1
|
Costa TJ, Fontes MT, Barros PR, Hope MC, Webb RC, Wenceslau CF, Enos RT, McCarthy CG. Overexpression of adipose tissue ERα enhances PVAT anticontractility via NOX4-derived H 2O 2 and is protective against high-fat diet-induced dysfunction. Am J Physiol Heart Circ Physiol 2025; 328:H1065-H1072. [PMID: 40127093 DOI: 10.1152/ajpheart.00180.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Menopause has unequivocally been associated with cardiovascular risk and obesity. Loss of estrogen bioavailability is a hallmark of menopause. Estrogen is generally considered vasculoprotective, with estrogen receptor α (ERα) being the predominant receptor subtype that mediates these positive effects. Similarly, estrogen and ERα are known to stimulate white adipose tissue metabolism. However, it is unknown whether ERα could exert a beneficial effect on mesenteric perivascular adipose tissue (PVAT). PVAT is a heterogeneous tissue that surrounds most peripheral blood vessels. In physiological conditions, PVAT has an anticontractile effect on the vasculature. However, in several diseases, PVAT switches its phenotype to become procontractile. To date, the role of ERα in PVAT function in health and disease is unknown. Therefore, we hypothesized that overexpression of adipose tissue ERα (ERαOE) would 1) increase the anticontractile effect of PVAT in chow diet conditions and 2) protect mice against a high-fat diet (HFD)-induced PVAT dysfunction. To test this hypothesis, mesenteric resistance arteries, with and without PVAT, were isolated from female ERαOE mice, which had either been on a regular chow diet or an HFD for 19 wk. We observed that ERαOE amplifies the anticontractile effect of mesenteric PVAT via NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) in chow conditions, and ERαOE is protective against a dysfunctional PVAT that is observed after an HFD, via the same anticontractile mechanism. Collectively, these data demonstrate that ERα is vasculoprotective in the context of PVAT. Harnessing this signaling could be important for reducing cardiovascular risk in postmenopausal women.NEW & NOTEWORTHY We have revealed for the first time that overexpression of adipose tissue estrogen receptor α (ERαOE) amplifies the anticontractile effect of mesenteric PVAT via the biosynthesis of NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2), and this overexpression is protective against HFD-induced PVAT dysfunction. Collectively, these data demonstrate an important mechanism by which ERα signaling is vasculoprotective in the context of PVAT.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Paula R Barros
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Marion C Hope
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, Columbia, South Carolina, United States
| |
Collapse
|
2
|
Watts SW, Krieger-Burke T, Rance N, Contreras GA. Mechanotransduction in the Perivascular Adipose Tissue. Arterioscler Thromb Vasc Biol 2025; 45:461-467. [PMID: 39945069 PMCID: PMC11945577 DOI: 10.1161/atvbaha.124.321688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/29/2025] [Indexed: 03/28/2025]
Abstract
Perivascular adipose tissue is of compelling interest when considering tissue mechanotransduction. Because of its location around a vessel, perivascular adipose tissue experiences from high (artery) to low (vein) pressures, pressures that are cyclical in nature. With blood pressure change, such as the elevation of pressure in hypertension, the question has been raised as to whether perivascular adipose tissue senses such changes, evidenced by a response that can be genetic, structural, or mechanical in nature. Here, we briefly review the following knowledge and data that support the ability of perivascular adipose tissue to both (mechano)sense and (mechano)respond.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI 48824
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI 48824
| | - Nault Rance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI 48824
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing MI 48824
| |
Collapse
|
3
|
Terrian L, Thompson JM, Bowman DE, Panda V, Contreras GA, Rockwell C, Sather L, Fink GD, Lauver DA, Nault R, Watts SW, Bhattacharya S. Single-nucleus analysis of thoracic perivascular adipose tissue reveals critical changes in cell composition, communication, and gene regulatory networks induced by a high fat hypertensive diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.636878. [PMID: 39990347 PMCID: PMC11844537 DOI: 10.1101/2025.02.13.636878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with hypertension being its primary causal factor. Most blood vessels are surrounded by perivascular adipose tissue (PVAT), which regulates blood vessel tone through the secretion of vasoactive factors. PVAT is recognized as a key mediator of vascular function and dysfunction in CVD, although the underlying mechanisms remain poorly understood. To investigate PVAT's mechanistic role in hypertension, we performed single nucleus RNA-Sequencing analysis of thoracic aortic PVAT from Dahl SS rats fed a high-fat, hypertensive diet. Computational analysis revealed extensive diet-induced changes in cell-type composition, cell-type specific gene expression, cell-cell communication pathways, and intracellular gene regulatory networks within PVAT. Furthermore, we identified key transcription factors mediating these networks and demonstrated through virtual knock-out experiments that these factors could serve as potential therapeutic targets for preventing or reversing PVAT's hypertensive state.
Collapse
Affiliation(s)
- Leah Terrian
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Denotes individuals contributed equally as first authors to this work
| | - Janice M. Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Denotes individuals contributed equally as first authors to this work
| | - Derek E. Bowman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Vishal Panda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Cheryl Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Lisa Sather
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gregory D. Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - D. Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Rance Nault
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Denotes lead investigators/funding
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Denotes lead investigators/funding
| |
Collapse
|
4
|
Muffová B, Králová Lesná I, Poledne R. Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis. Physiol Res 2024; 73:929-941. [PMID: 39903884 PMCID: PMC11835208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 02/06/2025] Open
Abstract
Perivascular adipose tissue (PVAT) envelops the majority of systemic vessels, providing crucial mechanical support and vessel protection. In physiological conditions, PVAT releases various bioactive molecules, contributing to the anti-inflammatory environment around neighboring vessels. However, in conditions like obesity, PVAT can exacerbate cardiovascular issues such as atherosclerosis. Communication between PVAT and nearby vessels is bidirectional, with PVAT responding dynamically to signals from the vasculature. This responsiveness positions PVAT as a promising indicator of vascular inflammation. Recently, the role of PVAT in the CVD risk prediction is also greatly discussed. The objective of this review is to summarize the current state of knowledge about the PVAT function, its role in physiologic and pathophysiologic processes and its potential in CVD risk prediction. Keywords: Perivascular adipose tissue, inflammation, atherogenesis, Fat attenuation index.
Collapse
Affiliation(s)
- B Muffová
- Atherosclerosis Research Laboratory, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
5
|
Queiroz M, Sena CM. Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc Diabetol 2024; 23:455. [PMID: 39732729 PMCID: PMC11682657 DOI: 10.1186/s12933-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration. This exacerbates vascular dysfunction by impairing endothelial cell function and promoting endothelial activation. Dysregulated PVAT also contributes to hemodynamic alterations and hypertension through enhanced sympathetic nervous system activity and impaired vasodilatory capacity of PVAT-derived factors. Therapeutic interventions targeting key components of this interaction, such as modulating PVAT inflammation, restoring adipokine balance, and attenuating immune cell activation, hold promise for mitigating obesity-related vascular complications. Lifestyle interventions, pharmacological agents targeting inflammatory pathways, and surgical approaches aimed at reducing PVAT mass or improving adipose tissue function are potential therapeutic avenues for managing vascular diseases associated with obesity and PVAT dysfunction.
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| |
Collapse
|
6
|
Rachwalik M, Sareło P, Obremska M, Matusiewicz M, Sett KS, Czapla M, Jasiński M, Hurkacz M. Resistin concentrations in perivascular adipose tissue as a highly sensitive marker of smoking status in patients with advanced coronary artery disease requiring coronary artery bypass grafting. Front Public Health 2024; 12:1484195. [PMID: 39635208 PMCID: PMC11614759 DOI: 10.3389/fpubh.2024.1484195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Smoking is a significant risk factor for numerous diseases, including coronary artery disease (CAD). Chronic inflammation from smoking affects endothelial function and may alter adipokine secretion, particularly resistin, in perivascular adipose tissue (PVAT). This study investigated the association between resistin concentrations in PVAT and smoking status in CAD patients undergoing coronary artery bypass grafting (CABG). Methods The study included 110 patients with advanced CAD scheduled for CABG. Patients were categorized into never-smokers and ever-smokers, with the latter further divided into current and past smokers. Resistin concentrations in PVAT and plasma, along with plasma interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) concentrations, were measured using ELISA. Result Significant differences in PVAT resistin concentrations were observed between never-smokers and ever-smokers (p < 0.0001), as well as between never-smokers and both current (p < 0.0001) and past smokers (p < 0.0001). PVAT resistin concentrations correlated positively with the number of pack-years (p < 0.0001) and plasma resistin (p < 0.0001) and IL-6 concentrations (p < 0.0001). Plasma resistin, IL-6, and hs-CRP concentrations were higher in ever-smokers compared with never-smokers. Multiple regression analysis indicated that smoking is significantly correlated with higher PVAT resistin concentrations, with increased pack-years (p = 0.0002), higher plasma resistin concentrations (p < 0.0001), and IL-6 concentrations (p < 0.0001), all contributing to elevated PVAT resistin. Conclusion Smoking status in advanced CAD patients requiring CABG is positively associated with PVAT resistin concentrations, with a clear demonstration of dose-dependency.
Collapse
Affiliation(s)
- Maciej Rachwalik
- Department of Cardiac Surgery and Heart Transplantation, Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Przemysław Sareło
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
- Pre-clinical Research Center, Wrocław Medical University, Wrocław, Poland
| | - Marta Obremska
- Department of Cardiovascular Imaging, Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Matusiewicz
- Division of Medical Biochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Kaung Sithu Sett
- Student, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Michał Czapla
- Division of Scientific Research and Innovation in Emergency Medical Service, Department of Emergency Medical Service, Faculty of Nursing and Midwifery, Wroclaw Medical University, Wrocław, Poland
- Group of Research in Care (GRUPAC), Faculty of Health Sciences, University of La Rioja, Logroño, Spain
| | - Marek Jasiński
- Department of Cardiac Surgery and Heart Transplantation, Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Magdalena Hurkacz
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
7
|
Arianti R, Shaw A, Kristóf E, Cereijo R. Editorial: Novel regulatory mechanisms behind thermogenesis of brown and beige adipocytes, volume II. Front Endocrinol (Lausanne) 2024; 15:1510212. [PMID: 39534261 PMCID: PMC11554453 DOI: 10.3389/fendo.2024.1510212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Abhirup Shaw
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), and Institut de Recerca de Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| |
Collapse
|
8
|
Sigdel S, Udoh G, Albalawy R, Wang J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells 2024; 13:1309. [PMID: 39195199 PMCID: PMC11353161 DOI: 10.3390/cells13161309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a special deposit of fat tissue surrounding the vasculature. Previous studies suggest that PVAT modulates the vasculature function in physiological conditions and is implicated in the pathogenesis of vascular diseases. Understanding how PVAT influences vasculature function and vascular disease progression is important. Extracellular vesicles (EVs) are novel mediators of intercellular communication. EVs encapsulate molecular cargo such as proteins, lipids, and nucleic acids. EVs can influence cellular functions by transferring the carried bioactive molecules. Emerging evidence indicates that PVAT-derived EVs play an important role in vascular functions under health and disease conditions. This review will focus on the roles of PVAT and PVAT-EVs in obesity, diabetic, and metabolic syndrome-related vascular diseases, offering novel insights into therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Smara Sigdel
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (G.U.)
| | - Gideon Udoh
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (G.U.)
| | - Rakan Albalawy
- Department of Internal Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (G.U.)
| |
Collapse
|
9
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
10
|
Stanek E, Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159484. [PMID: 38521491 DOI: 10.1016/j.bbalip.2024.159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Perivascular adipose tissue (PVAT) has emerged as a dynamic organ influencing vascular function and cardiovascular health. In this brief review, an overview of the recent research in the investigation of PVAT is presented, ranging from in vivo studies to single-cell methodologies, in particular those based on Raman spectroscopy. The strengths and limitations of each, emphasizing their contributions to the current understanding of PVAT biology were discussed. Ultimately, the integration of these diverse methodologies promises to uncover new therapeutic targets and diagnostic biomarkers, including those emerging from simple Raman spectroscopy-based measurements of alterations in lipid unsaturation degree, invariably associated with PVAT dysfunction.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, 11 Lojasiewicza Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
11
|
Mikami T, Dashwood MR, Kawaharada N, Furuhashi M. An Obligatory Role of Perivascular Adipose Tissue in Improved Saphenous Vein Graft Patency in Coronary Artery Bypass Grafting. Circ J 2024; 88:845-852. [PMID: 37914280 DOI: 10.1253/circj.cj-23-0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The gold standard graft for coronary artery bypass grafting (CABG) is the internal thoracic artery (ITA), and the second recommendation is the radial artery. However, complete revascularization with arterial grafts alone is often difficult, and the saphenous vein (SV) is the most commonly used autologous graft for CABG, because it is easier to use without restriction for the length of the graft. On the other hand, the patency of SV grafts (SVGs) is poor compared with that of arterial grafts. The SVG is conventionally harvested as a distended conduit with surrounding tissue removed, a procedure that may cause vascular damage. A no-touch technique of SVG harvesting has been reported to result in improved long-term patency in CABG comparable to that when using the ITA for grafting. Possible reasons for the excellent long-term patency of no-touch SVGs are the physical support provided by preserved surrounding perivascular adipose tissue, preservation of the vascular wall structure including the vasa vasorum, and production of adipocyte-derived factors. In this review, we discuss recent strategies aimed at improving the performance of SVGs, including no-touch harvesting, minimally invasive harvesting and mechanical support using external stents.
Collapse
Affiliation(s)
- Takuma Mikami
- Department of Cardiovascular Surgery, Sapporo Medical University
| | - Michael R Dashwood
- Surgical and Interventional Sciences, Royal Free Hospital Campus, University College London Medical School
| | | | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| |
Collapse
|
12
|
Sohn SH, Kang Y, Kim JS, Choi JW, Hwang HY. The impact of perivascular tissue preservation on 5-year patency of saphenous vein composite grafts. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 38:ivae069. [PMID: 38637939 PMCID: PMC11076921 DOI: 10.1093/icvts/ivae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES This retrospective study was conducted to evaluate the impact of saphenous vein (SV) harvesting with versus without perivascular tissue on the 5-year angiographic patency in coronary artery bypass grafting. METHODS Among the 944 patients who received coronary artery bypass grafting between 2010 and 2015, 579 patients who received off-pump coronary artery bypass grafting using 1 SV as a Y-composite graft based on the in situ left internal thoracic artery were enrolled. SV harvesting was performed using no-touch technique without perivascular tissue (the NoPVT group) in 342 patients and with perivascular tissue (the PVT group) in 237 patients. Follow-up duration was 84.0 months (interquartile range 66.5-105.4). Propensity score matching was performed, and long-term clinical outcomes and angiographic patency were compared. RESULTS The average number of distal anastomoses per patient was comparable between the groups, although more SV grafts were anastomosed to left anterior descending territory in the PVT group than in the NoPVT group. Overall survival and cumulative incidence of cardiac death were comparable between the groups, whereas cumulative incidence of target vessel revascularization (1.3% vs 4.3% at 5 year, P = 0.009) and that of major adverse cardiac events (7.3% vs 9.9% at 5 year, P = 0.035) were lower in the PVT group than in the NoPVT group. One-year and 5-year angiographic patency rates of the SV grafts were higher in the PVT group than in the NoPVT group [97.0% vs 91.7% (P = 0.004) and 96.3% vs 89.9% (P = 0.007), respectively]. CONCLUSIONS SV grafts harvested using no-touch technique with perivascular tissue further improved the 5-year patency of SV composite grafts compared with those without perivascular tissue.
Collapse
Affiliation(s)
- Suk Ho Sohn
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoonjin Kang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Seong Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Woong Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Young Hwang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Szyrzisko W, Grzesiak M. Periovarian Adipose Tissue - an Impact on Ovarian Functions. Physiol Res 2024; 73:1-8. [PMID: 38466000 PMCID: PMC11019623 DOI: 10.33549/physiolres.935206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 04/26/2024] Open
Abstract
Periovarian adipose tissue (POAT) is a type of gonadal white adipose tissue that surrounds the ovary. POAT is a source of various bioactive molecules, such as adipokines, cytokines, chemokines, growth factors and hormones. Thereby it could influence crucial ovarian functions. Recent findings showed that removal of POAT affects folliculogenesis and steroidogenesis in the ovary. Furthermore, changes in the morphology and function of POAT were observed in women during menopause or polycystic ovary syndrome. Although the relationship between the body's energy status and fertility in females is generally well known, the contribution of POAT remains still elusive. Therefore, the objective of this review is summarizing the actual state of knowledge about POAT function in physiological and pathological processes within the ovary.
Collapse
Affiliation(s)
- W Szyrzisko
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Republic of Poland.
| | - M Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Republic of Poland.
| |
Collapse
|
14
|
Liu F, Liu Y, Gu Z, Zhao Z, Gao Y, Lu K, Sun X. How to Choose Surgical Corridor in Left Oblique Approach Lumbar Interbody Fusion at the L5-S1 Segment: A Prospective Cohort Study. World Neurosurg 2024; 183:e730-e737. [PMID: 38195028 DOI: 10.1016/j.wneu.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
OBJECTIVE There are 2 surgical corridors to L5-S1 lumbar interbody fusion via the left oblique approach: anterior to psoas-oblique lateral interbody fusion (ATP-OLIF) and oblique-anterior lumbar interbody fusion (O-ALIF). The aim of this study was to evaluate criteria to guide the selection of surgical corridors for L5-S1 lumbar interbody fusion via the left oblique approach. METHODS According to the structure of L5-S1 segment left common iliac vein (LCIV) in axial magnetic resonance image, the LCIV was divided into 6 types. O-ALIF was performed for type I and type II. ATP-OLIF was performed for type A and type B. For sexually active men, ATP-OLIF was chosen. Between April 2020 and April 2022, 22 patients were assigned to ATP-OLIF or O-ALIF based on the type of LCIV. Clinical outcomes and radiographic outcomes were assessed. RESULTS There were 11 cases in O-ALIF group (type I, n = 10; type II, n = 1) and 11 cases in ATP-OLIF group (type A, n = 8; type B, n = 3). No differences were observed in clinical outcomes (Oswestry Disability Index, VAS, and complication rate); radiographic outcomes (mean disk height and segmental lordosis angle); length of hospital stay; operation time; and blood loss. No vascular injury occurred in either group. CONCLUSIONS This may be an appropriate criterion to guide the selection of surgical corridor for L5-S1 lumbar interbody fusion through the left oblique approach. O-ALIF was performed for type I and type II. ATP-OLIF was performed for type A and type B. For sexually active men, ATP-OLIF was chosen. According to this standard, the operation can be performed safely and with good clinical results.
Collapse
Affiliation(s)
- Fengyu Liu
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yanbing Liu
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Zhenfang Gu
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Zhengqi Zhao
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yuan Gao
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Kuan Lu
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xianze Sun
- Department of Spine Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China.
| |
Collapse
|
15
|
Agabiti-Rosei C, Saxton SN, De Ciuceis C, Lorenza Muiesan M, Rizzoni D, Agabiti Rosei E, Heagerty AM. Influence of Perivascular Adipose Tissue on Microcirculation: A Link Between Hypertension and Obesity. Hypertension 2024; 81:24-33. [PMID: 37937425 DOI: 10.1161/hypertensionaha.123.19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Alterations in microcirculation play a crucial role in the pathogenesis of cardiovascular and metabolic disorders such as obesity and hypertension. The small resistance arteries of these patients show a typical remodeling, as indicated by an increase of media or total wall thickness to lumen diameter ratio that impairs organ flow reserve. The majority of blood vessels are surrounded by a fat depot which is termed perivascular adipose tissue (PVAT). In recent years, data from several studies have indicated that PVAT is an endocrine organ that can produce a variety of adipokines and cytokines, which may participate in the regulation of vascular tone, and the secretory profile varies with adipocyte phenotype and disease status. The PVAT of lean humans largely secretes the vasodilator adiponectin, which will act in a paracrine fashion to reduce peripheral resistance and improve nutrient uptake into tissues, thereby protecting against the development of hypertension and diabetes. In obesity, PVAT becomes enlarged and inflamed, and the bioavailability of adiponectin is reduced. The inevitable consequence is a rise in peripheral resistance with higher blood pressure. The interrelationship between obesity and hypertension could be explained, at least in part, by a cross-talk between microcirculation and PVAT. In this article, we propose an integrated pathophysiological approach of this relationship, in order to better clarify its role in obesity and hypertension, as the basis for effective and specific prevention and treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Sophie N Saxton
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| | - Carolina De Ciuceis
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Maria Lorenza Muiesan
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Damiano Rizzoni
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Enrico Agabiti Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| |
Collapse
|
16
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
17
|
Tong Y, Zuo Z, Li X, Li M, Wang Z, Guo X, Wang X, Sun Y, Chen D, Zhang Z. Protective role of perivascular adipose tissue in the cardiovascular system. Front Endocrinol (Lausanne) 2023; 14:1296778. [PMID: 38155947 PMCID: PMC10753176 DOI: 10.3389/fendo.2023.1296778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This review provides an overview of the key role played by perivascular adipose tissue (PVAT) in the protection of cardiovascular health. PVAT is a specific type of adipose tissue that wraps around blood vessels and has recently emerged as a critical factor for maintenance of vascular health. Through a profound exploration of existing research, this review sheds light on the intricate structural composition and cellular origins of PVAT, with a particular emphasis on combining its regulatory functions for vascular tone, inflammation, oxidative stress, and endothelial function. The review then delves into the intricate mechanisms by which PVAT exerts its protective effects, including the secretion of diverse adipokines and manipulation of the renin-angiotensin complex. The review further examines the alterations in PVAT function and phenotype observed in several cardiovascular diseases, including atherosclerosis, hypertension, and heart failure. Recognizing the complex interactions of PVAT with the cardiovascular system is critical for pursuing breakthrough therapeutic strategies that can target cardiovascular disease. Therefore, this review aims to augment present understanding of the protective role of PVAT in cardiovascular health, with a special emphasis on elucidating potential mechanisms and paving the way for future research directions in this evolving field.
Collapse
Affiliation(s)
- Yi Tong
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zheng Zuo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinqi Li
- Center for Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Minghua Li
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhenggui Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Guo
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xishu Wang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dongmei Chen
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Center for Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Valentini A, Cardillo C, Della Morte D, Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:3006. [PMID: 38002006 PMCID: PMC10669084 DOI: 10.3390/biomedicines11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR). In this review, we describe the relationship between PVAT and ED, and we also analyse the role of PVAT in the pathogenesis of CVDs and T2DM, further assessing its potential therapeutic target with the aim of restoring normal ED and reducing global cardiovascular risk.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - David Della Morte
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| |
Collapse
|
19
|
El-Yazbi AF, Elrewiny MA, Habib HM, Eid AH, Elzahhar PA, Belal ASF. Thermogenic Modulation of Adipose Depots: A Perspective on Possible Therapeutic Intervention with Early Cardiorenal Complications of Metabolic Impairment. Mol Pharmacol 2023; 104:187-194. [PMID: 37567782 DOI: 10.1124/molpharm.123.000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Mohamed A Elrewiny
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Hosam M Habib
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Perihan A Elzahhar
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed S F Belal
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
20
|
Wang Y, Fu M, Xiao W, Zhao Y, Yuan P, Zhang X, Wu W. 3D Elastomeric Stent Functionalized with Antioxidative and Perivascular Tissue Regenerative Activities Ameliorated PVT Deprivation-Induced Vein Graft Failure. Adv Healthc Mater 2023; 12:e2301247. [PMID: 37440681 DOI: 10.1002/adhm.202301247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Clinically, arterial injuries are always accompanied with perivascular tissue damage, which may contribute to high failure rate of vein grafts due to intimal hyperplasia and acute thrombosis. In this study, a "perivascular tissue (PVT) deprivation" animal model is constructed to mimic clinical scenarios and identify the contribution of arterial PVT to the success of vein grafts. Proteomics analysis suggests that depriving PVT may exacerbate reactive oxygen species (ROS)-induced endothelial apoptosis by up-regulating inflammation response and oxidative stress. Locally administering metformin on vein grafts through 3D-printed external stent (PGS-PCL) shows antioxidative and anti-inflammatory properties to protect cells from ROS invasion, thereafter decreasing acute thrombosis. Moreover, metformin induce rapid regeneration of perivascular adipose tissue in recipient regions, which improves patency by inhibiting intimal hyperplasia. Proteomics, western blot, and in vitro blocking tests reveal that metformin resists endothelial apoptosis through AMPK/mTOR and NFκB signaling pathways. To conclude, PVT deprivation exacerbates inflammatory response and oxidative stress in vein grafts bridging arterial circulation. Metformin-loaded stent ameliorates "PVT damage" related vein graft failure, and enhances patency of through resisting endothelial apoptosis and regenerating arterial PVAT, offering a promising avenue to improve the success of vein grafts in clinic.
Collapse
Affiliation(s)
- Yinggang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Mingdi Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Weiwei Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Yajing Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| |
Collapse
|
21
|
Cai M, Zhao D, Han X, Han S, Zhang W, Zang Z, Gai C, Rong R, Gao T. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front Immunol 2023; 14:1271051. [PMID: 37822930 PMCID: PMC10562567 DOI: 10.3389/fimmu.2023.1271051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
Perivascular adipose tissue and the vessel wall are connected through intricate bidirectional paracrine and vascular secretory signaling pathways. The secretion of inflammatory factors and oxidative products by the vessel wall in the diseased segment has the ability to influence the phenotype of perivascular adipocytes. Additionally, the secretion of adipokines by perivascular adipose tissue exacerbates the inflammatory response in the diseased vessel wall. Therefore, quantitative and qualitative studies of perivascular adipose tissue are of great value in the context of vascular inflammation and may provide a reference for the assessment of cardiovascular ischemic disease.
Collapse
Affiliation(s)
- Meichao Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongsheng Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuang Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhennan Zang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenchen Gai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Simplicio JA, Dourado TMH, Awata WMC, do Vale GT, Dias VR, Barros PR, de Martinis BS, Tostes RC, Tirapelli CR. Ethanol consumption favors pro-contractile phenotype of perivascular adipose tissue: A role for interleukin-6. Life Sci 2023; 319:121526. [PMID: 36828130 DOI: 10.1016/j.lfs.2023.121526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Perivascular adipose tissue (PVAT) exerts anticontractile effect, but under non-physiological conditions it may contribute to vascular dysfunction by releasing pro-inflammatory cytokines. Since PVAT is an important source of interleukin (IL)-6, we evaluated whether this cytokine would contribute to ethanol-induced vascular dysfunction. With this purpose, male C57BL/6 wild-type (WT) or IL-6-deficient mice (IL-6-/-) were treated with ethanol for 12 weeks. Increased blood pressure was evidenced after 4 and 6 weeks of treatment with ethanol in WT and IL-6-/- mice, respectively. In WT mice, ethanol increased plasma and PVAT levels of IL-6. Ethanol favoured pro-contractile phenotype of PVAT in mesenteric arteries from WT, but not IL-6-deficient mice. Functional studies showed that tiron [(a scavenger of superoxide (O2-)] reversed the pro-contractile effect of PVAT in mesenteric arteries from ethanol-treated mice. Ethanol increased the levels of O2- in PVAT from WT mice. Ethanol-induced increase in O2- generation was higher in arteries with PVAT from WT mice when compared to IL-6-deficient mice. Treatment with ethanol augmented myeloperoxidase activity in the mesenteric arterial bed (MAB; with or without PVAT) from WT, but not IL-6-deficient mice. In conclusion, IL-6 contributes to the pro-contractile effect of PVAT by a mechanism that involves increase in ROS generation. Additionally, IL-6 mediates intravascular recruitment of neutrophils in response to ethanol and plays a role in the early stages of ethanol-induced hypertension. Collectively, our findings provide novel evidence for a role of IL-6 in the vascular dysfunction induced by ethanol.
Collapse
Affiliation(s)
- Janaina A Simplicio
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Thales M H Dourado
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Gabriel T do Vale
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius R Dias
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Paula R Barros
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno S de Martinis
- Departamento de Química, Faculdade de Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Rita C Tostes
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
23
|
Nardin M, Verdoia M, Laera N, Cao D, De Luca G. New Insights into Pathophysiology and New Risk Factors for ACS. J Clin Med 2023; 12:jcm12082883. [PMID: 37109221 PMCID: PMC10146393 DOI: 10.3390/jcm12082883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular disease still represents the main cause of mortality worldwide. Despite huge improvements, atherosclerosis persists as the principal pathological condition, both in stable and acute presentation. Specifically, acute coronary syndromes have received substantial research and clinical attention in recent years, contributing to improve overall patients' outcome. The identification of different evolution patterns of the atherosclerotic plaque and coronary artery disease has suggested the potential need of different treatment approaches, according to the mechanisms and molecular elements involved. In addition to traditional risk factors, the finer portrayal of other metabolic and lipid-related mediators has led to higher and deep knowledge of atherosclerosis, providing potential new targets for clinical management of the patients. Finally, the impressive advances in genetics and non-coding RNAs have opened a wide field of research both on pathophysiology and the therapeutic side that are extensively under investigation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Third Medicine Division, Department of Medicine, ASST Spedali Civili, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13900 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 13100 Novara, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98166 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, 20161 Milan, Italy
| |
Collapse
|
24
|
Ryan MJ. Cardiovascular research at the Heart of Clinical Science. Clin Sci (Lond) 2023; 137:537-542. [PMID: 37051741 DOI: 10.1042/cs20220497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Clinical Science was originally established as the journal Heart in 1909 by Sir Thomas Lewis and Sir James Mackenzie. Heart was an influential journal publishing cardiovascular research and was renamed Clinical Science in 1933 to attract broader research interests. Nevertheless, cardiovascular research contributions remain a foundational part of the journal to this day. This editorial provides historical perspective on the journal's cardiovascular origins and includes data related to cardiovascular publications from the past decade. Clinical Science is committed to publishing leading cardiovascular research from the field and looks forward to receiving your submission.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, U.S.A
- Columbia Veterans Affairs Health Care System, Columbia, SC, U.S.A
| |
Collapse
|
25
|
Lázaro-Suárez ML, Domínguez de la Mora I, Rodríguez-Aguilar JC, Fortis-Barrera Á, Blancas-Flores G, Gómez-Zamudio JH, Alarcon-Villaseñor EF, Román-Ramos R, Alarcon-Aguilar FJ. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue. Metab Syndr Relat Disord 2023; 21:101-108. [PMID: 36399542 DOI: 10.1089/met.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Perivascular adipose tissue (PVAT) plays an essential role in cardiovascular homeostasis. However, during obesity and diabetes, its role in vascular tone regulation is unclear. This study aimed to evaluate the function of the PVAT on aorta reactivity in the lean and cafeteria (CAF) diet-induced obese-hyperglycemic mice model. Methods: Aorta reactivity to phenylephrine, KCl, and acetylcholine was analyzed in lean (n = 6) and obese mice (n = 6). Also, nitric oxide (NO-) and cyclooxygenase participation, in the presence (n = 6) and absence (n = 6) of PVAT, were examined in the aortas. Results: After a CAF diet for 19 weeks, obese mice showed increased body weight, glucose intolerance, and hypercholesterolemia concerning lean mice. Vascular reactivity to phenylephrine was reduced significantly in the aorta of obese mice. In contrast, the contraction produced by KCl (80 mM) was increased in the aorta of obese mice independent of PVAT. Acetylcholine-induced vasorelaxation diminished in the aortas of obese mice in the presence of PVAT. Nonselective inhibition of cyclooxygenases likely shows that PVAT and endothelium release vasorelaxant prostanoids. Conclusions: The results suggest that PVAT modulates aorta reactivity by releasing NO-, decreasing the α1-adrenergic response to phenylephrine, and probably releasing vasorelaxant prostanoids. The data suggest that PVAT regulates the vascular smooth muscle and endothelial function in a CAF diet-induced obese-hyperglycemic mice model.
Collapse
Affiliation(s)
- Martha L Lázaro-Suárez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Israel Domínguez de la Mora
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Juan Carlos Rodríguez-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Ángeles Fortis-Barrera
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Jaime H Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - Rubén Román-Ramos
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Francisco Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
26
|
Huang CL, Huang YN, Yao L, Li JP, Zhang ZH, Huang ZQ, Chen SX, Zhang YL, Wang JF, Chen YX, Liu ZY. Thoracic perivascular adipose tissue inhibits VSMC apoptosis and aortic aneurysm formation in mice via the secretome of browning adipocytes. Acta Pharmacol Sin 2023; 44:345-355. [PMID: 35945313 PMCID: PMC9889802 DOI: 10.1038/s41401-022-00959-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a dangerous vascular disease without any effective drug therapies so far. Emerging evidence suggests the phenotypic differences in perivascular adipose tissue (PVAT) between regions of the aorta are implicated in the development of atherosclerosis evidenced by the abdominal aorta more vulnerable to atherosclerosis than the thoracic aorta in large animals and humans. The prevalence of thoracic aortic aneurysms (TAA) is much less than that of abdominal aortic aneurysms (AAA). In this study we investigated the effect of thoracic PVAT (T-PVAT) transplantation on aortic aneurysm formation and the impact of T-PVAT on vascular smooth muscle cells. Calcium phosphate-induced mouse AAA model was established. T-PVAT (20 mg) was implanted around the abdominal aorta of recipient mice after removal of endogenous abdominal PVAT (A-PVAT) and calcium phosphate treatment. Mice were sacrificed two weeks after the surgery and the maximum external diameter of infrarenal aorta was measured. We found that T-PVAT displayed a more BAT-like phenotype than A-PVAT; transplantation of T-PVAT significantly attenuated calcium phosphate-induced abdominal aortic dilation and elastic degradation as compared to sham control or A-PVAT transplantation. In addition, T-PVAT transplantation largely preserved smooth muscle cell content in the abdominal aortic wall. Co-culture of T-PVAT with vascular smooth muscle cells (VSMCs) significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. RNA sequencing analysis showed that T-PVAT was enriched by browning adipocytes and anti-apoptotic secretory proteins. We further verified that the secretome of mature adipocytes isolated from T-PVAT significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. Using proteomic and bioinformatic analyses we identified cartilage oligomeric matrix protein (COMP) as a secreted protein significantly increased in T-PVAT. Recombinant COMP protein significantly inhibited VSMC apoptosis. We conclude that T-PVAT exerts anti-apoptosis effect on VSMCs and attenuates AAA formation, which is possibly attributed to the secretome of browning adipocytes.
Collapse
Affiliation(s)
- Chun-Ling Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu-Na Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lei Yao
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun-Ping Li
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeng-Hui Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhao-Qi Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Si-Xu Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu-Ling Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing-Feng Wang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yang-Xin Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zhao-Yu Liu
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
27
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
29
|
Hillock-Watling C, Gotlieb AI. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc Pathol 2022; 61:107459. [PMID: 35907442 DOI: 10.1016/j.carpath.2022.107459] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 12/21/2022] Open
Abstract
The perivascular adipose tissue (PVAT) is an adipose tissue depot which surrounds most human blood vessels. It is metabolically active and has both a protective and a pathogenic role in vascular biology and pathobiology. It regulates vascular homeostasis and promotes vascular dysfunction. The purpose of this review is to consider the origin, structure, function, and dysfunction of this unique adipose depot consisting of white (WAT), brown (BAT) and beige adipose tissue, to support the concept that PVAT may be considered the fourth layer of the normal arterial wall (tunica adiposa), in which dysfunction creates a microenvironment that regulates, in part, the initiation and growth of the fibro-inflammatory lipid atherosclerotic plaque. Experimental in-vivo and in-vitro studies and human investigations show that the adipocytes, extracellular matrix, nerve fibers and vasa vasorum found in PVAT form a functional adipose tissue unit adjacent to, but not anatomically separated from, the adventitia. PVAT maintains and regulates the structure and function of the normal arterial wall through autocrine and paracrine mechanisms, that include modulation of medial smooth muscle cell contractility and secretion of anti-inflammatory molecules. PVAT shows regional phenotypic heterogeneity which may be important in its effect on the wall of specific sections of the aorta and its muscular branches during perturbations and various injuries including obesity and diabetes. In atherosclerosis, a pan-vascular microenvironment is created that functionally links the intima-medial atherosclerotic plaque to the adventitia and PVAT beneath the plaque, highlighting the local impact of PVAT on atherogenesis. PVAT adipocytes have inflammatory effects which in response to injury show activation and phenotypic changes, some of which are considered to have direct and indirect effects on the intima and media during the initiation, growth, and development of complicated atherosclerotic plaques. Thus, it is important to maintain the integrity of the full vascular microenvironment so that design of experimental and human studies include investigation of PVAT. The era of discarding PVAT tissue in both experimental and human research and clinical vascular studies should end.
Collapse
Affiliation(s)
- Cassie Hillock-Watling
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Czamara K, Majka Z, Stanek E, Hachlica N, Kaczor A. Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics. Prog Lipid Res 2022; 87:101183. [PMID: 35961483 DOI: 10.1016/j.plipres.2022.101183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
The last decades revealed that the adipose tissue shows an unexplored therapeutic potential. In particular, targeting the perivascular adipose tissue (PVAT), that surrounds blood vessels, can prevent cardiovascular pathologies and browning of the adipose tissue can become an effective strategy against obesity. Therefore, new analytical tools are necessary to analyze this tissue. This review reports on the recent developments of various Raman-based techniques for the identification and quantification of the adipose tissue compared to conventional analytical methods. In particular, the emphasis is on analysis of PVAT, investigation of pathological changes of the adipose tissue in model systems and possibilities for its characterization in the clinical context. Overall, the review critically discusses the potential and limitations of Raman techniques in adipose tissue-targeted diagnostics and possible future anti-obesity therapies.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Natalia Hachlica
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
31
|
Wang D, Wang X. Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Des Devel Ther 2022; 16:2305-2323. [PMID: 35875677 PMCID: PMC9304635 DOI: 10.2147/dddt.s368836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall associated with lipid metabolism imbalance and maladaptive immune response, which mediates most cardiovascular events. First-line drugs such as statins and antiplatelet drug aspirin have shown good effects against atherosclerosis but may lead to certain side effects. Thus, the development of new, safer, and less toxic agents for atherosclerosis is urgently needed. Diosgenin and its analogs have gained importance for their efficacy against life-threatening diseases, including cardiovascular, endocrine, nervous system diseases, and cancer. Diosgenin and its analogs are widely found in the rhizomes of Dioscore, Solanum, and other species and share similar chemical structures and pharmacological effects. Recent data suggested diosgenin plays an anti-atherosclerosis role through its anti-inflammatory, antioxidant, plasma cholesterol-lowering, anti-proliferation, and anti-thrombotic effects. However, a review of the effects of diosgenin and its natural structure analogs on AS is still lacking. This review summarizes the effects of diosgenin and its analogs on vascular endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation, migration and calcification, lipid metabolism, and inflammation, and provides a new overview of its anti-atherosclerosis mechanism. Besides, the structures, sources, safety, pharmacokinetic characteristics, and biological availability are introduced to reveal the limitations and challenges of current studies, hoping to provide a theoretical basis for the clinical application of diosgenin and its analogs and provide a new idea for developing new agents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
- Correspondence: Xiaolong Wang, Tel +86 13501991450, Fax +86 21 51322445, Email
| |
Collapse
|
32
|
Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d'Emmanuele di Villa Bianca R. The Role of Perivascular Adipose Tissue-Derived Hydrogen Sulfide in the Control of Vascular Homeostasis. Antioxid Redox Signal 2022; 37:84-97. [PMID: 35442088 DOI: 10.1089/ars.2021.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Emerging evidence suggests that perivascular adipose tissue (PVAT) has a relevant role in the control of vascular tone in physiology and pathology. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative actions. Accumulating data from both human and experimental animal models indicate that PVAT dysfunction is conceivably coupled to cardiovascular diseases, and it is associated with vascular inflammation, oxidative stress, and arterial remodeling. Therefore, "healthy" PVAT may constitute a novel therapeutic target for the prevention and treatment of cardiovascular diseases. Recent Advances: Hydrogen sulfide (H2S) has been recognized as a vascular anti-contractile factor released from PVAT. The enzymes deputed to H2S biosynthesis are variously expressed in PVAT and strictly dependent on the vascular bed and species. Metabolic and cardiovascular diseases can alter the morphological and secretory characteristics of PVAT, influencing also the H2S signaling. Here, we discuss the role of PVAT-derived H2S in healthy conditions and its relevance in alterations occurring in vascular disorders. Critical Issues: We discuss how a better understanding may help in the prevention of vascular dysfunction related to alteration in PVAT-released H2S as well as the importance of the interplay between PVAT and H2S. Future Directions: We propose future directions to evaluate the contribution of each enzyme involved in H2S biosynthesis and their alteration/switch occurring in vascular disorders and the remaining challenges in investigating the role of H2S. Antioxid. Redox Signal. 37, 84-97.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
33
|
Kociszewska K, Deja MA, Malinowski M, Kowalówka A. Vasorelaxing properties of the perivascular tissue of the human radial artery. Eur J Cardiothorac Surg 2022; 61:1423-1429. [PMID: 35134901 PMCID: PMC9728790 DOI: 10.1093/ejcts/ezac074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES Perivascular adipose tissue (PVAT) surrounding the human internal thoracic artery exhibits anticontractile and vasorelaxing properties associated with the adipocyte-derived relaxing factor (ADRF). The goal of our study was to assess if perivascular tissue of the human radial artery (RA) also exhibits such anticontractile/vasorelaxant properties. It could be especially relevant in preventing RA spasms. METHODS The study was performed on isolated segments of human pedicled RA. Its skeletonized fragments were suspended on stainless steel wire hooks and gradually contracted with serotonin to establish the concentration-effect relationship in the presence/absence of PVAT. Skeletonized arterial segments were precontracted with a single dose of 10-6 M serotonin (EC80). The 5-ml PVAT aliquots (from PVAT incubated in Krebs-Henseleit solution) were transferred to the RA tissue bath resulting in its relaxation. Subsequently, we investigated if ADRF is dependent on endothelial vasorelaxants (nitric oxide and prostacyclin). We attempted to find the potassium channel responsible for mediating the activity of ADRF using different potassium channel blockers. RESULTS RA without PVAT contracted more strongly in response to serotonin compared to RA with PVAT [Emax: 108.3 (20.2) vs 76.1 (13.5) mN]. The PVAT aliquot relaxed precontracted RA rings at 43% (2.4%) [72.2 (15.6) to 41.0 (5.6) mN]. ADRF is independent of endothelial vasorelaxants; hence, the addition of NG-monomethyl-l-arginine and indomethacin did not change the vasorelaxant response. Neither of the potassium channel blockers participated in the activity of ADRF. CONCLUSIONS PVAT of human RA exhibits anticontractile/vasorelaxant properties that are inherently associated with ADRF secretion. We confirmed the endothelial-independent mechanism of the activity of ADRF. However, we failed to find the potassium channel responsible for the action of ADRF.
Collapse
Affiliation(s)
- Karolina Kociszewska
- Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Marek Andrzej Deja
- Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Marcin Malinowski
- Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Adam Kowalówka
- Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| |
Collapse
|
34
|
Wang Z, Lu H, Garcia-Barrio M, Guo Y, Zhang J, Chen YE, Chang L. RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II. Pharmacol Res 2022; 178:106183. [PMID: 35306139 DOI: 10.1016/j.phrs.2022.106183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
Most blood vessels are surrounded by perivascular adipose tissue (PVAT), which is a unique adipose tissue that plays critical roles in vascular physiology and pathophysiology. PVAT displays regional differences that impact vascular homeostasis. Angiotensin II (Ang II) is the main biologically active component of the renin-angiotensin-aldosterone system (RAAS), which has been extensively studied in vascular biology. However, the effects of Ang II on PVAT are less explored and remain to be elucidated. In this study, we systematically investigated the regional heterogeneity of three portions of aortic PVAT, i.e., ascending thoracic aortic PVAT (ATA-PVAT), descending thoracic aortic PVAT (DTA-PVAT) and abdominal aortic PVAT (AA-PVAT), and their responses to 7-day Ang II infusion using RNA sequencing. We found that AA-PVAT is clearly distinguished from both ATA-PVAT and DTA-PVAT, with significantly down-regulated oxidative phosphorylation and up-regulated inflammatory response pathways. Furthermore, AA-PVAT expresses lower levels of brown adipocyte marker genes, such as Ucp1, Cidea, Cox8b, Dio2 and Pgc1α, but expresses higher levels of proinflammatory genes, such as Ccl2, Il1β and Tnfα, and components of the RAAS, including Agt, Ace and Agtr1a. Ang II infusion significantly down-regulated oxidative phosphorylation in all regions of aortic PVAT and significantly up-regulated inflammatory response specifically in ATA-PVAT and DTA-PVAT. Moreover, ATA-PVAT was most responsive to Ang II induced inflammation. We further used CDGSH iron-sulfur domain-containing protein 1 (a.k.a. mitoNEET) transgenic mice that exhibit enhanced brown adipose tissue (BAT)-like phenotype in aortic PVAT, as indicated by elevated expression levels of brown adipocyte marker genes, and found that the enhanced BAT-like phenotype of aortic PVAT could counterbalance Ang II induced inflammatory and oxidative effects.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
35
|
The Involvement of Sirtuin 1 Dysfunction in High-Fat Diet-Induced Vascular Dysfunction in Mice. Antioxidants (Basel) 2022; 11:antiox11030541. [PMID: 35326191 PMCID: PMC8944782 DOI: 10.3390/antiox11030541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
High-fat diet (HFD)-induced vascular impairment in mice is associated with a dysfunction of the perivascular adipose tissue (PVAT). The present study was conducted to investigate the involvement of sirtuin 1 (SIRT1). Male C57BL/6J mice were fed an HFD for 20 weeks to induce obesity. Vascular function was analyzed using a wire myograph system. In obese mice, the vasodilator response of PVAT-containing aortas to acetylcholine was reduced, although the vascular function of PVAT-free aortas remained normal. SIRT1 activity in PVAT of obese mice was reduced despite enhanced SIRT1 expression. Nicotinamide adenine dinucleotide (NAD+) levels and the NAD+/NADH ratio in the PVAT of obese mice were decreased, which was likely attributable to a downregulation of the NAD+-producing enzyme NAMPT. The reduced SIRT1 activity was associated with an enhanced acetylation of the endothelial nitric oxide synthase (eNOS) in the PVAT. Ex vivo incubation of PVAT-containing aorta from obese mice with NAD+ led to a complete normalization of vascular function. Thus, reduced SIRT1 activity due to NAD+ deficiency is involved in obesity-induced PVAT dysfunction.
Collapse
|
36
|
Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules 2022; 12:biom12020176. [PMID: 35204677 PMCID: PMC8961672 DOI: 10.3390/biom12020176] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular (CV) disease and heart failure (HF) are the leading cause of mortality in type 2 diabetes (T2DM), a metabolic disease which represents a fast-growing health challenge worldwide. Specifically, T2DM induces a cluster of systemic metabolic and non-metabolic signaling which may promote myocardium derangements such as inflammation, fibrosis, and myocyte stiffness, which represent the hallmarks of heart failure with preserved ejection fraction (HFpEF). On the other hand, several observational studies have reported that patients with T2DM have an abnormally enlarged and biologically transformed epicardial adipose tissue (EAT) compared with non-diabetic controls. This expanded EAT not only causes a mechanical constriction of the diastolic filling but is also a source of pro-inflammatory mediators capable of causing inflammation, microcirculatory dysfunction and fibrosis of the underlying myocardium, thus impairing the relaxability of the left ventricle and increasing its filling pressure. In addition to representing a potential CV risk factor, emerging evidence shows that EAT may guide the therapeutic decision in diabetic patients as drugs such as metformin, glucagon-like peptide‑1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 inhibitors (SGLT2-Is), have been associated with attenuation of EAT enlargement.
Collapse
|
37
|
Dwaib HS, Ajouz G, AlZaim I, Rafeh R, Mroueh A, Mougharbil N, Ragi ME, Refaat M, Obeid O, El-Yazbi AF. Phosphorus Supplementation Mitigates Perivascular Adipose Inflammation-Induced Cardiovascular Consequences in Early Metabolic Impairment. J Am Heart Assoc 2021; 10:e023227. [PMID: 34873915 PMCID: PMC9075232 DOI: 10.1161/jaha.121.023227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The complexity of the interaction between metabolic dysfunction and cardiovascular complications has long been recognized to extend beyond simple perturbations of blood glucose levels. Yet, structured interventions targeting the root pathologies are not forthcoming. Growing evidence implicates the inflammatory changes occurring in perivascular adipose tissue (PVAT) as early instigators of cardiovascular deterioration. Methods and Results We used a nonobese prediabetic rat model with localized PVAT inflammation induced by hypercaloric diet feeding, which dilutes inorganic phosphorus (Pi) to energy ratio by 50%, to investigate whether Pi supplementation ameliorates the early metabolic impairment. A 12‐week Pi supplementation at concentrations equivalent to and twice as much as that in the control diet was performed. The localized PVAT inflammation was reversed in a dose‐dependent manner. The increased expression of UCP1 (uncoupling protein1), HIF‐1α (hypoxia inducible factor‐1α), and IL‐1β (interleukin‐1β), representing the hallmark of PVAT inflammation in this rat model, were reversed, with normalization of PVAT macrophage polarization. Pi supplementation restored the metabolic efficiency consistent with its putative role as an UCP1 inhibitor. Alongside, parasympathetic autonomic and cerebrovascular dysfunction function observed in the prediabetic model was reversed, together with the mitigation of multiple molecular and histological cardiovascular damage markers. Significantly, a Pi‐deficient control diet neither induced PVAT inflammation nor cardiovascular dysfunction, whereas Pi reinstatement in the diet after a 10‐week exposure to a hypercaloric low‐Pi diet ameliorated the dysfunction. Conclusions Our present results propose Pi supplementation as a simple intervention to reverse PVAT inflammation and its early cardiovascular consequences, possibly through the interference with hypercaloric‐induced increase in UCP1 expression/activity.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon.,Department of Nutrition and Food Sciences Faculty of Agriculture and Food Sciences The American University of Beirut Beirut Lebanon
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon.,Department of Biochemistry and Molecular Genetics Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Rim Rafeh
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Ali Mroueh
- INSERM UMR 1260 Regenerative Nanomedicine FMTSUniversity of Strasbourg Strasbourg France
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Marie-Elizabeth Ragi
- Department of Nutrition and Food Sciences Faculty of Agriculture and Food Sciences The American University of Beirut Beirut Lebanon
| | - Marwan Refaat
- Department of Biochemistry and Molecular Genetics Faculty of Medicine The American University of Beirut Beirut Lebanon.,Division of Cardiology Department of Internal Medicine Faculty of Medicine The American University of Beirut Beirut Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Sciences Faculty of Agriculture and Food Sciences The American University of Beirut Beirut Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology Faculty of Medicine The American University of Beirut Beirut Lebanon.,Department of Pharmacology and Toxicology Faculty of Pharmacy Alexandria University Alexandria Egypt.,Faculty of Pharmacy Al-Alamein International University Alamein Egypt
| |
Collapse
|
38
|
Cruz-López EO, Uijl E, Danser AHJ. Perivascular Adipose Tissue in Vascular Function: Does Locally Synthesized Angiotensinogen Play a Role? J Cardiovasc Pharmacol 2021; 78:S53-S62. [PMID: 34840262 DOI: 10.1097/fjc.0000000000001027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Kotanidis CP, Antoniades C. Perivascular fat imaging by computed tomography (CT): a virtual guide. Br J Pharmacol 2021; 178:4270-4290. [PMID: 34296764 PMCID: PMC8856184 DOI: 10.1111/bph.15634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/04/2022] Open
Abstract
Imaging in medicine has been revolutionised by technological, computational and research advances over the past decades. Computed tomography (CT), in particular, has seen rapid evolution especially in the field of cardiovascular non-invasive imaging. It is being recognised as the first-line tool for the assessment of stable and unstable disease with diagnostic, prognostic and re-stratification potential. Vascular inflammation is a key component of the atherosclerotic process and has been shown to induce molecular, transcriptional and structural changes to perivascular adipose tissue (PVAT). Being a diverse structure itself, PVAT surrounds the human vessels and is characterised by a highly rich secretome, including, amongst others, adipokines, cytokines, gaseous messengers and miRNAs It is implicated in a bidirectional interplay with the adjacent vascular wall, affecting and being affected by aspects of its biology, mainly inflammation. In this review, we discuss the current status of cardiac CT in imaging vascular inflammation through PVAT phenotyping. LINKED ARTICLES: This article is part of a themed issue on Molecular imaging - visual themed issue. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.21/issuetoc.
Collapse
Affiliation(s)
- Christos P. Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Acute Vascular Imaging Centre, Investigational MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
40
|
The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021; 13:nu13113843. [PMID: 34836100 PMCID: PMC8621306 DOI: 10.3390/nu13113843] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels. Under physiological conditions, PVAT plays a significant role in regulation of vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC) proliferation. PVAT is responsible for releasing adipocytes-derived relaxing factors (ADRF) and perivascular-derived relaxing factors (PDRF), which have anticontractile properties. Obesity induces increased oxidative stress, an inflammatory state, and hypoxia, which contribute to PVAT dysfunction. The exact mechanism of vascular dysfunction in obesity is still not well clarified; however, there are some pathways such as renin-angiotensin-aldosterone system (RAAS) disorders and PVAT-derived factor dysregulation, which are involved in hypertension and endothelial dysfunction development. Physical activity has a beneficial effect on PVAT function among obese patients by reducing the oxidative stress and inflammatory state. Diet, which is the second most beneficial non-invasive strategy in obesity treatment, may have a positive impact on PVAT-derived factors and may restore the balance in their concentration.
Collapse
|
41
|
Torok J, Zemancikova A, Valaskova Z, Balis P. The Role of Perivascular Adipose Tissue in Early Changes in Arterial Function during High-Fat Diet and Its Combination with High-Fructose Intake in Rats. Biomedicines 2021; 9:biomedicines9111552. [PMID: 34829781 PMCID: PMC8615157 DOI: 10.3390/biomedicines9111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to evaluate the influence of a high-fat diet and its combination with high-fructose intake on young normotensive rats, with focus on the modulatory effect of perivascular adipose tissue (PVAT) on the reactivity of isolated arteries. Six-week-old Wistar–Kyoto rats were treated for 8 weeks with a control diet (10% fat), a high-fat diet (HFD; 45% fat), or a combination of the HFD with a 10% solution of fructose. Contractile and relaxant responses of isolated rat arteries, with preserved and removed PVAT for selected vasoactive stimuli, were recorded isometrically by a force displacement transducer. The results demonstrated that, in young rats, eight weeks of the HFD might lead to body fat accumulation and early excitation of the cardiovascular sympathetic nervous system, as shown by increased heart rate and enhanced arterial contractile responses induced by endogenous noradrenaline released from perivascular sympathetic nerves. The addition of high-fructose intake deteriorated this state by impairment of arterial relaxation and resulted in mild elevation of systolic blood pressure; however, the increase in arterial neurogenic contractions was not detected. The diet-induced alterations in isolated arteries were observed only in the presence of PVAT, indicating that this structure is important in initiation of early vascular changes during the development of metabolic syndrome.
Collapse
Affiliation(s)
- Jozef Torok
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Correspondence: (J.T.); (A.Z.); Tel.: +421-2-3229-6044 (J.T. & A.Z.)
| | - Anna Zemancikova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Correspondence: (J.T.); (A.Z.); Tel.: +421-2-3229-6044 (J.T. & A.Z.)
| | - Zuzana Valaskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
| |
Collapse
|
42
|
Kunath A, Unosson J, Friederich-Persson M, Bjarnegård N, Becirovic-Agic M, Björck M, Mani K, Wanhainen A, Wågsäter D. Inhibition of angiotensin-induced aortic aneurysm by metformin in apolipoprotein E-deficient mice. JVS Vasc Sci 2021; 2:33-42. [PMID: 34617056 PMCID: PMC8489247 DOI: 10.1016/j.jvssci.2020.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 10/26/2022] Open
Abstract
Objective Metformin is associated with a reduced incidence and growth of abdominal aortic aneurysms (AAAs). The aim of the present study was to investigate the inhibitory effects of metformin on AAA development and possible underlying mechanisms in experimentally induced AAAs in mice, along with the possible synergistic effects of metformin and imatinib. Methods Angiotensin II was used to induce AAAs in apolipoprotein E knockout (ApoE -/- ) mice for 28 days. The mice were treated with metformin (n = 11), metformin combined with imatinib (n = 7), or vehicle (n = 12), starting 3 days before angiotensin II infusion. Ultrasound examination was used to analyze aneurysm formation. Cholesterol and blood pressure levels were measured at the start and end of the study. Gene array and quantitative polymerase chain reaction were used to analyze the changes in gene expression in the aorta. Wire myography was used to study vascular function. Results Metformin (n = 11) suppressed the formation and progression of AAAs by 50% compared with the vehicle controls (n = 12), with no further effects from imatinib (n = 7). Metformin reduced total cholesterol and mRNA expression of SPP1 (encoding osteopontin), MMP12, and the glycoprotein genes Gpnmb and Clec7a. Furthermore, metformin inhibited blood pressure increases and reduced vascular contractions, as determined by wire myography, and restored the anticontractile function of perivascular adipose tissue. Conclusion Metformin inhibited aneurysm formation and progression and normalized vascular function in ApoE -/- mice with no additional effect of imatinib. This might be mediated by the protective effects on vascular endothelial function and perivascular adipose tissue via reduced expression of genes promoting inflammation, including SPP1, MMP12, Gpnmb, and Clec7a. Clinical relevance Retrospective studies of the effects of metformin in patients with aneurysm have so far only been performed of those with type 2 diabetes. The present study shows that metformin has effects on nondiabetic mice and revealed the mechanistic effects mediated by the drug that could also be important to study as outcomes in humans. Future clinical trials using metformin are warranted in patients without diabetes with abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Anne Kunath
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jon Unosson
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Niclas Bjarnegård
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Martin Björck
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Kevin Mani
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Molcan L, Maier A, Zemančíková A, Gelles K, Török J, Zeman M, Ellinger I. Expression of Melatonin Receptor 1 in Rat Mesenteric Artery and Perivascular Adipose Tissue and Vasoactive Action of Melatonin. Cell Mol Neurobiol 2021; 41:1589-1598. [PMID: 32734322 PMCID: PMC8408066 DOI: 10.1007/s10571-020-00928-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Melatonin is released by the pineal gland and can modulate cardiovascular system function via the G protein-coupled melatonin receptors MT1 and MT2. Most vessels are surrounded by perivascular adipose tissue (PVAT), which affects their contractility. The aim of our study was to evaluate mRNA and protein expression of MT1 and MT2 in the mesenteric artery (MA) and associated PVAT of male rats by RT-PCR and Western blot. Receptor localization was further studied by immunofluorescence microscopy. Effects of melatonin on neurogenic contractions were explored in isolated superior MA ex vivo by measurement of isometric contractile tension. MT1, but not MT2, was present in MA, and MT1 was localized mainly in vascular smooth muscle. Moreover, we proved the presence of MT1, but not MT2 receptors, in MA-associated PVAT. In isolated superior MA with intact PVAT, neuro-adrenergic contractile responses were significantly smaller when compared to arteries with removed PVAT. Pre-treatment with melatonin of PVAT-stripped arterial rings enhanced neurogenic contractions, while the potentiating effect of melatonin was not detected in preparations with preserved PVAT. We hypothesize that melatonin can stimulate the release of PVAT-derived relaxing factor(s) via MT1, which can override the direct pro-contractile effect of melatonin on vascular smooth muscle. Our results suggest that melatonin is involved in the control of vascular tone in a complex way, which is vessel specific and can reflect a sum of action on different layers of the vessel wall and surrounding PVAT.
Collapse
Affiliation(s)
- Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andreas Maier
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Zemančíková
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jozef Török
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
44
|
Liu Y, Sun Y, Lin X, Zhang D, Hu C, Liu J, Zhu Y, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y. Perivascular Adipose-Derived Exosomes Reduce Foam Cell Formation by Regulating Expression of Cholesterol Transporters. Front Cardiovasc Med 2021; 8:697510. [PMID: 34490366 PMCID: PMC8416751 DOI: 10.3389/fcvm.2021.697510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Accumulating evidence demonstrates that perivascular adipose tissue (PVAT) plays an important role in maintaining vascular homeostasis. The formation of macrophage foam cells is a central feature of atherosclerosis. This study aimed to evaluate the effect of PVAT-derived exosomes (EXOs) on the lipid accumulation of macrophages and verify the anti-atherogenic characteristics of PVAT. Methods and Results: We extracted EXOs from the PVAT and subcutaneous adipose tissue (SCAT) of wild-type C57BL/6J mice. After coincubation, the EXOs were taken up by RAW264.7 cells. Oil Red O staining revealed that macrophage foam cell formation and intracellular lipid accumulation were ameliorated by PVAT-EXOs. Flow cytometry showed that PVAT-EXOs significantly reduced macrophage uptake of fluorescence-labelled oxidised low-density lipoprotein (ox-LDL). In addition, high-density lipoprotein-induced cholesterol efflux was promoted by PVAT-EXOs. Western blot analysis showed the downregulation of macrophage scavenger receptor A and the upregulation of ATP-binding cassette transporter A1 and ATP-binding cassette transporter G1, which could be mediated by the overexpression of peroxisome proliferator-activated receptor γ and was independent of liver X receptor α. Conclusion: Our findings suggest that PVAT-EXOs reduce macrophage foam cell formation by regulating the expression of cholesterol transport proteins, which provides a novel mechanism by which PVAT protects the vasculature from atherosclerosis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Xuze Lin
- Department of Cardiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dai Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yong Zhu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Meng Chai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
45
|
Guan B, Liu L, Li X, Huang X, Yang W, Sun S, Ma Y, Yu Y, Luo J, Cao J. Association between epicardial adipose tissue and blood pressure: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2021; 31:2547-2556. [PMID: 34172321 DOI: 10.1016/j.numecd.2021.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022]
Abstract
AIMS Epicardial adipose tissue has been reported to be associated with the development of cardiometabolic disease. Whether this is true for hypertension and non-dipper blood pressure remains controversial. Here, we conducted a systemic review and meta-analysis to evaluate the association between EAT and blood pressure. DATA SYNTHESIS Pubmed, Embase, and Web of Science were searched for relevant papers. Studies reported on the difference of EAT thickness between hypertensive and normotensive patients, or those recorded odds ratio (OR) between EAT and hypertension were included. The standard mean difference (SMD) and ORs were extracted and pooled using a random-effects model respectively. We further assessed the effect of EAT on circadian rhythm of blood pressure by combining multiple-adjusted ORs for non-dipper blood pressure. Seven studies with an overall sample of 1089 patients reported the mean difference of EAT thickness between hypertensive and normotensive patients, and the hypertensive patients had higher EAT (SMD = 1.07; 95% CI: 0.66-1.48; I2 = 89.2%) compared with controls. However, the pooled association between EAT and hypertension from two studies was not significant (OR = 1.65, 95%CI 0.62-4.68; I2 = 87.5%). The summary risk effect of EAT on non-dipper blood pressure from six studies comprising1208 patients showed that each 1 mm increment of EAT was associated with a 2.55-fold risk of non-dipper blood pressure. CONCLUSION Hypertensive patients tend to present higher EAT thickness near the right ventricular wall and increased EAT thickness might be associated with high risk of non-dipper blood pressure. Future researches are warranted to determine the causal link between EAT and hypertension and the underlying mechanism.
Collapse
Affiliation(s)
- Bo Guan
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Lu Liu
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, China
| | - Xintao Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenyi Yang
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shasha Sun
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yufei Ma
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yan Yu
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jiakun Luo
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, China
| | - Jian Cao
- Geriatric Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
46
|
Wang M, Xing J, Liu M, Gao M, Liu Y, Li X, Hu L, Zhao X, Liao J, Liu G, Dong J. Deletion of Seipin Attenuates Vascular Function and the Anticontractile Effect of Perivascular Adipose Tissue. Front Cardiovasc Med 2021; 8:706924. [PMID: 34409079 PMCID: PMC8365033 DOI: 10.3389/fcvm.2021.706924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Seipin locates in endoplasmic reticulum (ER) and regulates adipogenesis and lipid droplet formation. Deletion of Seipin has been well-demonstrated to cause severe general lipodystrophy, however, its role in maintaining perivascular adipose tissue (PVAT) and vascular homeostasis has not been directly assessed. In the present study, we investigated the role of Seipin in mediating the anticontractile effect of PVAT and vascular function. Seipin expression in PVAT and associated vessels were detected by qPCR and western-blot. Seipin is highly expressed in PVAT, but hardly in vessels. Structural and functional alterations of PVAT and associated vessels were compared between Seipin -/- mice and WT mice. In Seipin -/- mice, aortic and mesenteric PVAT were significantly reduced in mass and adipose-derived relaxing factors (ADRFs) secretion, but increased in macrophage infiltration and ER stress, as compared with those in WT mice. Aortic and mesenteric artery rings from WT and Seipin -/- mice were mounted on a wire myograph. Vasoconstriction and vasodilation were studied in vessels with and without PVAT. WT PVAT augmented relaxation but not Seipin -/- PVAT, which suggest impaired anticontractile function in PVAT of Seipin -/- mice. Thoracic aorta and mesenteric artery from Seipin -/- mice had impaired contractility in response to phenylephrine (PHE) and relaxation to acetylcholine (Ach). In conclusion, Seipin deficiency caused abnormalities in PVAT morphology and vascular functions. Our data demonstrated for the first time that Seipin plays a critical role in maintaining PVAT function and vascular homeostasis.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Xing
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengduan Liu
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, China
| | - Yangyang Liu
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Li
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Hu
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - George Liu
- Key Laboratory of Molecular Cardiovascular Sciences, Peking University Health Science Center, School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cardiology, National Clinical Research Centre for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Sousa AS, Sponton ACS, Delbin MA. Perivascular adipose tissue and microvascular endothelial dysfunction in obese mice: Beneficial effects of aerobic exercise in adiponectin receptor (AdipoR1) and peNOS Ser1177. Clin Exp Pharmacol Physiol 2021; 48:1430-1440. [PMID: 34260769 DOI: 10.1111/1440-1681.13550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
In the present study, we aim to investigate the effects of aerobic physical training on perivascular adipose tissue (PVAT)-induced microvascular dysfunction of the femoral artery in obese mice. Microvascular reactivity was evaluated in control sedentary (c-SD), obese sedentary (o-SD) and obese trained (o-TR) male mice (C57BL6/JUnib), in the absence (PVAT-) or the presence (PVAT+) of femoral artery PVAT. We also analyzed protein expression, vascular nitric oxide (NO) production and reactive oxygen species (ROS) generation in PVAT. The blood glucose, triglycerides and total cholesterol levels were increased in the o-SD group, when compared with the c-SD group. The maximal responses and the potency to acetylcholine (ACh) were decreased in PVAT+ compared with PVAT- rings in the o-SD group, accompanied by a decrease in vascular protein expression of peNOSSer1177 , Cu/Zn-SOD, leptin receptor (Ob-R) and adiponectin receptor (AdipoR1). The protein expression of leptin increased and that of adiponectin decreased in PVAT. Additionally, vascular NO production was reduced and ROS generation was enhanced in PVAT in the o-SD group. Aerobic exercise training was effective for normalizing ACh relaxation response, vascular NO production and ROS generation in the o-TR group. It partially re-established the vascular protein expression of peNOSSer1177 and the PVAT leptin; normalized the vascular Cu/Zn-SOD and AdipoR1 protein expressions. In obese sedentary mice, the presence of PVAT is involved in the process of microvascular dysfunction of the femoral artery in a pathway associated with increased inflammation and ROS generation. The aerobic exercise training normalized the vascular response, the NO production and/or bioavailability and oxidative stress, with improved vascular expressions of Cu/Zn-SOD, peNOSser1177 , and AdipoR1.
Collapse
Affiliation(s)
- Andressa S Sousa
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amanda C S Sponton
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria A Delbin
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
48
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 PMCID: PMC8321813 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Grants
- R01HL139585 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM130459 NIGMS NIH HHS
- R01HL121871 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK115255 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R61 NS115132 NINDS NIH HHS
- K99HL151889 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL151413 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00HL116769 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL091905 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL088554 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139585 NHLBI NIH HHS
- P20GM130459 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL135901 NHLBI NIH HHS
- RF1 NS110044 NINDS NIH HHS
- R01ES014639 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U24 DK076169 NIDDK NIH HHS
- S10OD023438 HHS | NIH | NIH Office of the Director (OD)
- R01HL137112 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135901 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146914 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL116769 NHLBI NIH HHS
- K99 HL151889 NHLBI NIH HHS
- U24 DK115255 NIDDK NIH HHS
- R21 EB026518 NIBIB NIH HHS
- R01 HL149762 NHLBI NIH HHS
- DK076169 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01NS082521 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL146054 NHLBI NIH HHS
- R21EB026518 HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- R01 HL123301 NHLBI NIH HHS
- P01 HL134604 NHLBI NIH HHS
- R00GM118885 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL091905 NHLBI NIH HHS
- RF1NS110044 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL142808 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R61NS115132 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL088105 NHLBI NIH HHS
- SB1 HL121871 NHLBI NIH HHS
- R01 HD037831 NICHD NIH HHS
- R01 HL137852 NHLBI NIH HHS
- R35 HL155008 NHLBI NIH HHS
- R01 HL137112 NHLBI NIH HHS
- R01HL149762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123301 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146914 NHLBI NIH HHS
- R01 HL142808 NHLBI NIH HHS
- R01 HL088554 NHLBI NIH HHS
- R01HD037831 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01HL146054 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146562 NHLBI NIH HHS
- R44 HL121871 NHLBI NIH HHS
- R01HL088105 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES014639 NIEHS NIH HHS
- P01HL134604 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL137852 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- S10 OD023438 NIH HHS
- R01 HL151413 NHLBI NIH HHS
- R41 HL121871 NHLBI NIH HHS
- R00 GM118885 NIGMS NIH HHS
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
49
|
Li X, Ma Z, Zhu YZ. Regional Heterogeneity of Perivascular Adipose Tissue: Morphology, Origin, and Secretome. Front Pharmacol 2021; 12:697720. [PMID: 34239444 PMCID: PMC8259882 DOI: 10.3389/fphar.2021.697720] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is a unique fat depot with local and systemic impacts. PVATs are anatomically, developmentally, and functionally different from classical adipose tissues and they are also different from each other. PVAT adipocytes originate from different progenitors and precursors. They can produce and secrete a wide range of autocrine and paracrine factors, many of which are vasoactive modulators. In the context of obesity-associated low-grade inflammation, these phenotypic and functional differences become more evident. In this review, we focus on the recent findings of PVAT’s heterogeneity by comparing commonly studied adipose tissues around the thoracic aorta (tPVAT), abdominal aorta (aPVAT), and mesenteric artery (mPVAT). Distinct origins and developmental trajectory of PVAT adipocyte potentially contribute to regional heterogeneity. Regional differences also exist in ways how PVAT communicates with its neighboring vasculature by producing specific adipokines, vascular tone regulators, and extracellular vesicles in a given microenvironment. These insights may inspire new therapeutic strategies targeting the PVAT.
Collapse
Affiliation(s)
- Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhongyuan Ma
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Jinan University Medical School, Guangzhou, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
50
|
Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC. Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 2021; 321:H275-H291. [PMID: 34142885 DOI: 10.1152/ajpheart.00225.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol consumption represents a significant public health problem, and excessive ethanol intake is a risk factor for cardiovascular disease (CVD), one of the leading causes of death and disability worldwide. The mechanisms underlying the effects of ethanol on the cardiovascular system are complex and not fully comprehended. The gut microbiota and their metabolites are indispensable symbionts essential for health and homeostasis and therefore, have emerged as potential contributors to ethanol-induced cardiovascular system dysfunction. By mechanisms that are not completely understood, the gut microbiota modulates the immune system and activates several signaling pathways that stimulate inflammatory responses, which in turn, contribute to the development and progression of CVD. This review summarizes preclinical and clinical evidence on the effects of ethanol in the gut microbiota and discusses the mechanisms by which ethanol-induced gut dysbiosis leads to the activation of the immune system and cardiovascular dysfunction. The cross talk between ethanol consumption and the gut microbiota and its implications are detailed. In summary, an imbalance in the symbiotic relationship between the host and the commensal microbiota in a holobiont, as seen with ethanol consumption, may contribute to CVD. Therefore, manipulating the gut microbiota, by using antibiotics, probiotics, prebiotics, and fecal microbiota transplantation might prove a valuable opportunity to prevent/mitigate the deleterious effects of ethanol and improve cardiovascular health and risk prevention.
Collapse
Affiliation(s)
- Carla B P Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|