1
|
Zhou ZK, Yu MM, Shou ST, Chai YF, Liu YC. Interaction Between Gut-Heart Axis in Sepsis-Induced Cardiomyopathy. Pharmacol Res 2025; 217:107806. [PMID: 40449812 DOI: 10.1016/j.phrs.2025.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/11/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The gut microbiota and its metabolites profoundly influence cardiac function, emerging as critical players in the pathophysiology of Sepsis-Induced Cardiomyopathy (SIC). Conversely, therapeutic interventions for SIC and the resultant cardiac alterations can reciprocally modulate gut microbial composition and function. To systematically elucidate this complex bidirectional relationship during SIC, this review delineates two key aspects: the 'forward gut-heart axis', defined as influences originating from the gut microbiota and its metabolites directed towards the cardiovascular system, and the 'reverse gut-heart axis', encompassing the reciprocal effects of cardiovascular drugs and cardiac factors on the gut microbiota. Furthermore, we explore potential therapeutic strategies for SIC centered on the targeted modulation of this intricate gut-heart interplay.
Collapse
Affiliation(s)
- Zi-Kang Zhou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Mu-Ming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Liu H, Xu C, Hu Q, Wang Y. Sepsis-induced cardiomyopathy: understanding pathophysiology and clinical implications. Arch Toxicol 2025; 99:467-480. [PMID: 39601874 DOI: 10.1007/s00204-024-03916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Sepsis is a life-threatening form of organ dysfunction resulting from a dysregulated response to infection. The complex pathogenesis of sepsis poses challenges because of the lack of reliable biomarkers for early identification and effective treatments. As sepsis progresses to severe forms, cardiac dysfunction becomes a major concern, often manifesting as ventricular dilation, a reduced ejection fraction, and a diminished contractile capacity, known as sepsis-induced cardiomyopathy (SIC). The absence of standardized diagnostic and treatment protocols for SIC leads to varied criteria being used across medical institutions and studies, resulting in significant outcome disparities. Despite the high prevalence of SIC, accurate statistical data are lacking. To understand how SIC affects sepsis prognosis, a thorough exploration of its pathophysiological mechanisms, including systemic factors and complex signalling within myocardial and immune cells, is required. Identifying the factors influencing SIC occurrence and progression is crucial and must be conducted within specific clinical contexts. In this review, the clinical manifestations, pathophysiological mechanisms, and treatment strategies for SIC are discussed, along with the clinical background. We aim to connect current practices with future research challenges, providing clear guidance for clinicians and researchers.
Collapse
Affiliation(s)
- Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, People's Republic of China
| | - Chaoqun Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, People's Republic of China
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qin Hu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Pang G, Hu K, Ji J, Xiong B, Han L, Pang J, Xiang S. Investigating hub genes in the relationship between septic cardiomyopathy and cuproptosis and potential Chinese herbal drug candidates with bioinformatic tools. Minerva Cardiol Angiol 2024; 72:453-464. [PMID: 38804624 DOI: 10.23736/s2724-5683.23.06476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND The aim of this study was using bioinformatic tools to identify hub genes in the relationship between septic cardiomyopathy (SCM) and cuproptosis and predict potential Chinese herbal drug candidates. METHODS SCM datasets were downloaded from the gene expression omnibus. Cuproptosis related genes were collected from a research published on Science in March, 2022. The expression profiles of genes related to cuproptosis in SCM were extracted. Differentially expressed genes (DEGs) were analyzed using R package limma. A single-sample gene set enrichment analysis was conducted to measure the correlation between DEGs and immune cell infiltration. Hub genes were screened out by random forest model. Finally, HERB database and COREMINE database were used to predict Chinese herbal drugs for hub genes and carry out molecular docking. RESULTS A total of 9 DEGs were identified. Cuproptosis differential genes PDHB, DLAT, DLD, FDX1, GCSH, LIAS were significantly correlated with one or more cells and their functions in immune infiltration. The random forest model screened pyruvate dehydrogenase E1 beta subunit (PDHB) as the hub gene. PDHB was negatively correlated with Plasmacytoid dendritic cell infiltration. Pyruvic acid, rhodioloside and adenosine were predicted with PDHB as the target, and all three components are able to bind to PDHB. CONCLUSIONS Cuproptosis related gene PDHB is associated with the occurrence and immune infiltration of septic cardiomyopathy. Rhodioloside and other Chinese herbal drugs may play a role in the treatment of SCM by regulating the expression of PDHB.
Collapse
Affiliation(s)
- Guangbao Pang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kunlin Hu
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianyu Ji
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bin Xiong
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lin Han
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Pang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shulin Xiang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Science, Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, China -
| |
Collapse
|
4
|
Hu K, Jiang P, Hu J, Song B, Hou Y, Zhao J, Chen H, Xie J. Dapagliflozin attenuates LPS-induced myocardial injury by reducing ferroptosis. J Bioenerg Biomembr 2024; 56:361-371. [PMID: 38743190 DOI: 10.1007/s10863-024-10020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Septic cardiomyopathy is a severe cardiovascular disease with a poor prognosis. Previous studies have reported the involvement of ferroptosis in the pathogenesis of septic cardiomyopathy. SGLT2 inhibitors such as dapagliflozin have been demonstrated to improve ischemia-reperfusion injury by alleviating ferroptosis in cardiomyocyte. However, the role of dapagliflozin in sepsis remains unclear. Therefore, our study aims to investigate the therapeutic effects of dapagliflozin on LPS-induced septic cardiomyopathy. Our results indicate that dapagliflozin improved cardiac function in septic cardiomyopathy experimental mice. Mechanistically, dapagliflozin works by inhibiting the translation of key proteins involved in ferroptosis, such as GPX4, FTH1, and SLC7A11. It also reduces the transcription of lipid peroxidation-related mRNAs, including PTGS2 and ACSL4, as well as iron metabolism genes TFRC and HMOX1.
Collapse
Affiliation(s)
- Ke Hu
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Pin Jiang
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, 445000, Hubei, China
| | - Bing Song
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ya Hou
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinxuan Zhao
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Haiting Chen
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Jun Xie
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
6
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
7
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
9
|
Lakbar I, Einav S, Lalevée N, Martin-Loeches I, Pastene B, Leone M. Interactions between Gender and Sepsis—Implications for the Future. Microorganisms 2023; 11:microorganisms11030746. [PMID: 36985319 PMCID: PMC10058943 DOI: 10.3390/microorganisms11030746] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Sex and gender dimorphisms are found in a large variety of diseases, including sepsis and septic shock which are more prevalent in men than in women. Animal models show that the host response to pathogens differs in females and males. This difference is partially explained by sex polarization of the intracellular pathways responding to pathogen–cell receptor interactions. Sex hormones seem to be responsible for this polarization, although other factors, such as chromosomal effects, have yet to be investigated. In brief, females are less susceptible to sepsis and seem to recover more effectively than males. Clinical observations produce more nuanced findings, but men consistently have a higher incidence of sepsis, and some reports also claim higher mortality rates. However, variables other than hormonal differences complicate the interaction between sex and sepsis, including comorbidities as well as social and cultural differences between men and women. Conflicting data have also been reported regarding sepsis-attributable mortality rates among pregnant women, compared with non-pregnant females. We believe that unraveling sex differences in the host response to sepsis and its treatment could be the first step in personalized, phenotype-based management of patients with sepsis and septic shock.
Collapse
Affiliation(s)
- Ines Lakbar
- Department of Anesthesiology and Intensive Care Unit, Assistance Publique Hôpitaux Universitaires de Marseille, Aix-Marseille University, Hospital Nord, 13015 Marseille, France
- CEReSS, Health Service Research and Quality of Life Centre, School of Medicine-La Timone Medical, Aix-Marseille University, 13015 Marseille, France
| | - Sharon Einav
- Intensive Care Unit, Shaare Zedek Medical Center, Jerusalem 23456, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 23456, Israel
| | - Nathalie Lalevée
- INSERM, INRAE, Centre for Nutrition and Cardiovascular Disease (C2VN), Aix-Marseille University, 13005 Marseille, France
| | - Ignacio Martin-Loeches
- Intensive Care Unit, Trinity Centre for Health Science HRB-Wellcome Trust, St James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Bruno Pastene
- Department of Anesthesiology and Intensive Care Unit, Assistance Publique Hôpitaux Universitaires de Marseille, Aix-Marseille University, Hospital Nord, 13015 Marseille, France
- INSERM, INRAE, Centre for Nutrition and Cardiovascular Disease (C2VN), Aix-Marseille University, 13005 Marseille, France
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Assistance Publique Hôpitaux Universitaires de Marseille, Aix-Marseille University, Hospital Nord, 13015 Marseille, France
- INSERM, INRAE, Centre for Nutrition and Cardiovascular Disease (C2VN), Aix-Marseille University, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
10
|
Carbone F, Liberale L, Preda A, Schindler TH, Montecucco F. Septic Cardiomyopathy: From Pathophysiology to the Clinical Setting. Cells 2022; 11:2833. [PMID: 36139408 PMCID: PMC9496713 DOI: 10.3390/cells11182833] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The onset of cardiomyopathy is a common feature in sepsis, with relevant effects on its pathophysiology and clinical care. Septic cardiomyopathy is characterized by reduced left ventricular (LV) contractility eventually associated with LV dilatation with or without right ventricle failure. Unfortunately, such a wide range of ultrasonographic findings does not reflect a deep comprehension of sepsis-induced cardiomyopathy, but rather a lack of consensus about its definition. Several echocardiographic parameters intrinsically depend on loading conditions (both preload and afterload) so that it may be challenging to discriminate which is primitive and which is induced by hemodynamic perturbances. Here, we explore the state of the art in sepsis-related cardiomyopathy. We focus on the shortcomings in its definition and point out how cardiac performance dynamically changes in response to different hemodynamic clusters. A special attention is also given to update the knowledge about molecular mechanisms leading to myocardial dysfunction and that recall those of myocardial hibernation. Ultimately, the aim of this review is to highlight the unsolved issue in the field of sepsis-induced cardiomyopathy as their implementation would lead to improve risk stratification and clinical care.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Alberto Preda
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Thomas Hellmut Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy
| |
Collapse
|
11
|
Voelker MT, Hechaichi N, Ndongson-Dongmo B, Lemm J, Heller R, Bauer R, Conway EM, Theilmeier G, Stehr SN. Role of the lectin-like domain of thrombomodulin in septic cardiomyopathy. Life Sci 2022; 306:120830. [PMID: 35872006 DOI: 10.1016/j.lfs.2022.120830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
AIMS Septic cardiomyopathy is a severe complication of sepsis and septic shock. This study aimed to evaluate the role of thrombomodulin and its lectin-like domain (LLD-TM) in the development of septic cardiomyopathy and the link between LLD-TM, HMGB-1, and toll-like receptors 2/4 (TLR 2/4) to intracellular mechanisms resulting in reduced cardiac function. MATERIALS AND METHODS Sepsis was induced using a polymicrobial peritoneal infection model in wildtype and mice lacking the lectin-like domain of thrombomodulin (TMLeD/LeD), and severity of disease and cardiac function was compared. Cell cultures of cardiomyocytes were prepared from hearts harvested from wildtype and TMLeD/LeD mice. Cultures of neonatal cardiomyocytes were transfected with complete human thrombomodulin or human thrombomodulin deficient of LLD-TM and when TLR-2 and/or TLR-4 were blocked. All cultures were challenged with inflammatory stimuli. KEY FINDINGS Lack of the LLD-TM results in a significant increase in severity of disease, decreased survival and impaired cardiac function in septic mice. In vivo and in vitro analyses of cardiomyocytes displayed high levels of inflammatory cytokines causing cardio-depression. In vitro results showed a strong correlation between elevated HMGB-1 levels and elevated troponin-1 levels. No connection was found between HMGB-1 and TLR-2 and/or -4 signalling pathways. Phospholamban mediated dysregulation of calcium homeostasis resulted in a general impairment after sepsis induction, but showed no connection to LLD-TM. SIGNIFICANCE Lack of LLD-TM results in an increase in general severity of disease, decreased survival and impaired cardiac function in sepsis. TLR-2 and TLR 4 do not participate as mediating factors in the development of septic cardiomyopathy.
Collapse
Affiliation(s)
- Maria Theresa Voelker
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Leipzig, Germany.
| | - Nadine Hechaichi
- Center for Sepsis Control and Care, University Hospital Jena, Germany
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Jana Lemm
- Center for Sepsis Control and Care, University Hospital Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Reinhardt Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Edward M Conway
- UBC Centre for Blood Research, Faculty of Medicine, Division of Haematology, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Gregor Theilmeier
- Division of Perioperative Inflammation and Infection, Faculty of Medicine and Health Sciences, Oldenburg, Germany
| | - Sebastian N Stehr
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Leipzig, Germany; Center for Sepsis Control and Care, University Hospital Jena, Germany
| |
Collapse
|
12
|
Zang H, Shao G, Lou Y. Sufentanil Alleviates Sepsis-Induced Myocardial Injury and Stress Response in Rats through the ERK/GSK-3 β Signaling Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9630716. [PMID: 35774755 PMCID: PMC9239792 DOI: 10.1155/2022/9630716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Objective To explore the effect and possible mechanism of sufentanil on sepsis-induced myocardial injury and stress response in rats. Methods The cecal ligation and puncture (CLP) method was utilized to establish the sepsis model of rats to explore the effect of sufentanil pretreatment with different concentrations on myocardial injury and oxidative stress in CLP rats. Echocardiogram was applied for detecting cardiac hemodynamic parameters in rats; hematoxylin and eosin (HE) staining as well as TUNEL staining was done for observing pathological changes of myocardial tissue and cardiomyocyte apoptosis in rats, respectively; biochemical testing and enzyme-linked immunosorbent assay (ELISA) were done for determining myocardial injury marker level in serum, oxidative stress substances in myocardial tissue, and neuroendocrine hormone level in serum of rats, respectively; finally, Western blot was performed for checking the expression level of ERK/GSK-3β signaling pathway-related proteins in myocardial tissue of rats. Results A model of rat with sepsis-induced myocardial injury was constructed with the CLP method. Specifically, this rat model was characterized by obvious cardiac function and tissue damage, cardiomyocyte apoptosis, and oxidative stress response. Sufentanil pretreatment significantly improved cardiac function injury, alleviated pathological injury and oxidative stress response in myocardial tissue, and inhibited cardiomyocyte apoptosis. Specifically, after sufentanil pretreatment, left ventricular end-diastolic dimension (LVEDD) and left ventricular end-systolic dimension (LVESD) were downregulated, and left ventricular ejection fraction (LVEF) was upregulated; the level of B-type natriuretic peptide (BNP) of serum, creatine kinase isoenzyme (CK-MB), and troponin (cTnl) decreased; besides, malondialdehyde (MDA) level was declined, while activities of superoxide dismutase (SOD) and catalase (CAT) were increased. What is more, further mechanism exploration also revealed that sufentanil could reverse the activity of the sepsis-induced ERK/GSK-3β signaling pathway. Conclusion Sufentanil has an obvious protective effect on myocardial injury and stress response in CLP rats, and this protective effect may be related to the activation of the ERK/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Hongcheng Zang
- Department of Anesthesiology, The First People's Hospital, Fuyang, Hangzhou, Zhejiang 311400, China
| | - Gang Shao
- Department of Anesthesiology, The First People's Hospital, Fuyang, Hangzhou, Zhejiang 311400, China
| | - Ying Lou
- Department of Anesthesiology, The First People's Hospital, Fuyang, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
13
|
Beneficial Effects of O-GlcNAc Stimulation in a Young Rat Model of Sepsis: Beyond Modulation of Gene Expression. Int J Mol Sci 2022; 23:ijms23126430. [PMID: 35742875 PMCID: PMC9224386 DOI: 10.3390/ijms23126430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
The young population, which is particularly at risk of sepsis, is, paradoxically, rarely studied. Acute stimulation of O-GlcNAcylation, a post-translational modification involved in metabolic regulation, cell survival and stress response, is beneficial in young rats with sepsis. Considering that sepsis impacts the gene expression profile and that O-GlcNAcylation is a regulator of transcription, the aims of this study are to (i) unveil beneficial mechanisms of O-GlcNAcylation and (ii) decipher the relationship between O-GlcNAcylation and transcription during sepsis. Endotoxemic challenge was induced in 28-day-old male rats using a lipopolysaccharide injection (E. coli O111:B4, 20 mg·kg−1) and compared to control rats (NaCl 0.9%). One hour after, rats were assigned to no therapy or fluidotherapy (NaCl 0.9%, 10 mL.kg−1) ± NButGT (10 mg·kg−1) to stimulate O-GlcNAc levels. Cardiac O-GlcNAcylation levels were evaluated via Western blot and gene transcription using 3′ SRP analysis. Lipopolysaccharide injection favorizes inflammatory state with the overexpression of genes involved in the NF-κB, JAK/STAT and MAPK pathways. NButGT treatment increased cardiac O-GlcNAcylation levels (p < 0.05). Yet, the mRNA expression was not impacted two hours after fluidotherapy or NButGT treatment. In conclusion, O-GlcNAc stimulation-induced beneficial effects are not dependent on the gene expression profile at the early phase of sepsis.
Collapse
|
14
|
Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An Overview on Mitochondrial-Based Therapies in Sepsis-Related Myocardial Dysfunction: Mitochondrial Transplantation as a Promising Approach. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3277274. [PMID: 35706715 PMCID: PMC9192296 DOI: 10.1155/2022/3277274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is defined as a life-threatening organ failure due to dysregulated host response to infection. Despite current advances in our knowledge about sepsis, it is still considered as a major global health challenge. Myocardial dysfunction is a well-defined manifestation of sepsis which is related to worse outcomes in septic patients. Given that the heart is a mitochondria-rich organ and the normal function of mitochondria is essential for successful modulation of septic response, the contribution of mitochondrial damage in sepsis-related myocardial dysfunction has attracted the attention of many scientists. It is widely accepted that mitochondrial damage is involved in sepsis-related myocardial dysfunction; however, effective and potential treatment modalities in clinical setting are still lacking. Mitochondrial-based therapies are potential approaches in sepsis treatment. Although various therapeutic strategies have been used for mitochondrial function improvement, their effects are limited when mitochondria undergo irreversible alterations under septic challenge. Therefore, application of more effective approaches such as mitochondrial transplantation has been suggested. This review highlights the crucial role of mitochondrial damage in sepsis-related myocardial dysfunction, then provides an overview on mitochondrial-based therapies and current approaches to mitochondrial transplantation as a novel strategy, and proposes future directions for more researches in this field.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Yavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Intensive Care Unit, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Evidence-Based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Xerri A, Gallardo F, Kober F, Mathieu C, Fourny N, Tran TT, Mege JL, Singer M, Lalevée N, Bernard M, Leone M. Female hormones prevent sepsis-induced cardiac dysfunction: an experimental randomized study. Sci Rep 2022; 12:4939. [PMID: 35322092 PMCID: PMC8943058 DOI: 10.1038/s41598-022-08889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Although epidemiologic research has demonstrated significant differences in incidence and outcomes of sepsis according to sex, their underlying biological mechanisms are poorly understood. Here, we studied the influence of hormonal status by comparing in vivo cardiac performances measured by MRI in non-ovariectomized and ovariectomized septic female rats. Control and ovariectomized rats were randomly allocated to the following groups: sham, sepsis and sepsis plus landiolol. Sepsis was induced by caecum ligation and punction (CLP). Landiolol, a short-acting selective β1-adrenergic blocker improving the in vivo cardiac performance of septic male rats was perfused continuously after sepsis induction. Cardiac MRI was carried out 18 h after induction of sepsis to assess in vivo cardiac function. Capillary permeability was evaluated by Evans Blue administration and measurement of its tissue extravasation. Variation in myocardial gene and protein expression was also assessed by qPCR and western-blot in the left ventricular tissue. Sepsis reduced indexed stroke volume, cardiac index and indexed end-diastolic volume compared to sham group in ovariectomized females whereas it had no effect in control females. This was associated with an overexpression of JAK2 expression and STAT3 phosphorylation on Ser727 site, and an inhibition of the adrenergic pathways in OVR females. Landiolol increased the indexed stroke volume by reversing the indexed end-diastolic volume reduction after sepsis in ovariectomized females, while it decreased indexed stroke volume and cardiac index in control. This was supported by an overexpression of genes involved in calcium influx in OVR females while an inactivation of the β-adrenergic and a calcium efflux pathway was observed in control females. Sepsis decreased in vivo cardiac performances in ovariectomized females but not in control females, presumably associated with a more pronounced inflammation, inhibition of the adrenergic pathway and calcium efflux defects. Administration of landiolol prevents this cardiac dysfunction in ovariectomized females with a probable activation of calcium influx, while it has deleterious effects in control females in which calcium efflux pathways were down-regulated.
Collapse
Affiliation(s)
- Alexandre Xerri
- Aix-Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France.
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | | | - Frank Kober
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Calypso Mathieu
- Aix-Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France
| | | | - Thi Thom Tran
- Aix-Marseille Univ, INSERM, TAGC, UMR S1090, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, Laboratoire d'Immunologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, 147 boulevard Baille, 13385, Marseille, France
| | - Mervyn Singer
- University College London, 4919, Bloomsbury Institute of Intensive Care Medicine, London, UK
| | - Nathalie Lalevée
- Aix-Marseille Univ, INSERM, TAGC, UMR S1090, Marseille, France
- CNRS, Marseille, France
| | | | - Marc Leone
- Aix-Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France
| |
Collapse
|
16
|
Kawaguchi S, Okada M. Cardiac Metabolism in Sepsis. Metabolites 2021; 11:metabo11120846. [PMID: 34940604 PMCID: PMC8707959 DOI: 10.3390/metabo11120846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of sepsis-induced cardiac dysfunction is believed to be different from that of myocardial ischemia. In sepsis, chemical mediators, such as endotoxins, cytokines, and nitric oxide, cause metabolic abnormalities, mitochondrial dysfunction, and downregulation of β-adrenergic receptors. These factors inhibit the production of ATP, essential for myocardial energy metabolism, resulting in cardiac dysfunction. This review focuses on the metabolic changes in sepsis, particularly in the heart. In addition to managing inflammation, interventions focusing on metabolism may be a new therapeutic strategy for cardiac dysfunction due to sepsis.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Bloomington, IN 46202, USA;
| | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Correspondence: ; Tel.: +81-166-68-2852
| |
Collapse
|
17
|
Abstract
Sepsis is the life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in intensive care units. Cardiac dysfunction caused by sepsis, usually termed sepsis-induced cardiomyopathy, is common and has long been a subject of interest. In this Review, we explore the definition, epidemiology, diagnosis and pathophysiology of septic cardiomyopathy, with an emphasis on how best to interpret this condition in the clinical context. Advances in diagnostic techniques have increased the sensitivity of detection of myocardial abnormalities but have posed challenges in linking those abnormalities to therapeutic strategies and relevant clinical outcomes. Sophisticated methodologies have elucidated various pathophysiological mechanisms but the extent to which these are adaptive responses is yet to be definitively answered. Although the indications for monitoring and treating septic cardiomyopathy are clinical and directed towards restoring tissue perfusion, a better understanding of the course and implications of septic cardiomyopathy can help to optimize interventions and improve clinical outcomes.
Collapse
|
18
|
Li H, Liu R, Zhang R, Zhang S, Wei Y, Zhang L, Zhou H, Yang C. Protective Effect of Arbidol Against Pulmonary Fibrosis and Sepsis in Mice. Front Pharmacol 2021; 11:607075. [PMID: 33584285 PMCID: PMC7873045 DOI: 10.3389/fphar.2020.607075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
From the perspective of epidemiology, viral immunology and current clinical research, pulmonary fibrosis may become one of the complications of patients with Coronavirus Disease 2019 (COVID-19). Cytokine storm is a major cause of new coronavirus death. The purpose of this study was to explore the effects of antiviral drug arbidol on cytokine storm and pulmonary fibrosis. Here, we use a mouse model of bleomycin-induced pulmonary fibrosis and a mouse model of fecal dilution-induced sepsis to evaluate the effects of arbidol on pulmonary fibrosis and cytokine storm. The results showed that arbidol significantly reduced the area of pulmonary fibrosis and improved lung function (reduced inspiratory resistance, lung dynamic compliance and forced vital capacity increased). Treatment with arbidol promoted reduced sepsis severity 48 h after sepsis induction, based on weight, murine sepsis score and survival rate. Arbidol observably alleviates inflammatory infiltrates and injury in the lungs and liver. Finally, we also found that arbidol reduced serum levels of pro-inflammatory factors such as TNF-α and IL-6 induced by fecal dilution. In conclusion, our results indicate that arbidol can alleviate the severity of pulmonary fibrosis and sepsis, and provide some reference for the treatment of cytokine storm and sequelae of pulmonary fibrosis in patients with COVID-19.
Collapse
Affiliation(s)
- Hailong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruotong Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shanshan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yiying Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-Throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
19
|
Khaliq W, Großmann P, Neugebauer S, Kleyman A, Domizi R, Calcinaro S, Brealey D, Gräler M, Kiehntopf M, Schäuble S, Singer M, Panagiotou G, Bauer M. Lipid metabolic signatures deviate in sepsis survivors compared to non-survivors. Comput Struct Biotechnol J 2020; 18:3678-3691. [PMID: 33304464 PMCID: PMC7711192 DOI: 10.1016/j.csbj.2020.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis remains a major cause of death despite advances in medical care. Metabolic deregulation is an important component of the survival process. Metabolomic analysis allows profiling of critical metabolic functions with the potential to classify patient outcome. Our prospective longitudinal characterization of 33 septic and non-septic critically ill patients showed that deviations, independent of direction, in plasma levels of lipid metabolites were associated with sepsis mortality. We identified a coupling of metabolic signatures between liver and plasma of a rat sepsis model that allowed us to apply a human kinetic model of mitochondrial beta-oxidation to reveal differing enzyme concentrations for medium/short-chain hydroxyacyl-CoA dehydrogenase (elevated in survivors) and crotonase (elevated in non-survivors). These data suggest a need to monitor cellular energy metabolism beyond the available biomarkers. A loss of metabolic adaptation appears to be reflected by an inability to maintain cellular (fatty acid) metabolism within a "corridor of safety".
Collapse
Affiliation(s)
- Waqas Khaliq
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Glower Street, London WC1E 6BT, UK
| | - Peter Großmann
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, D-07745 Jena, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Glower Street, London WC1E 6BT, UK
| | - Roberta Domizi
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Glower Street, London WC1E 6BT, UK
| | - Sara Calcinaro
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Glower Street, London WC1E 6BT, UK
| | - David Brealey
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Glower Street, London WC1E 6BT, UK
| | - Markus Gräler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745 Jena, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, D-07745 Jena, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Glower Street, London WC1E 6BT, UK
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, D-07745 Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|
20
|
Ritter C, Constantino L, Michels M, Gonçalves RC, Fraga C, Damásio D, Dal-Pizzol F. Stratification to predict the response to antioxidant. Rev Bras Ter Intensiva 2020; 32:108-114. [PMID: 32401970 PMCID: PMC7206955 DOI: 10.5935/0103-507x.20200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022] Open
Abstract
Objective To examine the effectiveness of stratification to identify and target antioxidant therapy for animal models of lethal sepsis and in patients who develop sustained hypotension. Methods Rats were subjected to sepsis induced by cecal ligation and puncture. Animals were divided into two groups: those with high and low plasma levels of interleukin-6. Following stratification, N-acetylcysteine plus deferoxamine or saline was administered to animals starting 3 and 12 hours after surgery. N-Acetylcysteine plus deferoxamine or placebo was administered within 12 hours of meeting the inclusion criteria in hypotensive patients. Results N-Acetylcysteine plus deferoxamine increased survival in the cecal ligation and puncture model when administered 3 and 12 hours after sepsis induction. When dividing animals that received antioxidants using plasma interleukin-6 levels, the protective effect was observed only in those animals with high IL-6 levels. The antioxidant effect of N-acetylcysteine + deferoxamine was similar in the two groups, but a significant decrease in plasma interleukin-6 levels was observed in the high-interleukin-6-level group. Compared with patients treated with antioxidants in the low-interleukin-6 subgroup, those in the high-interleukin-6 subgroup had a lower incidence of acute kidney injury but were not different in terms of acute kidney injury severity or intensive care unit mortality. Conclusion Targeting antioxidant therapy to a high inflammatory phenotype would select a responsive population.
Collapse
Affiliation(s)
- Cristiane Ritter
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Larissa Constantino
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Monique Michels
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Renata Casagrande Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Cassiana Fraga
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Danusa Damásio
- Centro de Pesquisa, Hospital São José, Criciúma, SC, Brasil
| | - Felipe Dal-Pizzol
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| |
Collapse
|
21
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
22
|
Tran TT, Mathieu C, Torres M, Loriod B, Lê LT, Nguyen C, Bernard M, Leone M, Lalevée N. Effect of landiolol on sex-related transcriptomic changes in the myocardium during sepsis. Intensive Care Med Exp 2019; 7:50. [PMID: 31428883 PMCID: PMC6701793 DOI: 10.1186/s40635-019-0263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022] Open
Abstract
Objectives The aims of this study are to better understand phenotypic differences between male and female rats during sepsis, to characterise the contribution of the beta1-adrenergic blocker landiolol to septic cardiomyopathy and to determine why landiolol induces divergent effects in males and females. Methods The myocardial transcriptional profiles in male and female Wistar rats were assessed after the induction of sepsis by cecal ligation and puncture and addition of landiolol. Results Our results showed major differences in the biological processes activated during sepsis in male and female rats. In particular, a significant decrease in processes related to cell organisation, contractile function, ionic transport and phosphoinositide-3-kinase/AKT (PI3K/AKT) signalling was observed only in males. The transcript of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 (SERCA3) was sex-differently regulated. In males, landiolol reversed several signalling pathways dysregulated during sepsis. The expression level of genes encoding tubulin alpha 8 (TUBA8) and myosin heavy chain 7B (MYH7) contractile proteins, phosphatase 2 catalytic subunit alpha (PPP2CA), G protein-coupled receptor kinase 5 (GRK5) and A-kinase anchoring protein 6 (AKAP6) returned to their basal levels. In contrast, in females, landiolol had limited effects. Conclusion In males, landiolol reversed the expression of many genes that were deregulated in sepsis. Conversely, sepsis-induced deregulation of gene expression was less pronounced in females than in males, and was maintained in the landiolol-treated females. These findings highlight important sex-related differences and confirm previous observations on the important benefit of landiolol intake on cardiac function in male rats. Electronic supplementary material The online version of this article (10.1186/s40635-019-0263-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thi Thom Tran
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Calypso Mathieu
- Aix Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France
| | - Magali Torres
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Béatrice Loriod
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France.,Aix-Marseille Univ, INSERM UMR 1090, TGML, Marseille, France
| | - Linh Thuy Lê
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Catherine Nguyen
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | | | - Marc Leone
- Aix Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France.
| | - Nathalie Lalevée
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France.
| |
Collapse
|
23
|
Upregulation of UCP2 Expression Protects against LPS-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2758262. [PMID: 31182990 PMCID: PMC6512061 DOI: 10.1155/2019/2758262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
Uncoupling protein 2 (UCP2) has a cardioprotective role under septic conditions, but the underlying mechanism remains unclear. This study aimed at investigating the effects of UCP2 on the oxidative stress and apoptosis of cardiomyocytes induced by lipopolysaccharide (LPS). First, LPS increased UCP2 expression in cardiomyocytes in a time-dependent manner. LPS increased the production of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and malondialdehyde (MDA) and decreased the level of superoxide dismutase (SOD). However, UCP2 knockdown increased the LPS-induced cardiac injury and oxidative stress. In addition, LPS damaged the mitochondrial ultrastructure and led to the disruption of mitochondrial membrane potential (MMP), as well as the release of mitochondrial cytochrome c. UCP2 knockdown aggravated mitochondrial injury and the release of mitochondrial cytochrome c. LPS increased the protein levels of Bax and cleaved-caspase-3, decreased the protein level of Bcl-2, and upregulated the protein level of mitogen-activated protein kinase. However, upon UCP2 knockdown, the protein levels of Bax and cleaved-caspase-3 increased even further, and the protein level of Bcl-2 was further decreased. The protein level of phosphorylated p38 was also further enhanced. Thus, UCP2 protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes.
Collapse
|
24
|
Part III: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Fluid Resuscitation and Antimicrobial Therapy Endpoints. Shock 2019; 51:33-43. [DOI: 10.1097/shk.0000000000001209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:759-773. [PMID: 30342158 DOI: 10.1016/j.bbadis.2018.10.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.
Collapse
|
26
|
Rudiger A, Jeger V, Arrigo M, Schaer CA, Hildenbrand FF, Arras M, Seifert B, Singer M, Schoedon G, Spahn DR, Bettex D. Heart rate elevations during early sepsis predict death in fluid-resuscitated rats with fecal peritonitis. Intensive Care Med Exp 2018; 6:28. [PMID: 30128907 PMCID: PMC6102166 DOI: 10.1186/s40635-018-0190-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In sepsis, early outcome prediction would allow investigation of both adaptive mechanisms underlying survival and maladaptive mechanisms resulting in death. The aim of this study was to test whether early changes in heart rate monitored by telemetry could predict outcome in a long-term rat model of fecal peritonitis. METHODS Male Wistar rats (n = 24) were instrumented with a central venous line for administration of fluids, antibiotics and analgesics. A telemetry transmitter continuously collected electrocardiogram signals. Sepsis was induced by intraperitoneal injection of fecal slurry, and the animals were observed for 48 h. Additional animals underwent arterial cannulation at baseline (n = 9), 4 h (n = 16), or 24 h (n = 6) for physiology and laboratory measurements. RESULTS 48-h mortality was 33% (8/24), with all deaths occurring between 4 and 22 h. Septic animals were characterized by lethargy, fever, tachycardia, positive blood cultures, and elevated cytokine (IL-1, IL-6, TNF alpha) levels. An increase in heart rate ≥ 50 bpm during the first 4 h of sepsis predicted death with sensitivity and specificity of 88% (p = 0.001). CONCLUSIONS In this long-term rat sepsis model, prognostication could be made early by telemetry-monitored changes in heart rate. This model enables the study of underlying mechanisms and the assessment of any differential effects of novel therapies in predicted survivors or non-survivors.
Collapse
Affiliation(s)
- Alain Rudiger
- Institute of Anesthesiology, University and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Victor Jeger
- Institute of Anesthesiology, University and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Inflammation Research Unit, Division of Internal Medicine, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland
| | - Mattia Arrigo
- Clinic for Cardiology, University Heart Centre, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland
| | - Christian A. Schaer
- Institute of Anesthesiology, University and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Inflammation Research Unit, Division of Internal Medicine, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland
| | - Florian F. Hildenbrand
- Inflammation Research Unit, Division of Internal Medicine, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland
| | - Margarete Arras
- Department of Surgery, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland
| | - Burkhardt Seifert
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Gower Street, London, WC1E 6BT UK
| | - Gabriele Schoedon
- Inflammation Research Unit, Division of Internal Medicine, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland
| | - Donat R. Spahn
- Institute of Anesthesiology, University and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Dominique Bettex
- Institute of Anesthesiology, University and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
27
|
Arulkumaran N, Pollen S, Greco E, Courtneidge H, Hall AM, Duchen MR, Tam FWK, Unwin RJ, Singer M. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury. Crit Care Med 2018; 46:e318-e325. [PMID: 29293148 PMCID: PMC5856355 DOI: 10.1097/ccm.0000000000002937] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. DESIGN Prospective observational animal study. SETTING University research laboratory. SUBJECTS Male Wistar rats. INTERVENTION Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6-10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. MEASUREMENTS AND MAIN RESULTS By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. CONCLUSIONS Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism.
Collapse
Affiliation(s)
- Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- UCL Centre for Nephrology, Division of Medicine, Royal Free Campus and Hospital, University College London, London, United Kingdom
- Imperial College Kidney and Transplant Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Sean Pollen
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Elisabetta Greco
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Holly Courtneidge
- UCL Centre for Nephrology, Division of Medicine, Royal Free Campus and Hospital, University College London, London, United Kingdom
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Michael R Duchen
- Department of Cell and Development Biology, University College London, London, United Kingdom
| | - Frederick W K Tam
- Imperial College Kidney and Transplant Institute, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Robert J Unwin
- UCL Centre for Nephrology, Division of Medicine, Royal Free Campus and Hospital, University College London, London, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
28
|
Jeger V, Hauffe T, Nicholls-Vuille F, Bettex D, Rudiger A. Analgesia in clinically relevant rodent models of sepsis. Lab Anim 2018; 50:418-426. [PMID: 27909191 DOI: 10.1177/0023677216675009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Postoperative analgesia in rodent sepsis models has been considerably neglected in the past. However, intentions to model clinical practice, increasing awareness of animal ethics, efforts to apply the 3Rs (replacement, reduction, refinement), and stricter legislation argue for a change in this respect. In this review, we describe different concepts of analgesia in rodent models of sepsis focusing on opioid agonists as well as non-opioid analgesics. Advantages and pitfalls in study design and side-effects are discussed. Score sheets should be used to adapt analgesia or to terminate experiments using humane endpoints. Further research is needed to differentiate behavioral changes caused by sepsis and pain or as a consequence of analgesia. Information on the efficacy of analgesia in sepsis models is scarce. Hence, studies are needed to identify the best ways to reduce suffering of research animals and thereby optimize the clinically relevant rodent models of sepsis.
Collapse
Affiliation(s)
- Victor Jeger
- Institute for Anesthesiology, University and University Hospital Zurich, Switzerland.,Department of Medicine, University and University Hospital Zurich, Switzerland
| | - Till Hauffe
- Department of Medicine, University and University Hospital Zurich, Switzerland
| | - Flora Nicholls-Vuille
- Research Unit, Department of Surgery, University and University Hospital Zurich, Zurich, Switzerland
| | - Dominique Bettex
- Institute for Anesthesiology, University and University Hospital Zurich, Switzerland
| | - Alain Rudiger
- Institute for Anesthesiology, University and University Hospital Zurich, Switzerland
| |
Collapse
|
29
|
Jiao Y, Tan S, Xiong J. Proteomic changes of CD4 +/CD25 +/forkhead box p3 + regulatory T cells in a 30-day rat model of sepsis survival. Exp Ther Med 2017; 14:5619-5628. [PMID: 29285101 DOI: 10.3892/etm.2017.5233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/20/2017] [Indexed: 02/07/2023] Open
Abstract
Sepsis is defined as life threatening organ dysfunction arising from a dysregulated host response to infection. The outcomes of sepsis include early mortality, delayed mortality and recovery, and depend on the inflammatory response. Previous studies have demonstrated that regulatory T cells (Tregs) are important in determining the outcome of sepsis, as their suppressive function serves a role in maintaining immune homeostasis. However, Treg-mediated immunosuppression during the course of sepsis remains unclear and little is known about the survival of patients following diagnosis. Studying the survivors of sepsis may explain the mechanisms of natural recovery. Therefore, a 30-day rat model of sepsis survival was established in the current study. Cluster of differentiation CD4+/CD25+/forkhead box p3+ Tregs were isolated from the blood and spleens of rats undergoing cecal ligation and puncture or sham surgery, using flow cytometry. Proteomic analysis was performed using nano high-performance liquid chromatography-mass spectrometry. Several different biological pathways associated with uncommon differentially-expressed proteins were identified in the blood and spleen survivor and sham groups. Extracellular-regulated kinase/mitogen-activated protein kinase, as well as integrin and actin cytoskeletal pathway elements, including Ras-related protein 1b, talin 1 and filamin A, were associated with Tregs in the blood. Pathway elements associated with cell cycle regulators in the B-cell translocation gene family of proteins, tumor necrosis factor receptor superfamily member 4, Hippo signaling, P70-S6 kinase 1, phosphatidylinositol 3-kinase/protein kinase B signaling and 1,25-dihydroxyvitamin D3 biosynthesis were associated with Tregs from the spleen including phosphatase 2A activator regulatory factor 4, histone arginine methyltransferase, CD4, major histocompatibility complex class I antigens, 14-3-3 protein θ and nicotinamide adenine dinucleotide phosphate cytochrome P450 reductase. These results explain the mechanism by which Tregs naturally recover and indicates that Tregs in the blood and spleen vary. Differentially-expressed proteins serving a role in these pathways provide additional insight for the identification of new targets for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Yuxia Jiao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Siqi Tan
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Junyu Xiong
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
30
|
Sequential Analysis of a Panel of Biomarkers and Pathologic Findings in a Resuscitated Rat Model of Sepsis and Recovery. Crit Care Med 2017; 45:e821-e830. [PMID: 28430696 PMCID: PMC5511729 DOI: 10.1097/ccm.0000000000002381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: To characterize the temporal pattern of a panel of blood and urinary biomarkers in an animal model of fecal peritonitis and recovery. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Interventions: A fluid-resuscitated, long-term (3 d) rat model of sepsis (fecal peritonitis) and recovery was used to understand the temporal association of sepsis biomarkers in relation to systemic hemodynamics, inflammation, and renal function. At predefined time points (3, 6, 12, 24, 48, 72 hr), animals (≥ 6 per group) underwent echocardiography, blood and urine sampling, and had kidneys taken for histological analysis. Comparison was made against sham-operated controls and naïve animals. Measurements and Main Results: The systemic proinflammatory response was maximal at 6 hours, corresponding with the nadir of stroke volume. Serum creatinine peaked late (24 hr), when clinical recovery was imminent. Histological evidence of tubular injury and cell death was minimal. After a recovery period, all biomarkers returned to levels approaching those observed in sham animals. Apart from urine clusterin and interleukin-18, all other urinary biomarkers were elevated at earlier time points compared with serum creatinine. Urine neutrophil gelatinase-associated lipocalin was the most sensitive marker among those studied, rising from 3 hours. While serum creatinine fell at 12 hours, serum cystatin C increased, suggestive of decreased creatinine production. Conclusions: Novel information is reported on the temporal profile of a panel of renal biomarkers in sepsis in the context of systemic and renal inflammation and recovery. Insight into the pathophysiology of acute kidney injury is gleaned from the temporal change markers of renal injury (urine neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, calbindin), followed by a marker of cell cycle arrest (urine insulin-like growth factor-binding protein 7) and, finally, by functional markers of filtration (serum creatinine and cystatin C). These clinically relevant findings should have significant influence on future clinical testing.
Collapse
|
31
|
Improved Survival in a Long-Term Rat Model of Sepsis Is Associated With Reduced Mitochondrial Calcium Uptake Despite Increased Energetic Demand. Crit Care Med 2017; 45:e840-e848. [PMID: 28410346 DOI: 10.1097/ccm.0000000000002448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To investigate the relationship between prognosis, changes in mitochondrial calcium uptake, and bioenergetic status in the heart during sepsis. DESIGN In vivo and ex vivo controlled experimental studies. SETTING University research laboratory. SUBJECTS Male adult Wistar rats. INTERVENTIONS Sepsis was induced by intraperitoneal injection of fecal slurry. Sham-operated animals served as controls. Confocal microscopy was used to study functional and bioenergetic parameters in cardiomyocytes isolated after 24-hour sepsis. Electron microscopy was used to characterize structural changes in mitochondria and sarcoplasmic reticulum. The functional response to dobutamine was assessed in vivo by echocardiography. MEASUREMENTS AND MAIN RESULTS Peak aortic blood flow velocity measured at 24 hours was a good discriminator for 72-hour survival (area under the receiver operator characteristic, 0.84 ± 0.1; p = 0.03) and was used in ex vivo experiments at 24 hours to identify septic animals with good prognosis. Measurements from animals with good prognostic showed 1) a smaller increase in mitochondrial calcium content and in nicotinamide adenine dinucleotide fluorescence following pacing and 2) increased distance between mitochondria and sarcoplasmic reticulum on electron microscopy, and 3) nicotinamide adenine dinucleotide redox potential and adenosine triphosphate/adenosine diphosphate failed to reach a new steady state following pacing, suggesting impaired matching of energy supply and demand. In vivo, good prognosis animals had a blunted response to dobutamine with respect to stroke volume and kinetic energy. CONCLUSIONS In situations of higher energetic demand decreased mitochondrial calcium uptake may constitute an adaptive cellular response that confers a survival advantage in response to sepsis at a cost of decreased oxidative capacity.
Collapse
|
32
|
Improving animal welfare using continuous nalbuphine infusion in a long-term rat model of sepsis. Intensive Care Med Exp 2017; 5:23. [PMID: 28429311 PMCID: PMC5399012 DOI: 10.1186/s40635-017-0137-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022] Open
Abstract
Background Sepsis research relies on animal models to investigate the mechanisms of the dysregulated host response to infection. Animal welfare concerns request the use of potent analgesics for the Refinement of existing sepsis models, according to the 3Rs principle. Nevertheless, adequate analgesia is often missing, partly because the effects of analgesics in this particular condition are unknown. We evaluated the use of nalbuphine, an opioid with kappa agonistic and mu antagonistic effects, in rats with and without experimental sepsis. Methods Male Wistar rats were anesthetized with isoflurane and instrumented with a venous line for drug administration. Arterial cannulation allowed for blood pressure measurements and blood sampling in short-term experiments of non-septic animals. Nalbuphine (or placebo) was administered intravenously at a dose of 1 mg/kg/h. Long-term (48 h) experiments in awake septic animals included repetitive clinical scoring with the Rat Grimace Scale and continuous heart rate monitoring by telemetry. Sepsis was induced by intraperitoneal injection of faecal slurry. Nalbuphine plasma levels were measured by liquid chromatography—high resolution mass spectrometry. Results In anesthetized healthy animals, nalbuphine led to a significant reduction of respiratory rate, heart rate, and mean arterial pressure during short-term experiments. In awake septic animals, a continuous nalbuphine infusion did not affect heart rate but significantly improved the values of the Rat Grimace Scale. Nalbuphine plasma concentrations remained stable between 4 and 24 h of continuous infusion in septic rats. Conclusions In anaesthetised rats, nalbuphine depresses respiratory rate, heart rate, and blood pressure. In awake animals, nalbuphine analgesia improves animal welfare during sepsis.
Collapse
|
33
|
Wei C, Louis H, Schmitt M, Albuisson E, Orlowski S, Levy B, Kimmoun A. Effects of low doses of esmolol on cardiac and vascular function in experimental septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:407. [PMID: 27998289 PMCID: PMC5175382 DOI: 10.1186/s13054-016-1580-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/22/2022]
Abstract
Background Administration of a selective β1-blocker, such as esmolol, in human septic shock has demonstrated cardiovascular protective effects related to heart rate reduction. Certain experimental data also indicate that esmolol exerts systemic anti-inflammatory and beneficial effects on vascular tone. Thus, the present study aimed to determine whether a non-chronotropic dose of esmolol maintains its protective cardiovascular and anti-inflammatory effects in experimental septic shock. Methods Four hours after cecal ligation and puncture (CLP), Wistar male rats were randomly allocated to the following groups (n = 8): CLP, CLP + E-1 (esmolol: 1 mg.kg−1.h−1), CLP + E-5 (esmolol: 5 mg.kg−1.h−1), CLP + E-18 (esmolol: 18 mg.kg−1.h−1). An additional eight rats underwent sham operation. All rats received a continuous infusion of saline, analgesic and antibiotics 4 hours after the surgery. Assessment at 18 hours included in vivo cardiac function assessed by echocardiography and ex vivo vasoreactivity assessed by myography. Circulating cytokine levels (IL-6 and IL-10) were measured by ELISA. Cardiac and vascular protein expressions of p-NF-κB, IκBα, iNOS, p-AKT/AKT and p-eNOS/eNOS were assessed by western blotting. Results CLP induced tachycardia, hypotension, cardiac output reduction, hyperlactatemia and vascular hypo-responsiveness to vasopressors. Compared to CLP animals, heart rate was unchanged in CLP + E-1 and CLP + E-5 but was reduced in CLP + E-18. Stroke volume, cardiac output, mean arterial pressure and lactatemia were improved in CLP + E-1 and CLP + E-5, while vascular responsiveness to phenylephrine was only improved in CLP + E-5 and CLP + E-18. Plasma IL-6 levels were decreased in all esmolol groups. p-NF-κB was decreased in both cardiac and vascular tissues in CLP + E-5 and CLP + E-18. Conclusion In experimental septic shock, low doses of esmolol still improved cardiac function and vasoreactivity. These benefits appear to be associated with a modulation of inflammatory pathways. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaojie Wei
- INSERM U 1116, Groupe Choc, Equipe 2, Faculté de Médecine, Vandoeuvre les Nancy, France.,Université de Lorraine, Nancy, France
| | - Huguette Louis
- Université de Lorraine, Nancy, France.,INSERM U 1116, Groupe Choc, Equipe 1, Faculté de Médecine, Vandoeuvre les Nancy, France
| | - Margaux Schmitt
- INSERM U 1116, Groupe Choc, Equipe 2, Faculté de Médecine, Vandoeuvre les Nancy, France
| | - Eliane Albuisson
- Université de Lorraine, Nancy, France.,Unité ESPRI-BioBase, CHRU Nancy, Vandoeuvre les Nancy, France
| | - Sophie Orlowski
- INSERM U 1116, Groupe Choc, Equipe 2, Faculté de Médecine, Vandoeuvre les Nancy, France.,Université de Lorraine, Nancy, France
| | - Bruno Levy
- INSERM U 1116, Groupe Choc, Equipe 2, Faculté de Médecine, Vandoeuvre les Nancy, France. .,Université de Lorraine, Nancy, France. .,CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital Brabois, Vandoeuvre les Nancy, France.
| | - Antoine Kimmoun
- INSERM U 1116, Groupe Choc, Equipe 2, Faculté de Médecine, Vandoeuvre les Nancy, France.,Université de Lorraine, Nancy, France.,CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital Brabois, Vandoeuvre les Nancy, France
| |
Collapse
|
34
|
Neviere R, Delguste F, Durand A, Inamo J, Boulanger E, Preau S. Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction. Int J Mol Sci 2016; 17:ijms17122075. [PMID: 27973394 PMCID: PMC5187875 DOI: 10.3390/ijms17122075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice.
Collapse
Affiliation(s)
- Remi Neviere
- Département de Physiologie, Faculté de Médecine, Université Lille, 1 Place de Verdun, F-59000 Lille CEDEX 59045, France.
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Florian Delguste
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Arthur Durand
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
- Pôle Réanimation Médicale, CHU Lille, Bd Pr Leclercq, F-59000 Lille, France.
| | - Jocelyn Inamo
- Département de Cardiologie, CHU Martinique, Faculté de Médecine, Université des Antilles, F-97200 Fort de France, France.
| | - Eric Boulanger
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Sebastien Preau
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
- Pôle Réanimation Médicale, CHU Lille, Bd Pr Leclercq, F-59000 Lille, France.
| |
Collapse
|
35
|
Ashton KJ, Reichelt ME, Mustafa SJ, Teng B, Ledent C, Delbridge LMD, Hofmann PA, Morrison RR, Headrick JP. Transcriptomic effects of adenosine 2A receptor deletion in healthy and endotoxemic murine myocardium. Purinergic Signal 2016; 13:27-49. [PMID: 27696085 DOI: 10.1007/s11302-016-9536-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022] Open
Abstract
Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, <5 % FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified >4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR < 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (-38); Adipoq (-17); Atgrl1/Aplnr (-14); H19 (-11) and Itga8 (-8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a 'cardio-depressant' profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia.
Collapse
Affiliation(s)
- Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | | | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Polly A Hofmann
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - R Ray Morrison
- Division of Critical Care Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John P Headrick
- Heart Foundation Research Center, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
36
|
Characterization of Brain-Heart Interactions in a Rodent Model of Sepsis. Mol Neurobiol 2016; 54:3745-3752. [PMID: 27229490 PMCID: PMC5443875 DOI: 10.1007/s12035-016-9941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
Abstract
Loss of heart rate variability (HRV) and autonomic dysfunction are associated with poor outcomes in critically ill patients. Neuronal networks comprising brainstem and hypothalamus are involved in the “flight-or-fight” response via control over the autonomic nervous system and circulation. We hypothesized that sepsis-induced inflammation in brain regions responsible for autonomic control is associated with sympathovagal imbalance and depressed contractility. Sepsis was induced by fecal slurry injection in fluid-resuscitated rats. Sham-operated animals served as controls. Echocardiography-derived peak velocity (PV) was used to separate septic animals into good (PV ≥0.93 m/s, low 72-h mortality) and bad (PV <0.93, high 72-h mortality) prognosis. Cytokine protein levels were assessed by ELISA. All experiments were performed at 24 h post-insult. Increased levels of inflammation and oxidative injury were observed in the hypothalamus (TNF-α, IL-10, nitrite and nitrate and carbonyl groups) and brainstem (IL-1, IL-6, IL-10, nitrite and nitrate and carbonyl groups) of the septic animals (p < 0.05 vs. sham), but not in the pre-frontal cortex, an area not directly implicated in control of the autonomic nervous system. Good prognosis septic animals had increased sympathetic output and increased left ventricular contractility (p < 0.05 vs. sham). There was a significant inverse correlation between high frequency power (a marker of parasympathetic outflow) and contractility (r = −0.73, p < 0.05). We found no correlation between the degree of inflammation or injury to autonomic centers and cardiovascular function. In conclusion, control of autonomic centers and cardiac function in our long-term rodent model of sepsis was related to clinical severity but not directly to the degree of inflammation.
Collapse
|
37
|
Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315:775-87. [PMID: 26903336 PMCID: PMC4910392 DOI: 10.1001/jama.2016.0289] [Citation(s) in RCA: 1522] [Impact Index Per Article: 169.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition. OBJECTIVE To develop a new definition and clinical criteria for identifying septic shock in adults. DESIGN, SETTING, AND PARTICIPANTS The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005-2010; n = 28,150), University of Pittsburgh Medical Center (UPMC) (2010-2012; n = 1,309,025), and Kaiser Permanente Northern California (KPNC) (2009-2013; n = 1,847,165) electronic health record (EHR) data sets. MAIN OUTCOMES AND MEASURES Evidence for and agreement on septic shock definitions and criteria. RESULTS The systematic review identified 44 studies reporting septic shock outcomes (total of 166,479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock-associated crude mortality was 46.5% (95% CI, 42.7%-50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3% [95% CI, 41.2%-43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets. CONCLUSIONS AND RELEVANCE Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Division of Asthma, Allergy, and Lung Biology, King's College London, London, United Kingdom2Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE17EH, United Kingdom
| | - Gary S Phillips
- The Ohio State University College of Medicine, Department of Biomedical Informatics, Center for Biostatistics, Columbus
| | - Mitchell L Levy
- Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Christopher W Seymour
- Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, Department of Critical Care and Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent X Liu
- Division of Research, Kaiser Permanente, Oakland, California
| | - Clifford S Deutschman
- Department of Pediatrics, Hofstra-North Shore-Long Island Jewish-Hofstra School of Medicine, Steven and Alexandra Cohen Children's Medical Center, New Hyde Park, New York8Department of Molecular Medicine, Hofstra-North Shore-Long Island Jewish-Hofstra Sch
| | - Derek C Angus
- Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, Department of Critical Care and Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania10Associate Editor, JAMA
| | - Gordon D Rubenfeld
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada12Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | | |
Collapse
|
38
|
Abstract
Sepsis-induced myocardial dysfunction is a common complication in septic patients and is associated with increased mortality. In the clinical setting, it was once believed that myocardial dysfunction was not a major pathological process in the septic patients, at least in part, due to the unavailability of suitable clinical markers to assess intrinsic myocardial function during sepsis. Although sepsis-induced myocardial dysfunction has been studied in clinical and basic research for more than 30 years, its pathophysiology is not completely understood, and no specific therapies for this disorder exist. The purpose of this review is to summarize our current knowledge of sepsis-induced myocardial dysfunction with a special focus on pathogenesis and clinical characteristics.
Collapse
Affiliation(s)
- Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| |
Collapse
|
39
|
Andreis DT, Khaliq W, Neugebauer S, Kiehntopf M, Singer M. Tissue and plasma putrescine levels in non-survivors of sepsis in a fluid-resuscitated rat model of faecal peritonitis. Intensive Care Med Exp 2015. [PMCID: PMC4798088 DOI: 10.1186/2197-425x-3-s1-a616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Kleyman A, Khaliq W, Neugebauer S, Gräler M, Kiehntopf M, Singer M. Differences in Fat Metabolism Between Predicted Survivors And Non-Survivors of Faecal Peritonitis. Intensive Care Med Exp 2015. [PMCID: PMC4797008 DOI: 10.1186/2197-425x-3-s1-a45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Reductions in tyrosine levels are associated with thyroid hormone and catecholamine disturbances in sepsis. Intensive Care Med Exp 2015. [PMCID: PMC4798095 DOI: 10.1186/2197-425x-3-s1-a686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Andreis DT, Khaliq W, Singer M. Acute haemodynamic effects of dobutamine in experimental sepsis-induced myocardial depression. Intensive Care Med Exp 2015. [PMCID: PMC4796105 DOI: 10.1186/2197-425x-3-s1-a799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
43
|
Beta-blockade in experimental fluid-resuscitated sepsis: acute haemodynamic effects of esmolol differ in predicted survivors and non-survivors. Intensive Care Med Exp 2015. [PMCID: PMC4798221 DOI: 10.1186/2197-425x-3-s1-a801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Ndongson-Dongmo B, Heller R, Hoyer D, Brodhun M, Bauer M, Winning J, Hirsch E, Wetzker R, Schlattmann P, Bauer R. Phosphoinositide 3-kinase gamma controls inflammation-induced myocardial depression via sequential cAMP and iNOS signalling. Cardiovasc Res 2015; 108:243-53. [PMID: 26334033 DOI: 10.1093/cvr/cvv217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
AIMS Sepsis-induced myocardial depression (SIMD), an early and frequent event of infection-induced systemic inflammatory response syndrome (SIRS), is characterized by reduced contractility irrespective of enhanced adrenergic stimulation. Phosphoinositide-3 kinase γ (PI3Kγ) is known to prevent β-adrenergic overstimulation via its scaffold function by activating major cardiac phosphodiesterases and restricting cAMP levels. However, the role of PI3Kγ in SIRS-induced myocardial depression is unknown. This study is aimed at determining the specific role of lipid kinase-dependent and -independent functions of PI3Kγ in the pathogenesis of SIRS-induced myocardial depression. METHODS AND RESULTS PI3Kγ knockout mice (PI3Kγ(-/-)), mice expressing catalytically inactive PI3Kγ (PI3Kγ(KD/KD)), and wild-type mice (P3Kγ(+/+)) were exposed to lipopolysaccharide (LPS)-induced systemic inflammation and assessed for survival, cardiac autonomic nervous system function, and left ventricular performance. Additionally, primary adult cardiomyocytes were used to analyse PI3Kγ effects on myocardial contractility and inflammatory response. SIRS-induced adrenergic overstimulation induced a transient hypercontractility state in PI3Kγ(-/-) mice, followed by reduced contractility. In contrast, P3Kγ(+/+) mice and PI3Kγ(KD/KD) mice developed an early and ongoing myocardial depression despite exposure to similarly increased catecholamine levels. Compared with cells from P3Kγ(+/+) and PI3Kγ(KD/KD) mice, cardiomyocytes from PI3Kγ(-/-) mice showed an enhanced and prolonged cAMP-mediated signalling upon norepinephrine and an intensified LPS-induced proinflammatory response characterized by nuclear factor of activated T-cells-mediated inducible nitric oxide synthase up-regulation. CONCLUSIONS This study reveals the lipid kinase-independent scaffold function of PI3Kγ as a mediator of SIMD during inflammation-induced SIRS. Activation of cardiac phosphodiesterases via PI3Kγ is shown to restrict myocardial hypercontractility early after SIRS induction as well as the subsequent inflammatory responses.
Collapse
Affiliation(s)
- Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Dirk Hoyer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany Biomagnetic Center, Hans Berger Clinic for Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Johannes Winning
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Emilio Hirsch
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
45
|
Zhang XY, Li Y. Mechanisms and treatment of post-traumatic liver injury. Shijie Huaren Xiaohua Zazhi 2015; 23:3075-3080. [DOI: 10.11569/wcjd.v23.i19.3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple organ failure is the leading cause of death in patients with severe multiple trauma in the early stage after injury. Hepatic insufficiency is common in intensive care unit (ICU), and about 27% of the patients with severe trauma suffer hepatic failure. However, the pathogenesis of traumatic liver damage is complicated due to the following main reasons: liver trauma, ischemia-reperfusion injury, severe sepsis, danger associated molecular patterns and so on. Clinically, trauma-induced liver injury can be managed conservatively or surgically, therefore, clarifying the mechanisms of traumatic liver damage, finding a new therapeutic target and improving its diagnosis and treatment are very important. This paper reviews the mechanism of post-traumatic liver injury and its diagnosis and treatment.
Collapse
|
46
|
Abstract
OBJECTIVE To characterize a long-term model of recovery from critical illness, with particular emphasis on cardiorespiratory, metabolic, and muscle function. DESIGN Randomized controlled animal study. SETTING University research laboratory. SUBJECTS Male Wistar rats. INTERVENTIONS Intraperitoneal injection of the fungal cell wall constituent, zymosan or n-saline. MEASUREMENTS AND MAIN RESULTS Following intervention, rats were followed for up to 2 weeks. Animals with zymosan peritonitis reached a clinical and biochemical nadir on day 2. Initial reductions were seen in body weight, total body protein and fat, and muscle mass. Leg muscle fiber diameter remained subnormal at 14 days with evidence of persisting myonecrosis, even though gene expression of regulators of muscle mass (e.g., MAFbx, MURF1, and myostatin) had peaked on days 2-4 but normalized by day 7. Treadmill exercise capacity, forelimb grip strength, and in vivo maximum tetanic force were also reduced. Food intake was minimal until day 4 but increased thereafter. This did not relate to appetite hormone levels with early (6 hr) rises in plasma insulin and leptin followed by persisting subnormal levels; ghrelin levels did not change. Serum interleukin-6 level peaked at 6 hours but had normalized by day 2, whereas interleukin-10 remained persistently elevated and high-density lipoprotein cholesterol persistently depressed. There was an early myocardial depression and rise in core temperature, yet reduced oxygen consumption and respiratory exchange ratio with a loss of diurnal rhythmicity that showed a gradual but incomplete recovery by day 7. CONCLUSIONS This detailed physiological, metabolic, hormonal, functional, and histological muscle characterization of a model of critical illness and recovery reproduces many of the findings reported in human critical illness. It can be used to assess putative therapies that may attenuate loss, or enhance recovery, of muscle mass and function.
Collapse
|
47
|
Khaliq W, Singer M. 0738. Mortality is associated with early tachycardia and cardiac troponin release in a fluid-resuscitated rat model of sepsis. Intensive Care Med Exp 2014. [PMCID: PMC4797751 DOI: 10.1186/2197-425x-2-s1-p60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Khaliq W, Singer M. 0082. Early circulating lipid and cytokine profiles prognosticate in a rat model of faecal peritonitis. Intensive Care Med Exp 2014. [PMCID: PMC4796164 DOI: 10.1186/2197-425x-2-s1-p2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Rudiger A, Arrigo M, Hauffe T, Spahn DR, Bettex D. 0734. Early changes in heart rate predict long-term survival in a rodent model of sepsis. Intensive Care Med Exp 2014. [PMCID: PMC4796230 DOI: 10.1186/2197-425x-2-s1-p56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Prucha M, Bellingan G, Zazula R. Sepsis biomarkers. Clin Chim Acta 2014; 440:97-103. [PMID: 25447700 DOI: 10.1016/j.cca.2014.11.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023]
Abstract
Sepsis is the most frequent cause of death in non-coronary intensive care units (ICUs). In the past 10 years, progress has been made in the early identification of septic patients and in their treatment and these improvements in support and therapy mean that the mortality is gradually decreasing but it still remains unacceptably high. Leaving clinical diagnosis aside, the laboratory diagnostics represent a complex range of investigations that can place significant demands on the system given the speed of response required. There are hundreds of biomarkers which could be potentially used for diagnosis and prognosis in septic patients. The main attributes of successful markers would be high sensitivity, specificity, possibility of bed-side monitoring, and financial accessibility. Only a fraction is used in routine clinical practice because many lack sufficient sensitivity or specificity. The following review gives a short overview of the current epidemiology of sepsis, its pathogenesis and state-of-the-art knowledge on the use of specific biochemical, hematological and immunological parameters in its diagnostics. Prospective approaches towards discovery of new diagnostic biomarkers have been shortly mentioned.
Collapse
Affiliation(s)
- Miroslav Prucha
- Department of Clinical Biochemistry, Hematology and Immunology, Hospital Na Homolce, Prague, Czech Republic.
| | - Geoff Bellingan
- University College London Hospitals, 235 Euston Rd, London NW1 2PG, United Kingdom(1)
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University in Prague and Thomayer Hospital, Prague, Czech Republic
| |
Collapse
|