein metabolism. The citrulline produced from the deimination of arginine was in turn utilized by the citrulline recycling pathway restoring local tissue arginine availability.NEW & NOTEWORTHY Pegylated arginine deiminase depletes circulating arginine, but the citrulline generated is utilized by multiple tissues to regenerate arginine and sustain local arginine availability. Preempting the arginine depletion that occurs as result of sepsis and trauma with arginine deiminase offers the possibility of maintaining tissue arginine availability despite negligible plasma arginine concentrations.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
- Food Science and Nutrition Department, National Research Centre, Giza, Egypt
| | - Inka C Didelija
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Trung C Nguyen
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Juan C Marini
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Cade WT, Bohnert KL, Bittel AJ, Chacko SJ, Patterson BW, Pacak CA, Byrne BJ, Vernon HJ, Reeds DN. Arginine kinetics are altered in a pilot sample of adolescents and young adults with Barth syndrome. Mol Genet Metab Rep 2020; 25:100675. [PMID: 33204638 PMCID: PMC7649643 DOI: 10.1016/j.ymgmr.2020.100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome (BTHS) is a rare, X-linked cardiomyopathy that is characterized by abnormalities in glucose and lipid metabolism, with less known regarding amino acid metabolism. This pilot study characterized whole-body arginine kinetics and found lower arginine rate of appearance into plasma (0.69 ± 0.09 vs. 0.88 ± 0.06 μmol/kgFFM/min, p < 0.01) and arginine non-oxidative disposal rate (0.64 ± 0.11 vs. 0.80 ± 0.03 μmol/kgFFM/min, p < 0.02) in adolescents and young adults with BTHS compared to Controls. This study provides a foundation for more in-depth studies on how arginine and potentially other amino acid abnormalities contribute to the pathology and clinical manifestations of BTHS.
Collapse
Affiliation(s)
- W. Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Doctor of Physical Therapy Division, Duke University School of Medicine, Durham, NC, United States
| | - Kathryn L. Bohnert
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Adam J. Bittel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Shaji J. Chacko
- Department of Pediatrics, Children's Nutrition Research Center, U.S. Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, United States
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Christina A. Pacak
- Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL, United States
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL, United States
| | - Hilary J. Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dominic N. Reeds
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Mohammad MA, Didelija IC, Marini JC. Arginase II Plays a Central Role in the Sexual Dimorphism of Arginine Metabolism in C57BL/6 Mice. J Nutr 2020; 150:3133-3140. [PMID: 33188387 PMCID: PMC7726119 DOI: 10.1093/jn/nxaa318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sex differences in plasma concentration of arginine and arginase activity of different tissues have been reported in mice. In addition, male but not female C57BL/6 mice have a dietary arginine requirement for growth. OBJECTIVE The goal of this research was to test the hypothesis that arginase II is a key factor in the sexual dimorphism of arginine metabolism. METHODS Young adult male and female wild type (WT), and heterozygous and arginase II knockout mice on a C57BL/6 background mice were infused with labeled citrulline, arginine, ornithine, phenylalanine, and tyrosine to determine the rates of appearance and interconversion of these amino acids. Tissue arginase activity was measured in the liver, heart, jejunum, kidney, pancreas, and spleen with an arginine radioisotope. The effect of genotype, sex, and their interaction was tested. RESULTS Female mice produced ∼36% more citrulline than their male littermates, which translated into a greater arginine endogenous synthesis, flux, and plasma concentration (42, 6, and 27%, respectively; P < 0.001). Female mice also had a greater phenylalanine flux (10%) indicating a greater rate of whole protein breakdown; however, they had a lower protein synthesis rate than males (18%; P < 0.001). The ablation of arginase II reduced the production of citrulline and the de novo synthesis of arginine in females and increased the rate of appearance of arginine and plasma arginine concentration in male mice (16 and 22%, respectively; P < 0.001). No effect of arginase II deletion, however, was observed for whole-body protein kinetics. Arginase II activity was present in the pancreas, kidney, jejunum, and spleen; WT females had a ∼2-fold greater renal arginase activity than their WT counterparts. CONCLUSIONS A clear sexual dimorphism exists in the endogenous synthesis of arginine and its disposal. Female mice have a greater arginine availability than their male littermates. The ablation of arginase II increases arginine availability in male mice.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- USDA/ARS (Agricultural Research Service) Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Food Science and Nutrition Department, National Research Centre, Dokki, Giza, Egypt
| | - Inka C Didelija
- USDA/ARS (Agricultural Research Service) Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
13
|
Mierzchala-Pasierb M, Lipinska-Gediga M, Fleszar MG, Lesnik P, Placzkowska S, Serek P, Wisniewski J, Gamian A, Krzystek-Korpacka M. Altered profiles of serum amino acids in patients with sepsis and septic shock – Preliminary findings. Arch Biochem Biophys 2020; 691:108508. [DOI: 10.1016/j.abb.2020.108508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
|
14
|
Luiking YC, Poeze M, Deutz NE. A randomized-controlled trial of arginine infusion in severe sepsis on microcirculation and metabolism. Clin Nutr 2020; 39:1764-1773. [DOI: 10.1016/j.clnu.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023]
|
15
|
Lambden S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis-an update. Intensive Care Med Exp 2019; 7:64. [PMID: 31792745 PMCID: PMC6888802 DOI: 10.1186/s40635-019-0274-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide is a signalling molecule with an extensive range of functions in both health and disease. Discovered in the 1980s through work that earned the Nobel prize, nitric oxide is an essential factor in regulating cardiovascular, immune, neurological and haematological function in normal homeostasis and in response to infection. Early work implicated exaggerated nitric oxide synthesis as a potentially important driver of septic shock; however, attempts to modulate production through global inhibition of nitric oxide synthase were associated with increased mortality. Subsequent work has shown that regulation of nitric oxide production is determined by numerous factors including substrate and co-factor availability and expression of endogenous regulators. In sepsis, nitric oxide synthesis is dysregulated with exaggerated production leading to cardiovascular dysfunction, bioenergetic failure and cellular toxicity whilst at the same time impaired microvascular function may be driven in part by reduced nitric oxide synthesis by the endothelium. This bench to bedside review summarises our current understanding of the ways in which nitric oxide production is regulated on a tissue and cellular level before discussing progress in translating these observations into novel therapeutic strategies for patients with sepsis.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, Addenbrooke's Hospital, Cambridge University, 5th Floor, Cambridge, CB20QQ, UK.
| |
Collapse
|
16
|
Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol 2019; 25:4383-4404. [PMID: 31496619 PMCID: PMC6710177 DOI: 10.3748/wjg.v25.i31.4383] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Systemic inflammation is a marker of poor prognosis preoperatively present in around 20%-40% of colorectal cancer patients. The hallmarks of systemic inflammation include an increased production of proinflammatory cytokines and acute phase proteins that enter the circulation. While the low-level systemic inflammation is often clinically silent, its consequences are many and may ultimately lead to chronic cancer-associated wasting, cachexia. In this review, we discuss the pathogenesis of cancer-related systemic inflammation, explore the role of systemic inflammation in promoting cancer growth, escaping antitumor defense, and shifting metabolic pathways, and how these changes are related to less favorable outcome.
Collapse
Affiliation(s)
- Anne E Tuomisto
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
- Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu 90220, Finland
| | - Markus J Mäkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
- Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu 90220, Finland
| | - Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
- Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu 90220, Finland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
17
|
Kinetic and Cross-Sectional Studies on the Genesis of Hypoargininemia in Severe Pediatric Plasmodium falciparum Malaria. Infect Immun 2019; 87:IAI.00655-18. [PMID: 30718287 DOI: 10.1128/iai.00655-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022] Open
Abstract
The low bioavailability of nitric oxide (NO) and its precursor, arginine, contributes to the microvascular pathophysiology of severe falciparum malaria. To better characterize the mechanisms underlying hypoargininemia in severe malaria, we measured the plasma concentrations of amino acids involved in de novo arginine synthesis in children with uncomplicated falciparum malaria (UM; n = 61), children with cerebral falciparum malaria (CM; n = 45), and healthy children (HC; n = 109). We also administered primed infusions of l-arginine uniformly labeled with 13C6 and 15N4 to 8 children with severe falciparum malaria (SM; age range, 4 to 9 years) and 7 healthy children (HC; age range, 4 to 8 years) to measure the metabolic flux of arginine, hypothesizing that arginine flux is increased in SM. Using two different tandem mass spectrometric methods, we measured the isotopic enrichment of arginine in plasma obtained at 0, 60, 90, 120, 150, and 180 min during the infusion. The plasma concentrations of glutamine, glutamate, proline, ornithine, citrulline, and arginine were significantly lower in UM and CM than in HC (P ≤ 0.04 for all pairwise comparisons). Of these, glutamine concentrations were the most markedly decreased: median, 457 μM (interquartile range [IQR], 400 to 508 μM) in HC, 300 μM (IQR, 256 to 365 μM) in UM, and 257 μM (IQR, 195 to 320 μM) in CM. Arginine flux during steady state was not significantly different in SM than in HC by the respective mass spectrometric methods: 93.2 μmol/h/kg of body weight (IQR, 84.4 to 129.3 μmol/h/kg) versus 88.0 μmol/h/kg (IQR, 73.0 to 102.2 μmol/h/kg) (P = 0.247) by the two mass spectrometric methods in SM and 93.7 μmol/h/kg (IQR, 79.1 to 117.8 μmol/h/kg) versus 81.0 μmol/h/kg (IQR, 75.9 to 88.6 μmol/h/kg) (P = 0.165) by the two mass spectrometric methods in HC. A limited supply of amino acid precursors for arginine synthesis likely contributes to the hypoargininemia and NO insufficiency in falciparum malaria in children.
Collapse
|
18
|
Gultekin M, Voyvoda H, Ural K, Erdogan H, Balikci C, Gultekin G. Plasma citrulline, arginine, nitric oxide, and blood ammonia levels in neonatal calves with acute diarrhea. J Vet Intern Med 2019; 33:987-998. [PMID: 30788867 PMCID: PMC6430905 DOI: 10.1111/jvim.15459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/06/2019] [Indexed: 01/22/2023] Open
Abstract
Background Plasma citrulline (CIT) concentration is considered to be a reliable marker of functional enterocyte mass, primarily in humans. However, information about CIT levels along with related metabolites, arginine (ARG), nitric oxide (NO), and ammonia in neonatal calves are lacking. Objectives To compare plasma CIT, ARG, NO, and whole blood ammonia concentrations in neonatal calves with acute diarrhea with those in healthy calves and to assess their possible relationships with diarrhea‐related criteria. Animals Seventy neonatal calves (60 with acute diarrhea and 10 healthy). Methods Observational case‐control study. Diarrheic calves were classified into subgroups on the basis of etiology, severity of diarrhea, degree of dehydration, and systemic inflammatory response syndrome (SIRS) status. Plasma CIT and ARG concentrations were measured by liquid chromatography/tandem mass spectrometry. Results Plasma CIT (median [range]: 67.5 [61.9‐75.4] vs 30.1 [15.0‐56.1] μmol/L) and ARG (170.7 [148.5‐219.5] vs 106.1 [54.4‐190.7] μmol/L) were lower and plasma NO (4.42 [3.29‐5.58] vs 6.78 [5.29‐8.92] μM) and blood ammonia concentrations (28.7 [26.1‐36.9] vs 59.8 [34.6‐99.5] μmol/L) were higher in the neonatal calves with diarrhea (P < .001). Plasma CIT (β = −0.29, P = .02), ARG (β = −0.33, P = .01), NO (β = 0.55, P < .001), and blood ammonia (β = 0.63, P <.001) were affected by SIRS status. Except for ammonia (0.52), the effects sizes for severity of diarrhea and degree of dehydration were small (ηp2 ≤ 0.45) for CIT, ARG, and NO. Conclusions and Clinical Importance The changes in these variables might have diagnostic, prognostic, and therapeutic value in diarrheic neonatal calves.
Collapse
Affiliation(s)
- Mehmet Gultekin
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydin, Turkey
| | - Huseyin Voyvoda
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydin, Turkey
| | - Kerem Ural
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydin, Turkey
| | - Hasan Erdogan
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydin, Turkey
| | - Canberk Balikci
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydin, Turkey
| | - Gamze Gultekin
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydin, Turkey
| |
Collapse
|
19
|
Ferrario M, Brunelli L, Su F, Herpain A, Pastorelli R. The Systemic Alterations of Lipids, Alanine-Glucose Cycle and Inter-Organ Amino Acid Metabolism in Swine Model Confirms the Role of Liver in Early Phase of Septic Shock. Front Physiol 2019; 10:11. [PMID: 30745875 PMCID: PMC6360162 DOI: 10.3389/fphys.2019.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Septic shock is a medical emergency and is one of the main causes of mortality in critically ill patients. Given the pathophysiological complexity of sepsis spectrum and progression in clinical settings, animal models become essential tools to improve patient care, and to understand key mechanisms that may remain masked from the heterogeneity of clinical practice. Our aim was to verify whether the metabolic constellations we previously reported for septic shock patients appear also in our septic shock swine model as systemic markers of early disturbances in energy metabolism and hepatic homeostasis. Septic shock was induced in anesthetized, instrumented, and ventilated adult swines by polymicrobial peritonitis. Hemodynamic and serial measurements of arterial and mixed venous blood gasses were made. Laboratory measurements and mass spectrometry-based targeted quantitative plasma metabolomics were performed in blood samples collected at baseline, at shock and at fully resuscitation after fluids and vasopressors administration. Data elaboration was performed by multilevel and multivariate analysis. Changes in hemodynamic, blood chemistry, and inflammatory markers were in line with a septic shock phenotype. Time course alteration of systemic metabolites were characterized by marked decreased in phosphatidylcholines and lysophosphatidylcholines species, altered alanine-glucose cycle and inter-organ amino acid metabolism, pointing toward an early hepatic impairment similarly to what we previously reported for septic shock. This is the first study in which an experimental swine model of septic shock recapitulates the main metabolic derangements reported in a clinical setting of shock. These events occur within hours from infections and may act as early metabolic features to assist in evaluating subclinical hepatic alterations and pave the way to improve the management of septic shock.
Collapse
Affiliation(s)
- Manuela Ferrario
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Laura Brunelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fuhong Su
- Experimental Laboratory of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Roberta Pastorelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
20
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
21
|
Sirniö P, Väyrynen JP, Klintrup K, Mäkelä J, Karhu T, Herzig KH, Minkkinen I, Mäkinen MJ, Karttunen TJ, Tuomisto A. Alterations in serum amino-acid profile in the progression of colorectal cancer: associations with systemic inflammation, tumour stage and patient survival. Br J Cancer 2018; 120:238-246. [PMID: 30563990 PMCID: PMC6342921 DOI: 10.1038/s41416-018-0357-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer cachexia is a complex wasting syndrome affecting patients with advanced cancer, with systemic inflammation as a key component in pathogenesis. Protein degradation and release of amino acids (AAs) in skeletal muscle are stimulated in cachexia. Here, we define factors contributing to serum AA levels in colorectal cancer (CRC). METHODS Serum levels of nine AAs were characterised in 336 CRC patients and their relationships with 20 markers of systemic inflammatory reaction, clinicopathological features of cancers and patient survival were analysed. RESULTS Low serum glutamine and histidine levels and high phenylalanine levels associated with indicators of systemic inflammation, including high modified Glasgow Prognostic Score, high blood neutrophil/lymphocyte ratio and high serum levels of CRP, IL-6 and IL-8. Low levels of serum glutamine, histidine, alanine and high glycine levels also associated with advanced cancer stage and with poor cancer-specific survival in univariate analysis. CONCLUSIONS In CRC, serum AA levels are associated with systemic inflammation and disease stage. These findings may reflect muscle catabolism induced by systemic inflammation in CRC.
Collapse
Affiliation(s)
- Päivi Sirniö
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Kai Klintrup
- Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Jyrki Mäkelä
- Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Toni Karhu
- Department of Physiology, Research Unit of Biomedicine and Biocenter Oulu, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Karl-Heinz Herzig
- Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.,Department of Physiology, Research Unit of Biomedicine and Biocenter Oulu, University of Oulu, POB 5000, 90014, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, ul. Szpitalna 27/33, 60-572, Poznan, Poland
| | - Ilkka Minkkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Markus J Mäkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland
| | - Anne Tuomisto
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland. .,Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland.
| |
Collapse
|
22
|
Numan Y, Jawaid Y, Hirzallah H, Kusmic D, Megri M, Aqtash O, Amro A, Mezughi H, Maher E, Raru Y, Numan J, Akpanudo S, Khitan Z, Shweihat Y. Ammonia vs. Lactic Acid in Predicting Positivity of Microbial Culture in Sepsis: The ALPS Pilot Study. J Clin Med 2018; 7:182. [PMID: 30049989 PMCID: PMC6111562 DOI: 10.3390/jcm7080182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The use of serum ammonia as a novel marker for sepsis compared to lactic acid levels in intensive care unit (ICU) patients. DESIGN AND INTERVENTIONS Single arm, prospective clinical trial to collect arterial blood samples from patients with sepsis. Serial ammonia and lactic acid levels were sent every six hours for a total of three days. MEASUREMENTS AND RESULTS Compare mean levels of ammonia and lactic acid in terms of diagnosing sepsis and patient outcome, including length of stay and mortality. A total of 30 patients were enrolled in the pilot study. On admission, mean ammonia level was 35.7 μmol/L and lactic acid was 3.06 mmole/L. Ammonia levels checked at the end of day 2 (ammonia 2-4) and the beginning of day 3 (ammonia 3-1) were higher in patients who had a microbial culture-proven sepsis (p-values 0.029 and 0.002, respectively) compared to those without culture-positive sepsis. Ammonia levels did predict a longer hospital stay; ammonia level of more than 40 μmol/L had a mean hospital stay of 17.6 days vs. patients with normal levels who had a mean hospital stay of 9.62 days (p-value 0.0082). CONCLUSION Elevated ammonia level can be a novel biomarker for sepsis, comparable to conventional markers. Ammonia levels have a prognostic utility as elevated levels were associated with longer hospital stay.
Collapse
Affiliation(s)
- Yazan Numan
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Yasir Jawaid
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Hisham Hirzallah
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Damir Kusmic
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Mohammad Megri
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Obadah Aqtash
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Ahmed Amro
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Haitem Mezughi
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Emmon Maher
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Yonas Raru
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Jamil Numan
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Sutoidem Akpanudo
- Internal Medicine Department, Marshall University, Huntington, WV 25755, USA.
| | - Zeid Khitan
- Nephrology Department, Marshall University, Huntington, WV 25755, USA.
| | - Yousef Shweihat
- Pulmonary & Critical Care Department, Marshall University, Huntington, WV 25701, USA.
| |
Collapse
|
23
|
Yuan Y, Mohammad MA, Betancourt A, Didelija IC, Yallampalli C, Marini JC. The Citrulline Recycling Pathway Sustains Cardiovascular Function in Arginine-Depleted Healthy Mice, but Cannot Sustain Nitric Oxide Production during Endotoxin Challenge. J Nutr 2018; 148:844-850. [PMID: 29878271 PMCID: PMC6670044 DOI: 10.1093/jn/nxy065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background The recycling of citrulline by argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL) is crucial to maintain arginine availability and nitric oxide (NO) production. Pegylated arginine deiminase (ADI-PEG20) is a bacterial enzyme used to deplete circulating arginine. Objective The goal of this research was to test the hypothesis that citrulline is able to sustain intracellular arginine availability for NO production in ADI-PEG20 arginine-depleted mice. Methods Six- to 8-wk-old male C57BL/6J mice injected with ADI-PEG20 (5 IU) or saline (control) were used in 4 different studies. Arginine, citrulline, and NO kinetics were determined by using stable isotopes in unchallenged (study 1) and endotoxin-challenged (study 2) mice. Blood pressure was determined by telemetry for 6 d after ADI-PEG20 administration (study 3), and vasomotor activity and ASS1 and ASL gene expression were determined in mesenteric arteries collected from additional mice (study 4). Results ADI-PEG20 administration resulted in arginine depletion (<1 compared with 111 ± 37 µmol/L) but in greater plasma citrulline concentrations (900 ± 123 compared with 76 ± 8 µmol/L; P < 0.001) and fluxes (402 ± 17 compared with 126 ± 4 µmol ⋅ kg-1 ⋅ h-1; P < 0.001) compared with controls. Endotoxin-challenged ADI-PEG20-treated mice produced less NO than controls (13 ± 1 compared with 27 ± 2 µmol ⋅ kg-1 ⋅ h-1; P < 0.001). No differences (P > 0.50) were observed for cardiovascular variables (heart rate, blood pressure) between ADI-PEG20-treated and control mice. Furthermore, no ex vivo vasomotor differences were observed between the 2 treatments. ADI-PEG20 administration resulted in greater gene expression of ASS1 (∼3-fold) but lower expression of ASL (-30%). Conclusion ADI-PEG20 successfully depleted circulating arginine without any effect on cardiovascular endpoints in healthy mice but limited NO production after endotoxin challenge. Therefore, the citrulline recycling pathway can sustain local arginine availability independently from circulating arginine, satisfying the demand of arginine for endothelial NO production; however, it is unable to do so when a high demand for arginine is elicited by endotoxin.
Collapse
Affiliation(s)
- Yang Yuan
- USDA–Agricultural Research Service Children's Nutrition Research Center
| | | | | | - Inka C Didelija
- USDA–Agricultural Research Service Children's Nutrition Research Center
| | | | - Juan C Marini
- USDA–Agricultural Research Service Children's Nutrition Research Center,Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Address correspondence to JCM (e-mail: )
| |
Collapse
|
24
|
Tesfai A, MacCallum N, Kirkby NS, Gashaw H, Gray N, Want E, Quinlan GJ, Mumby S, Leiper JM, Paul-Clark M, Ahmetaj-Shala B, Mitchell JA. Metabolomic profiling of amines in sepsis predicts changes in NOS canonical pathways. PLoS One 2017; 12:e0183025. [PMID: 28813479 PMCID: PMC5557592 DOI: 10.1371/journal.pone.0183025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Nitric oxide synthase (NOS) is a biomarker/target in sepsis. NOS activity is driven by amino acids, which cycle to regulate the substrate L-arginine in parallel with cycles which regulate the endogenous inhibitors ADMA and L-NMMA. The relationship between amines and the consequence of plasma changes on iNOS activity in early sepsis is not known. OBJECTIVE Our objective was to apply a metabolomics approach to determine the influence of sepsis on a full array of amines and what consequence these changes may have on predicted iNOS activity. METHODS AND MEASUREMENTS 34 amino acids were measured using ultra purification mass spectrometry in the plasma of septic patients (n = 38) taken at the time of diagnosis and 24-72 hours post diagnosis and of healthy volunteers (n = 21). L-arginine and methylarginines were measured using liquid-chromatography mass spectrometry and ELISA. A top down approach was also taken to examine the most changed metabolic pathways by Ingenuity Pathway Analysis. The iNOS supporting capacity of plasma was determined using a mouse macrophage cell-based bioassay. MAIN RESULTS Of all the amines measured 22, including L-arginine and ADMA, displayed significant differences in samples from patients with sepsis. The functional consequence of increased ADMA and decreased L-arginine in context of all cumulative metabolic changes in plasma resulted in reduced iNOS supporting activity associated with sepsis. CONCLUSIONS In early sepsis profound changes in amine levels were defined by dominant changes in the iNOS canonical pathway resulting in functionally meaningful changes in the ability of plasma to regulate iNOS activity ex vivo.
Collapse
Affiliation(s)
- Abel Tesfai
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Niall MacCallum
- Critical Care, University College London Hospital, London, United Kingdom; formerly critical care, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Nicholas S. Kirkby
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hime Gashaw
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicola Gray
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elizabeth Want
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gregory J. Quinlan
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Respiratory, Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - James M. Leiper
- MRC Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Mark Paul-Clark
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Gut barrier failure is associated with bacterial translocation, systemic inflammation, and is presumed to be associated with the development of multiple organ dysfunction syndrome. As the gut barrier function is carried out by a monolayer of enterocytes, a minimum requirement is the integrity of the enterocytes, and controlled paracellular permeability between adjacent enterocytes. Many factors can cause critically ill patients to lose gut barrier function by a mechanism of enterocyte damage; for example, small bowel ischemia or hypoxia, sepsis, systemic inflammatory response syndrome, or absence of enteral feeding. RECENT FINDINGS Two enterocyte biomarkers may help the intensivist to identify enterocyte damage and dysfunction, namely plasma citrulline, a biomarker of functional enterocyte mass, and plasma or urinary intestinal fatty acid-binding protein, a marker of enterocyte damage. This review focuses on results obtained with these biomarkers in the context of critical care, in particular: prevalence of enterocyte biomarker abnormalities; mechanisms associated with enterocyte damage and dysfunction; link with systemic inflammation, bacterial translocation, and clinical intestinal dysfunction; prognostic value of enterocyte biomarkers. Lastly, we also review the limits of these biomarkers. SUMMARY Enterocyte biomarkers may help the intensivist to identify patients presenting with intestinal damage, and who are at risk of bacterial translocation and systemic inflammatory response syndrome, as well as those with decreased enterocyte function, at risk of malabsorption. Enterocyte biomarkers should be interpreted with caution in the critically ill and should be interpreted within the overall clinical context of the patient.
Collapse
|
26
|
Rosenthal MD, Carrott PW, Patel J, Kiraly L, Martindale RG. Parenteral or Enteral Arginine Supplementation Safety and Efficacy. J Nutr 2016; 146:2594S-2600S. [PMID: 27934650 DOI: 10.3945/jn.115.228544] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Arginine supplementation has the potential to improve the health of patients. Its use in hospitalized patients has been a controversial topic in the nutrition literature, especially concerning supplementation of septic patients. In this article, we review the relevant literature both for and against the use of arginine in critically ill, surgical, and hospitalized patients. The effect of critical illness on arginine metabolism is reviewed, as is its use in septic and critically ill patients. Although mounting evidence supports immunonutrition, there are only a few studies that suggest that this is safe in patients with severe sepsis. The use of arginine has been shown to benefit a variety of critically ill patients. It should be considered for inclusion in combinations of immunonutrients or commercial formulations for groups in whom its benefit has been reported consistently, such as those who have suffered trauma and those in acute surgical settings. The aims of this review are to discuss the role of arginine in health, the controversy surrounding arginine supplementation of septic patients, and the use of arginine in critically ill patients.
Collapse
Affiliation(s)
- Martin D Rosenthal
- Division of Acute Care Surgery, Department of Surgery, and.,Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Phillip W Carrott
- Section of Cardiothoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jayshil Patel
- Division of Pulmonary Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; and
| | - Laszlo Kiraly
- Division of Gastrointestinal Surgery, Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Robert G Martindale
- Division of Gastrointestinal Surgery, Department of Surgery, Oregon Health and Science University, Portland, OR
| |
Collapse
|
27
|
Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, Baxter A, Nathan N, Anderson W, Gordon E. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci U S A 2016; 113:E5472-80. [PMID: 27573827 PMCID: PMC5027464 DOI: 10.1073/pnas.1607571113] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS. We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-matched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21-67 y). Females were 52 (±2.5) y old (range, 20-67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females. We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84-100%] in males using eight metabolites and 96% (95% CI, 86-100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA 92103-8467;
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA 92103-8467
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467
| | - A Taylor Bright
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467
| | - William A Alaynick
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467
| | - Asha Baxter
- Gordon Medical Associates, Santa Rosa, CA 95403
| | - Neil Nathan
- Gordon Medical Associates, Santa Rosa, CA 95403
| | | | - Eric Gordon
- Gordon Medical Associates, Santa Rosa, CA 95403
| |
Collapse
|
28
|
Dunn JLM, Hunter RA, Gast K, Maile R, Cairns BA, Schoenfisch MH. Direct detection of blood nitric oxide reveals a burn-dependent decrease of nitric oxide in response to Pseudomonas aeruginosa infection. Burns 2016; 42:1522-1527. [PMID: 27268107 DOI: 10.1016/j.burns.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
Abstract
PURPOSE Burn is associated with severe immune dysfunction, including an anti-inflammatory state that occurs late after burn. While increased nitric oxide (NO) production is associated with severe infection and sepsis, the effect of burn trauma on these levels during a non-lethal infection remains unknown. We hypothesized that in a mouse model, (1) NO levels would be increased after infection without trauma and (2) burn would lead to decreased NO production even during infection. METHODS Mice were infected via intra-tracheal inoculation with Pseudomonas aeruginosa 14 d following a 20% total body surface area contact burn. At 48h following infection, blood was drawn to quantify NO concentrations using a microfluidic electrochemical sensor. SIGNIFICANT FINDINGS In uninjured mice, infection caused a significant increase in blood NO levels. Increases in NO occurred in a dose-dependent response to the bacterial inoculum. Following burn, an identical infection did not elicit increases in NO. CONCLUSIONS While increases in NO are expected over the course of an infection without prior trauma, burn and subsequent immune suppression decreases NO levels even in the presence of infection.
Collapse
Affiliation(s)
- Julia L M Dunn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Rebecca A Hunter
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Karli Gast
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Robert Maile
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States; North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Bruce A Cairns
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States; North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
29
|
Xu W, Ghosh S, Comhair SAA, Asosingh K, Janocha AJ, Mavrakis DA, Bennett CD, Gruca LL, Graham BB, Queisser KA, Kao CC, Wedes SH, Petrich JM, Tuder RM, Kalhan SC, Erzurum SC. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 2016; 126:2465-81. [PMID: 27214549 DOI: 10.1172/jci82925] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.
Collapse
|
30
|
Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis. J Nutr Metab 2016; 2016:1373060. [PMID: 27200186 PMCID: PMC4855021 DOI: 10.1155/2016/1373060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 12/19/2022] Open
Abstract
Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.
Collapse
|
31
|
Reduced arginine availability and nitric oxide synthesis in cancer is related to impaired endogenous arginine synthesis. Clin Sci (Lond) 2016; 130:1185-95. [PMID: 27129191 DOI: 10.1042/cs20160233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/05/2016] [Indexed: 02/04/2023]
Abstract
Reduced plasma arginine (ARG) concentrations are found in various types of cancer. ARG and its product nitric oxide (NO) are important mediators in the immune function and the defense against tumour cells. It remains unclear whether the diminished systemic ARG availability in cancer is related to insufficient endogenous ARG synthesis, negatively affecting NO synthesis, and whether a dietary amino acid mixture is able to restore this. In 13 patients with advanced non-small cell lung cancer (NSCLC) and 11 healthy controls, whole body ARG and CIT (citrulline) rates of appearance were measured by stable isotope methodology before and after intake of a mixture of amino acids as present in whey protein. The conversions of CIT to ARG (indicator of de novo ARG synthesis) and ARG to CIT (marker of NO synthesis), and ARG clearance (reflecting ARG disposal capacity) were calculated. Plasma isotopic enrichments and amino acid concentrations were measured by LC-MS/MS. Conversions of CIT to ARG and ARG to CIT (P<0.05), and CIT rate of appearance (P=0.07) were lower in NSCLC. ARG rate of appearance and clearance were comparable suggesting no enhanced systemic ARG production and disposal capacity in NSCLC. After intake of the mixture, ARG rate of appearance and concentration increased (P<0.001), and ARG to CIT conversion was restored in NSCLC. In conclusion, an impaired endogenous ARG synthesis plays a role in the reduced systemic ARG availability and NO synthesis in advanced NSCLC. Nutritional approaches may restore systemic ARG availability and NO synthesis in cancer, but the clinical implication remains unclear.
Collapse
|
32
|
El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Almannai M, Craigen WJ, Jahoor F, Scaglia F. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation. Mol Genet Metab 2016; 117:407-12. [PMID: 26851065 PMCID: PMC4818739 DOI: 10.1016/j.ymgme.2016.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/29/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be beneficial earlier in life. Controlled clinical trials to assess the therapeutic effects of arginine and citrulline on clinical complications of MELAS syndrome are needed.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jean W Hsu
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sirisak Chanprasert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Farook Jahoor
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
33
|
"Immunonutrition" Has Failed to Improve Peritonitis-Induced Septic Shock in Rodents. PLoS One 2016; 11:e0147644. [PMID: 26808822 PMCID: PMC4726599 DOI: 10.1371/journal.pone.0147644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/06/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Immunonutrition in sepsis, including n-3 poly-unsaturated fatty acids (PUFAs) or L-arginine supplementation, is a controversial issue that has yielded a great number of studies for the last thirty-five years, and the conclusions regarding the quantity and quality of this support in patients are deceiving. The aim of the present experimental study is to investigate the effects of a pretreatment with enteral nutrition enriched with n-3 PUFAs or L-arginine on vascular dysfunctions, inflammation and oxidative stress during septic shock in rats. DESIGN Rats were fed with enteral Peptamen® HN (HN group), Peptamen® AF containing n-3 PUFAs (AF group) or Peptamen® AF enriched with L-arginine (AFA group). On day 4, peritonitis by cecal ligation and puncture (CLP) was performed. Rats were resuscitated (H18) once septic shock was established. After a 4-hour resuscitation, vessels and organs were harvested to assess inflammation, superoxide anion, nitric oxide and prostacyclin levels. Ex-vivo vascular reactivity was also performed. RESULTS Compared to CLP-AF or CLP-HN groups, 47.6% of CLP-AFA rats died before the beginning of hemodynamic measurements (vs. 8.0% and 20.0% respectively, p<0.05). AF and AFA rats required significantly increased norepinephrine infusion rates to reach the mean arterial pressure objective, compared to CLP-HN rats. Both CLP-AF and CLP-AFA reduced mesenteric resistance arterial contractility, decreased vascular oxidative stress, but increased NF-κB (0.40±0.15 in CLP-AF and 0.69±0.06 in CLP-AFA vs. 0.09±0.03 in SHAM rats and 0.30±0.06 in CLP-HN, ß-actin ratio, p<0.05) and pIκB expression (0.60±0.03 in CLP-AF and 0.94±0.15 in CLP-AFA vs. 0.04±0.01 in SHAM rats and 0.56±0.07 in CLP-HN, ß-actin ratio, p<0.05), nitric oxide and prostacyclin production in septic rats. CONCLUSIONS Although n-3 PUFAs or L-arginine supplementation exhibited an antioxidant effect, it worsened the septic shock-induced vascular dysfunction. Furthermore, mortality was higher after L-arginine supplementation.
Collapse
|
34
|
Blasco-Alonso J, Sánchez Yáñez P, Rosa Camacho V, Camacho Alonso J, Yahyaoui Macías R, Gil-Gómez R, Milano Manso G. Citrulline and arginine kinetics and its value as a prognostic factor in pediatric critically ill patients. An Pediatr (Barc) 2015. [DOI: 10.1016/j.anpede.2014.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
35
|
The Safety of Arginine in the Critically Ill Patient: What Does the Current Literature Show? Curr Nutr Rep 2015. [DOI: 10.1007/s13668-015-0134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Richter ME, Neugebauer S, Engelmann F, Hagel S, Ludewig K, La Rosée P, Sayer HG, Hochhaus A, von Lilienfeld-Toal M, Bretschneider T, Pausch C, Engel C, Brunkhorst FM, Kiehntopf M. Biomarker candidates for the detection of an infectious etiology of febrile neutropenia. Infection 2015; 44:175-86. [PMID: 26275448 DOI: 10.1007/s15010-015-0830-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Infections and subsequent septicemia are major complications in neutropenic patients with hematological malignancies. Here, we identify biomarker candidates for the early detection of an infectious origin, and monitoring of febrile neutropenia (FN). METHODS Proteome, metabolome, and conventional biomarkers from 20 patients with febrile neutropenia without proven infection (FNPI) were compared to 28 patients with proven infection, including 17 patients with bacteremia. RESULTS Three peptides (mass to charge ratio 1017.4-1057.3; p-values 0.011-0.024), six proteins (mass to charge ratio 6881-17,215; p-values 0.002-0.004), and six phosphatidylcholines (p-values 0.007-0.037) were identified that differed in FNPI patients compared to patients with infection or bacteremia. Seven of these marker candidates discriminated FNPI from infection at fever onset with higher sensitivity and specificity (ROC-AUC 0.688-0.824) than conventional biomarkers i.e., procalcitonin, C-reactive protein, or interleukin-6 (ROC-AUC 0.535-0.672). In a post hoc analysis, monitoring the time course of four lysophosphatidylcholines, threonine, and tryptophan allowed for discrimination of patients with or without resolution of FN (ROC-AUC 0.648-0.919) with higher accuracy compared to conventional markers (ROC-AUC 0.514-0.871). CONCLUSIONS Twenty-one promising biomarker candidates for the early detection of an infectious origin or for monitoring the course of FN were found which might overcome known shortcomings of conventional markers.
Collapse
Affiliation(s)
- Martin E Richter
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Sophie Neugebauer
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Falco Engelmann
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Stefan Hagel
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Zentrum für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Katrin Ludewig
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Paul La Rosée
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Herbert G Sayer
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,4. Medizinische Klinik (Hämatologie und internistische Onkologie, Hämostaseologie), HELIOS Klinikum Erfurt, Nordhäuser Straße 74, 99089, Erfurt, Germany
| | - Andreas Hochhaus
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Marie von Lilienfeld-Toal
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Tom Bretschneider
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Christine Pausch
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Christoph Engel
- Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Frank M Brunkhorst
- Zentrum für Klinische Studien, Universitätsklinikum Jena, Salvador-Allende-Platz 27, 07747, Jena, Germany
| | - Michael Kiehntopf
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany. .,Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.
| |
Collapse
|
37
|
Gey A, Tadie JM, Caumont-Prim A, Hauw-Berlemont C, Cynober L, Fagon JY, Terme M, Diehl JL, Delclaux C, Tartour E. Granulocytic myeloid-derived suppressor cells inversely correlate with plasma arginine and overall survival in critically ill patients. Clin Exp Immunol 2015; 180:280-8. [PMID: 25476957 DOI: 10.1111/cei.12567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 01/12/2023] Open
Abstract
Critically ill patients display a state of immunosuppression that has been attributed in part to decreased plasma arginine concentrations. However, we and other authors have failed to demonstrate a clinical benefit of L-arginine supplementation. We hypothesize that, in these critically ill patients, these low plasma arginine levels may be secondary to the presence of granulocytic myeloid-derived suppressor cells (gMDSC), which express arginase known to convert arginine into nitric oxide (NO) and citrulline. Indeed, in a series of 28 non-surgical critically ill patients, we showed a dramatic increase in gMDSC compared to healthy subjects (P = 0·0002). A significant inverse correlation was observed between arginine levels and gMDSC (P = 0·01). As expected, gMDSC expressed arginase preferentially in these patients. Patients with high gMDSC levels on admission to the medical intensive care unit (MICU) presented an increased risk of death at day 7 after admission (P = 0·02). In contrast, neither plasma arginine levels, monocytic MDSC levels nor neutrophil levels were associated with overall survival at day 7. No relationship was found between body mass index (BMI) or simplified acute physiology score (SAPS) score, sequential organ failure assessment (SOFA) score or gMDSC levels, eliminating a possible bias concerning the direct prognostic role of these cells. As gMDSC exert their immunosuppressive activity via multiple mechanisms [production of prostaglandin E2 (PGE2 ), interleukin (IL)-10, arginase, etc.], it may be more relevant to target these cells, rather than simply supplementing with L-arginine to improve immunosuppression and its clinical consequences observed in critically ill patients.
Collapse
Affiliation(s)
- A Gey
- Hôpital Européen Georges Pompidou (HEGP), Paris, France; Service d'Immunologie Biologique, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kao CC, Wedes SH, Hsu JW, Bohren KM, Comhair SAA, Jahoor F, Erzurum SC. Arginine metabolic endotypes in pulmonary arterial hypertension. Pulm Circ 2015; 5:124-34. [PMID: 25992277 DOI: 10.1086/679720] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022] Open
Abstract
Decreased synthesis of nitric oxide (NO) by NO synthases (NOS) is believed to play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). Multiple factors may contribute to decreased NO bioavailability, including increased activity of arginase, the enzyme that converts arginine to ornithine and urea, which may compete with NOS for arginine; inadequate de novo arginine production from citrulline; and increased concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NOS. We hypothesized that PAH patients with the lowest arginine availability secondary to increased arginase activity and/or inadequate de novo arginine synthesis might have a slower rate of NO synthesis and greater pulmonary vascular resistance. Nine patients with group 1 PAH and 10 healthy controls were given primed, constant intravenous infusions of (15)N2-arginine, (13)C,(2)H4-citrulline, (15)N2-ornithine, and (13)C-urea in the postabsorptive state. The results showed that, compared with healthy controls, PAH patients had a tendency toward increased arginine clearance and ornithine flux but no difference in arginine and citrulline flux, de novo arginine synthesis, or NO synthesis. Arginine-to-ADMA ratio was increased in PAH patients. Two endotypes of patients with low and high arginase activity were identified; compared with the low-arginase group, the patients with high arginase had increased arginine flux, slower NO synthesis, and lower plasma concentrations of ADMA. These results demonstrate that increased breakdown of arginine by arginase occurs in PAH and affects NO synthesis. Furthermore, there is no compensatory increase in de novo arginine synthesis to overcome this increased utilization of arginine by arginase.
Collapse
Affiliation(s)
- Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep, Baylor College of Medicine, Houston, Texas, USA ; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Samuel H Wedes
- Lerner Research Institute and Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jean W Hsu
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kurt M Bohren
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Suzy A A Comhair
- Lerner Research Institute and Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Serpil C Erzurum
- Lerner Research Institute and Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Kao CC, Hsu JW, Dwarkanath P, Karnes JM, Baker TM, Bohren KM, Badaloo A, Thame MM, Kurpad AV, Jahoor F. Indian women of childbearing age do not metabolically conserve arginine as do American and Jamaican women. J Nutr 2015; 145:884-92. [PMID: 25833892 DOI: 10.3945/jn.114.208231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/11/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In a previous study in pregnant American women, we reported that arginine flux and nitric oxide synthesis increased in trimester 2. More recently, we reported that Indian women do not increase arginine flux during pregnancy as their American or Jamaican counterparts do. OBJECTIVE The purpose of this study was to determine whether Indian women of childbearing age are producing less arginine and/or catabolizing more arginine and therefore have less available for anabolic pathways than do Jamaican and American women. METHODS Thirty healthy women aged 28.3 ± 0.8 y from the United States, India, and Jamaica (n = 10/group) were given 6 h primed, constant intravenous infusions of guanidino-¹⁵N₂-arginine, 5,5-²H₂-citrulline, ¹⁵N₂-ornithine, and ring-²H₅-phenylalanine, in addition to primed, oral doses of U-¹³C₆-arginine in both the fasting and postprandial states. An oral dose of deuterium oxide was also given to determine fat-free mass (FFM). RESULTS Compared with American women, Indian and Jamaican women had greater ornithine fluxes (μmol · kg fat FFM⁻¹ · h⁻¹) in the fasting and postprandial states (27.3 ± 2.5 vs. 39.6 ± 3.7 and 37.2 ± 2.0, respectively, P = 0.01), indicating greater arginine catabolism. However, Jamaican women had a higher endogenous arginine flux than did Indian and American women in the fasting (66.1 ± 3.1 vs. 54.2 ± 3.1 and 56.1 ± 2.1, respectively, P = 0.01) and postprandial (53.8 ± 2.2 vs. 43.7 ± 4.9 and 42.8 ± 3.1, respectively, P = 0.06) states. As a consequence, Indian women had lower arginine bioavailability (μmol · kg FFM⁻¹ · h⁻¹) in the fasting state (42.0 ± 2.6) than did American (49.9 ± 1.3, P = 0.045) and Jamaican (55.5 ± 3.5, P = 0.004) women, as well as in the postprandial state (40.7 ± 3.5 vs. 51.8 ± 1.2 and 57.5 ± 3.2, respectively, P = 0.001). CONCLUSION Compared with American and Jamaican women, Indian women of childbearing age have a decreased arginine supply because of increased arginine catabolism without an increase in arginine flux.
Collapse
Affiliation(s)
- Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and USDA Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jean W Hsu
- USDA Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Pratibha Dwarkanath
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India; and
| | - Jeffrey M Karnes
- USDA Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | - Kurt M Bohren
- USDA Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Asha Badaloo
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Kingston, Jamaica
| | | | - Anura V Kurpad
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India; and
| | - Farook Jahoor
- USDA Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX;
| |
Collapse
|
40
|
Fremont RD, Rice TW. Pros and cons of feeding the septic intensive care unit patient. Nutr Clin Pract 2015; 30:344-50. [PMID: 25855092 DOI: 10.1177/0884533615578457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sepsis is a common disease seen in critically ill patients. Many patients with sepsis are unable to provide nutrition for themselves, and therefore initiating artificial nutrition has become part of routine care for these patients. However, studies investigating the optimal route, composition, volume, and duration of nutrition in critically ill patients with sepsis are lacking. The best recommendations have to be extrapolated from studies in heterogeneous populations of critically ill patients or in those with syndromes such as acute lung injury or acute respiratory distress syndrome (ARDS) where sepsis is a common predisposing etiology. In this review, we summarize pertinent studies that inform clinical practice on providing artificial nutrition to critically ill patients with severe sepsis and make recommendations as to how these studies influence clinical care of these patients.
Collapse
Affiliation(s)
- Richard D Fremont
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Todd W Rice
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
41
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
42
|
Blasco-Alonso J, SánchezYáñez P, Rosa Camacho V, Camacho Alonso JM, Yahyaoui Macías R, Gil-Gómez R, Milano Manso G. [Citrulline and arginine kinetics and its value as a prognostic factor in pediatric critically ill patients]. An Pediatr (Barc) 2015; 83:257-63. [PMID: 25698633 DOI: 10.1016/j.anpedi.2014.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Low concentrations of plasma citrulline and arginine have been reported in children under various pathological conditions. HYPOTHESIS Plasma citrulline and arginine levels undergo different kinetics during the early days of critical illness in children according to the severity of symptoms and can be correlated with other clinical and laboratory parameters associated with the SIR. PATIENTS AND METHODS A single-center prospective observational study in patients 7 days to 14 years admitted to pediatric intensive care unit (PICU). Citrulline and arginine blood levels (blood in dry paper, analysis by mass spectrometry in tandem), acute phase reactants and clinical data were collected on admission, at 12 h, 24 h, 3 and 7 days. RESULTS A total of 44 critically ill patients were included and control group was formed by 42 healthy children. The citrulline and arginine kinetic analysis showed: 1) Citrulline falls significantly (P<.05) at 12 h of admission; levels remain low until day 7 and begin progressive increase again. 2) Arginine is already lowered at 6h, although an earlier rise occurs (3rd day). 3. The decrease of citrulline in the first 3 days of admission positively correlates with arginine kinetics. Bivariate analysis showed: 1) Correlation of elevated citrulline on the 7th day with shorter duration of mechanical ventilation, lower PICU stay and lower occurrence of complications. The levels of citrulline still descended at day 7 are associated with increased CRP/procalcitonin elevation at first 24 h. 2) The greatest decrease of arginine in the first 12 h is associated with a longer PICU stay and greater number of complications and increase of acute phase reactants at 3 days. CONCLUSIONS There are decreased levels of arginine and citrulline in the first days at PICU, with recovery at the 3rd and 7th day respectively, and a relationship between a greater decrease and a worse outcome and between a longer income and a higher serum CRP/procalcitonin.
Collapse
Affiliation(s)
- J Blasco-Alonso
- Sección de Gastroenterología, Hepatología, y Nutrición Infantil, Servicio de Pediatría, Hospital Materno-Infantil, Málaga, España.
| | - P SánchezYáñez
- Sección de Cuidados Críticos y Urgencias Pediátricas, Hospital Materno-Infantil, Málaga, España
| | - V Rosa Camacho
- Sección de Cuidados Críticos y Urgencias Pediátricas, Hospital Materno-Infantil, Málaga, España
| | - J M Camacho Alonso
- Sección de Cuidados Críticos y Urgencias Pediátricas, Hospital Materno-Infantil, Málaga, España
| | | | - R Gil-Gómez
- Sección de Cuidados Críticos y Urgencias Pediátricas, Hospital Materno-Infantil, Málaga, España
| | - G Milano Manso
- Sección de Cuidados Críticos y Urgencias Pediátricas, Hospital Materno-Infantil, Málaga, España; Grupo IBIMA Pediatría Integral
| |
Collapse
|
43
|
Rosenthal MD, Vanzant EL, Martindale RG, Moore FA. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr Probl Surg 2015; 52:147-82. [PMID: 25946621 DOI: 10.1067/j.cpsurg.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
|
44
|
Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond) 2014; 128:57-67. [PMID: 25036556 DOI: 10.1042/cs20140343] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arginine deficiency in sepsis may impair nitric oxide (NO) production for local perfusion and add to the catabolic state. In contrast, excessive NO production has been related to global haemodynamic instability. Therefore, the aim of the present study was to investigate the dose-response effect of intravenous arginine supplementation in post-absorptive patients with septic shock on arginine-NO and protein metabolism and on global and regional haemodynamics. Eight critically ill patients with a diagnosis of septic shock participated in this short-term (8 h) dose-response study. L-Arginine-HCl was continuously infused [intravenously (IV)] in three stepwise-increasing doses (33, 66 and 99 μmol·kg-1·h-1). Whole-body arginine-NO and protein metabolism were measured using stable isotope techniques, and baseline values were compared with healthy controls. Global and regional haemodynamic parameters were continuously recorded during the study. Upon infusion, plasma arginine increased from 48±7 to 189±23 μmol·l-1 (means±S.D.; P<0.0001). This coincided with increased de novo arginine (P<0.0001) and increased NO production (P<0.05). Sepsis patients demonstrated elevated protein breakdown at baseline (P<0.001 compared with healthy controls), whereas protein breakdown and synthesis both decreased during arginine infusion (P<0.0001). Mean arterial and pulmonary pressure and gastric mucosal-arterial partial pressure of carbon dioxide difference (Pr-aCO2) gap did not alter during arginine infusion (P>0.05), whereas stroke volume (SV) increased (P<0.05) and arterial lactate decreased (P<0.05). In conclusion, a 4-fold increase in plasma arginine with intravenous arginine infusion in sepsis stimulates de novo arginine and NO production and reduces whole-body protein breakdown. These potential beneficial metabolic effects occurred without negative alterations in haemodynamic parameters, although improvement in regional perfusion could not be demonstrated in the eight patients with septic shock who were studied.
Collapse
|
45
|
Marini JC, Didelija IC, Fiorotto ML. Extrarenal citrulline disposal in mice with impaired renal function. Am J Physiol Renal Physiol 2014; 307:F660-5. [PMID: 25056350 DOI: 10.1152/ajprenal.00289.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endogenous synthesis of arginine, a semiessential amino acid, relies on the production of citrulline by the gut and its conversion into arginine by the kidney in what has been called the "intestinal-renal axis" for arginine synthesis. Although the kidney is the main site for citrulline disposal, it only accounts for ~60-70% of the citrulline produced. Because the only known fate for citrulline is arginine synthesis and the enzymes that catalyze this reaction are widespread among body tissues, we hypothesized that citrulline can be utilized directly by tissues to meet, at least partially, their arginine needs. To test this hypothesis, we used stable and radioactive tracers in conscious, partially nephrectomized (½ and ⅚) and anesthetized acutely kidney-ligated mouse models. Nephrectomy increased plasma citrulline concentration but did not affect citrulline synthesis rates, thus reducing its clearance. Nephrectomy (⅚) reduced the amount of citrulline accounted for as plasma arginine from 88 to 42%. Acute kidney ligation increased the half-life and mean retention time of citrulline. Whereas the rate of citrulline conversion into plasma arginine was reduced, it was not eliminated. In addition, we observed direct utilization of citrulline for arginine synthesis and further incorporation into tissue protein in kidney-ligated mice. These observations indicate that a fraction of the citrulline produced is utilized directly by multiple tissues to meet their arginine needs and that extrarenal sites contribute to plasma arginine. Furthermore, when the interorgan synthesis of arginine is impaired, these extrarenal sites are able to increase their rate of citrulline utilization.
Collapse
Affiliation(s)
- Juan C Marini
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Inka C Didelija
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
46
|
Crenn P, Neveux N, Chevret S, Jaffray P, Cynober L, Melchior JC, Annane D. Plasma l-citrulline concentrations and its relationship with inflammation at the onset of septic shock: A pilot study. J Crit Care 2014; 29:315.e1-315.e6. [DOI: 10.1016/j.jcrc.2013.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 11/27/2022]
|
47
|
Evans DC, Martindale RG, Kiraly LN, Jones CM. Nutrition optimization prior to surgery. Nutr Clin Pract 2013; 29:10-21. [PMID: 24347529 DOI: 10.1177/0884533613517006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Optimization of metabolic state prior to major surgery leads to improved surgical outcomes. Nutrition screening protocols should be implemented in the preoperative evaluation, possibly as part of a bundle. Strategies to minimize hyperglycemia and insulin resistance by aggressive preoperative nutrition and carbohydrate loading may promote maintenance of a perioperative anabolic state, improving healing, reducing complications, and shortening the time to recovery of bowel function and hospital discharge. Short courses of preoperative immune-modulating formulas, using combinations of arginine, ω-3 fatty acids, and other nutrients, have been associated with improved surgical outcomes. These immune-modulating nutrients are key elements of metabolic pathways that promote attenuation of the metabolic response to stress and improve both wound healing and immune function. Patients with severe malnutrition and gastrointestinal dysfunction may benefit from preoperative parenteral nutrition. Continuation of feeding through the intraoperative period for severely stressed hypermetabolic patients undergoing nongastrointestinal surgery is another strategy to optimize metabolic state and reduce prolonged nutrition deficits. In this paper, we review the importance of preoperative nutrition and strategies for effective preoperative nutrition optimization.
Collapse
Affiliation(s)
- David C Evans
- Christopher M. Jones, University of Louisville, Hiram C. Polk Jr MD Department of Surgery, Ambulatory Care Building, 2nd Floor, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
One of the most important factors affecting outcome and recovery from surgical trauma is preoperative nutritional status. Research in perioperative nutritional support has suffered from a lack of consensus as to the definition of malnutrition, no recognition of which nutrients are important to surgical healing, and a paucity of well-designed studies. In the past decade, there has been some activity to address this situation, recognizing the importance of nutrition as a therapy before surgery, after surgery, and possibly even during surgery.
Collapse
Affiliation(s)
- T Miko Enomoto
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, UHS-2, Portland, OR 97239, USA
| | | | | |
Collapse
|
49
|
Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med 2013; 41:2169-76. [PMID: 23782971 DOI: 10.1097/ccm.0b013e31828c26b5] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Small bowel dysfunction in critically ill patients is frequent, underdiagnosed, and associated with poor prognosis. Intestinal fatty acid-binding protein is a marker of enterocyte damage, and plasma citrulline concentration is a marker of functional enterocyte mass. Primary objective was to identify factors associated with intestinal fatty acid-binding protein in critically ill patients. Secondary objectives were to study factors associated with plasma citrulline concentration and its correlation with intestinal fatty acid-binding protein. DESIGN Prospective observational study. SETTING ICU in a University Hospital PATIENTS Critically ill patients 18 years old or older with an expected length of ICU stay 48 hours or more, without pregnancy, chronic small bowel disease, or chronic renal failure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma intestinal fatty acid-binding protein and citrulline concentrations, and variables relating to prognosis and treatment, were measured at admission to the ICU. One hundred and three patients were included. Intestinal fatty acid-binding protein elevation at admission to the ICU was associated with catecholamine support, higher lactate concentration, higher Sequential Organ Failure Assessment score, and higher international normalized ratio (all p≤0.001). Plasma citrulline concentration less than or equal to 10 μmol/L at admission to the ICU was associated with higher intra-abdominal pressure, higher plasma C reactive protein concentration, and more frequent antibiotic use (all p≤0.005). There was no correlation between plasma levels of intestinal fatty acid-binding protein and citrulline. At ICU admission, Sequential Organ Failure Assessment score≥12, plasma citrulline≤12.2 μmol/L, and plasma intestinal fatty acid-binding protein concentration≥355 pg/mL were all independently associated with 28-day mortality (odds ratio, 4.39 [1.48-13.03]; odds ratio, 5.17 [1.59-16.86]; and odds ratio, 4.46 [1.35-14.74], respectively). CONCLUSIONS In critically ill patients, enterocyte damage is frequent, and it is significantly associated with shock and 28-day mortality. The link between intestinal fatty acid-binding protein and plasma citrulline concentrations in critically ill patients needs to be further evaluated.
Collapse
|
50
|
de Betue CTI, Joosten KFM, Deutz NEP, Vreugdenhil ACE, van Waardenburg DA. Arginine appearance and nitric oxide synthesis in critically ill infants can be increased with a protein-energy-enriched enteral formula. Am J Clin Nutr 2013; 98:907-16. [PMID: 23945723 PMCID: PMC3778863 DOI: 10.3945/ajcn.112.042523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arginine is considered an essential amino acid during critical illness in children, and supplementation of arginine has been proposed to improve arginine availability to facilitate nitric oxide (NO) synthesis. Protein-energy-enriched enteral formulas (PE-formulas) can improve nutrient intake and promote anabolism in critically ill infants. However, the effect of increased protein and energy intake on arginine metabolism is not known. OBJECTIVE We investigated the effect of a PE-formula compared with that of a standard infant formula (S-formula) on arginine kinetics in critically ill infants. DESIGN A 2-h stable-isotope tracer protocol was conducted in 2 groups of critically ill infants with respiratory failure because of viral bronchiolitis, who received either a PE-formula (n = 8) or S-formula (n = 10) in a randomized, blinded, controlled setting. Data were reported as means ± SDs. RESULTS The intake of a PE-formula in critically ill infants (aged 0.23 ± 0.14 y) resulted in an increased arginine appearance (PE-formula: 248 ± 114 μmol · kg(-1) · h(-1); S-formula: 130 ± 53 μmol · kg(-1) · h(-1); P = 0.012) and NO synthesis (PE-formula: 1.92 ± 0.99 μmol · kg(-1) · h(-1); S-formula: 0.84 ± 0.36 μmol · kg(-1) · h(-1); P = 0.003), whereas citrulline production and plasma arginine concentrations were unaffected. CONCLUSION In critically ill infants with respiratory failure because of viral bronchiolitis, the intake of a PE-formula increases arginine availability by increasing arginine appearance, which leads to increased NO synthesis, independent of plasma arginine concentrations. This trial was registered at www.trialregister.nl as NTR515.
Collapse
Affiliation(s)
- Carlijn T I de Betue
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|