1
|
Chu X, Sun J, Liang J, Liu W, Xing Z, Li Q, Li Q. Mechanisms of muscle repair after peripheral nerve injury by electrical stimulation combined with blood flow restriction training. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:173-184. [PMID: 39991124 PMCID: PMC11846447 DOI: 10.1016/j.smhs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025] Open
Abstract
This review elucidates the impact of electrical stimulation (ES) and blood flow restriction (BFR) training on muscle function. ES induces a transformation in muscle fibers type by rearranging myosin heavy chain isoform patterns. Additionally, it influences muscle protein synthesis and degradation through specific signaling pathways such as protein kinase B/mechanistic target of rapamycin (Akt/mTOR), as well as via autophagy and the ubiquitin-proteasome system, thereby effectively maintaining muscle mass. BFR, on the other hand, restricts muscle blood flow, leading to metabolic products accumulation and localized hypoxia, which not only promotes the recruitment of fast-twitch fibers but also activates the mTOR signaling pathway, enhancing muscle protein synthesis. The combination of ES and BFR synergistically facilitates muscle protein synthesis through the mTOR pathway, thereby accelerating the recovery of muscle function following peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Jiaojiao Sun
- Tianjin Key, Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Jiajia Liang
- Tianjin Key, Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Wenjie Liu
- Tianjin Key, Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Zheng Xing
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- Tianjin Key, Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
2
|
Aldrich L, Ispoglou T, Prokopidis K, Alqallaf J, Wilson O, Stavropoulos-Kalinoglou A. Acute Sarcopenia: Systematic Review and Meta-Analysis on Its Incidence and Muscle Parameter Shifts During Hospitalisation. J Cachexia Sarcopenia Muscle 2025; 16:e13662. [PMID: 39690131 DOI: 10.1002/jcsm.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Acute sarcopenia is sarcopenia lasting less than 6 months, typically following acute illness or injury. It may impact patient recovery and quality of life, advancing to chronic sarcopenia. However, its development and assessment remain poorly understood, particularly during hospitalisation. This systematic review aimed to elucidate the incidence of acute sarcopenia and examine changes in muscle parameters during hospitalisation. METHODS Eighty-eight papers were included in the narrative synthesis; 33 provided data for meta-analyses on the effects of hospitalisation on handgrip strength (HGS), rectus femoris cross-sectional area (RFCSA) and various muscle function tests. Meta-regressions were performed for length of hospital stay (LoS) and age for all meta-analyses; sex was also considered for HGS. RESULTS Acute sarcopenia development was assessed in four studies with a pooled incidence of 18% during hospitalisation. Incidence was highest among trauma patients in intensive care (59%), whereas it was lower among medical and surgical patients (15%-20%). Time of development ranged from 4 to 44 days. HGS remained stable during hospitalisation (SMD = 0.05, 95% CI = -0.18:0.28, p = 0.67) as did knee extensor strength. LoS affected HGS performance (θ = 0.04, 95% CI = 0.001:0.09, p = 0.045) but age (p = 0.903) and sex (p = 0.434) did not. RFCSA, reduced by 16.5% over 3-21 days (SMD = -0.67, 95% CI = -0.92:-0.43, p < 0.001); LoS or time between scans did significantly predict the reduction (θ = -0.04, 95% CI = -0.077:-0.011, p = 0.012). Indices of muscle quality also reduced. Muscle function improved when assessed by the short physical performance battery (SMD = 0.86, 95% CI = 0.03:1.69, p = 0.046); there was no change in 6-min walk (p = 0.22), timed up-and-go (p = 0.46) or gait speed tests (p = 0.98). The only significant predictor of timed up-and-go performance was age (θ = -0.11, 95% CI = -0.018:-0.005, p = 0.009). CONCLUSIONS Assessment and understanding of acute sarcopenia in clinical settings are limited. Incidence varies between clinical conditions, and muscle parameters are affected differently. HGS and muscle function tests may not be sensitive enough to identify acute changes during hospitalisation. Currently, muscle health deterioration may be underdiagnosed impacting recovery, quality of life and overall health following hospitalisation. Further evaluation is necessary to determine the suitability of existing diagnostic criteria of acute sarcopenia. Muscle mass and quality indices might need to become the primary determinants for muscle health assessment in hospitalised populations.
Collapse
Affiliation(s)
- Luke Aldrich
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | - Theocharis Ispoglou
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | | | - Jasem Alqallaf
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, Headingley Campus, Leeds, UK
| | | |
Collapse
|
3
|
Wang C, Liu X, Hu X, Wu T, Duan R. Therapeutic targeting of GDF11 in muscle atrophy: Insights and strategies. Int J Biol Macromol 2024; 279:135321. [PMID: 39236952 DOI: 10.1016/j.ijbiomac.2024.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The exploration of novel therapeutic avenues for skeletal muscle atrophy is imperative due to its significant health impact. Recent studies have spotlighted growth differentiation factor 11 (GDF11), a TGFβ superfamily member, for its rejuvenating role in reversing age-related tissue dysfunction. This review synthesizes current findings on GDF11, elucidating its distinct biological functions and the ongoing debates regarding its efficacy in muscle homeostasis. By addressing discrepancies in current research outcomes and its ambiguous role due to its homological identity to myostatin, a negative regulator of muscle mass, this review aims to clarify the role of GDF11 in muscle homeostasis and its potential as a therapeutic target for muscle atrophy. Through a thorough examination of GDF11's mechanisms and effects, this review provides insights that could pave the way for innovative treatments for muscle atrophy, emphasizing the need and strategies to boost endogenous GDF11 levels for therapeutic potential.
Collapse
Affiliation(s)
- Chuanzhi Wang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xilong Hu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Tao Wu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024; 16:3428. [PMID: 39458423 PMCID: PMC11510680 DOI: 10.3390/nu16203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acute sarcopenia refers to the swift decline in muscle function and mass following acute events such as illness, surgery, trauma, or burns that presents significant challenges in hospitalized older adults. METHODS narrative review to describe the mechanisms and management of acute sarcopenia. RESULTS The prevalence of acute sarcopenia ranges from 28% to 69%, likely underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings. Systemic inflammation, immune-endocrine dysregulation, and anabolic resistance are identified as key pathophysiological factors. Interventions include early mobilization, resistance exercise, neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation, leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceuticals show variable efficacy. CONCLUSIONS Future research should prioritize serial monitoring of muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to improve outcomes and prevent long-term disability associated with acute sarcopenia.
Collapse
Affiliation(s)
- Sarah Damanti
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Eleonora Senini
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Aurora Merolla
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Simona Santoro
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Costanza Festorazzi
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Marco Messina
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Giordano Vitali
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Patrizia Rovere-Querini
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| |
Collapse
|
5
|
Modesto KAG, Raposo PKS, da Silva Almeida I, Vaz MA, Durigan JLQ. Influence of kilohertz frequency, burst duty cycle and burst duration on evoked torque, discomfort and muscle efficiency: A randomized crossover trial. Physiol Rep 2024; 12:e70039. [PMID: 39411829 PMCID: PMC11480646 DOI: 10.14814/phy2.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 10/20/2024] Open
Abstract
Kilohertz-frequency alternating currents (KFACs) have been indicated to minimize muscle atrophy and weakness. However, the optimal stimulation parameters still need to be determined. OBJECTIVE This study aimed to investigate the effects of different KFACs on evoked torque, current efficiency, and perceived discomfort. DESIGN KFACs with frequencies of 1 kHz (Aussie current) and 2.5 kHz (Russian current), along with two duty cycles (10% and 20%), were randomly applied to the triceps surae muscle of healthy participants using a crossover design. The NMES intensity, NMES-evoked torque, NMES efficiency, and NMES discomfort were measured in maximal and submaximal conditions. Statistical analyses were conducted using a two-way mixed-model ANOVA with repeated measures. Forty-four participants were included. RESULTS Aussie currents produced higher evoked torque and efficiency in maximal and submaximal efforts, with higher perceived discomfort in maximal effort. Although the Australian current may cause greater discomfort at maximal efforts, it matches the Russian current in perceived discomfort at submaximal levels. The 20% duty cycle produced the highest efficiency in submaximal efforts. CONCLUSION In both maximal and submaximal efforts, the Aussie current demonstrated superior NMES efficiency, yielding higher torque with lower amplitude than the Russian current. Clinicians should take these findings into consideration when prescribing KFACs to optimize clinical outcomes.
Collapse
Affiliation(s)
- Karenina Arrais Guida Modesto
- Physical Education College, Program, Laboratory of Muscle and Tendon PlasticityUniversity of BrasiliaBrasíliaDFBrazil
| | | | - Isabella da Silva Almeida
- Physical Education College, Program, Laboratory of Muscle and Tendon PlasticityUniversity of BrasiliaBrasíliaDFBrazil
| | - Marco Aurélio Vaz
- Human Movement Sciences Program, ESEFIDFederal University of Rio Grande Do SulPorto AlegreRSBrazil
| | - João Luiz Quagliotti Durigan
- Faculty of Ceilândia, Rehabilitation Sciences Program, Laboratory of Muscle and Tendon PlasticityUniversity of BrasiliaBrasíliaDFBrazil
| |
Collapse
|
6
|
Hansen SK, Hansen P, Nygaard H, Grønbæk HD, Berry TW, Olsen CM, Aagaard P, Hvid LG, Agergaard J, Dela F, Suetta C. Five days of bed rest in young and old adults: Retainment of skeletal muscle mass with neuromuscular electrical stimulation. Physiol Rep 2024; 12:e16166. [PMID: 39155274 PMCID: PMC11330699 DOI: 10.14814/phy2.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The consequences of short-term disuse are well known, but effective countermeasures remain elusive. This study investigated the effects of neuromuscular electrical stimulation (NMES) during 5 days of bed rest on retaining lower limb muscle mass and muscle function in healthy young and old participants. One leg received NMES of the quadriceps muscle (3 × 30min/day) (NMES), and the other served as a control (CON). Isometric quadriceps strength (MVC), rate of force development (RFD), lower limb lean mass, and muscle thickness were assessed pre-and post-intervention. Muscle thickness remained unaltered with NMES in young and increased in old following bed rest, while it decreased in CON legs. In old participants, mid-thigh lean mass (MTLM) was preserved with NMES while decreased in CON legs. In the young, only a tendency to change with bed rest was detected for MTLM. MVC and early-phase RFD decreased in young and old, irrespective of NMES. In contrast, late-phase RFD was retained in young participants with NMES, while it decreased in young CON legs, and in the old, irrespective of NMES. NMES during short-term bed rest preserved muscle thickness but not maximal muscle strength. While young and old adults demonstrated similar adaptive responses in preventing the loss of skeletal muscle thickness, RFD was retained in the young only.
Collapse
Affiliation(s)
- Sofie K. Hansen
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Pernille Hansen
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Nygaard
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
- Department of Emergency MedicineCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Hans D. Grønbæk
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Tania W. Berry
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Camilla M. Olsen
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Per Aagaard
- Department of Sport and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Lars G. Hvid
- Exercise Biology, Department of Public HealthAarhus UniversityAarhusDenmark
- The Danish MS Hospitals, Ry and HaslevHaslevDenmark
| | - Jakob Agergaard
- Department of Orthopedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Flemming Dela
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
- Xlab, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Physiology and BiochemistryRiga Stradins UniversityRigaLatvia
| | - Charlotte Suetta
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Harmon KK, Girts RM, Rodriguez G, Beausejour JP, Pagan JI, Carr JC, Garcia J, Roberts MD, Hahs‐Vaughn DL, Stout JR, Fukuda DH, Stock MS. Combined action observation and mental imagery versus neuromuscular electrical stimulation as novel therapeutics during short-term knee immobilization. Exp Physiol 2024; 109:1145-1162. [PMID: 38687158 PMCID: PMC11215482 DOI: 10.1113/ep091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Limb immobilization causes rapid declines in muscle strength and mass. Given the role of the nervous system in immobilization-induced weakness, targeted interventions may be able to preserve muscle strength, but not mass, and vice versa. The purpose of this study was to assess the effects of two distinct interventions during 1 week of knee joint immobilization on muscle strength (isometric and concentric isokinetic peak torque), mass (bioimpedance spectroscopy and ultrasonography), and neuromuscular function (transcranial magnetic stimulation and interpolated twitch technique). Thirty-nine healthy, college-aged adults (21 males, 18 females) were randomized into one of four groups: immobilization only (n = 9), immobilization + action observation/mental imagery (AOMI) (n = 10), immobilization + neuromuscular electrical stimulation (NMES) (n = 12), or control group (n = 8). The AOMI group performed daily video observation and mental imagery of knee extensions. The NMES group performed twice daily stimulation of the quadriceps femoris. Based on observed effect sizes, it appears that AOMI shows promise as a means of preserving voluntary strength, which may be modulated by neural adaptations. Strength increased from PRE to POST in the AOMI group, with +7.2% (Cohen's d = 1.018) increase in concentric isokinetic peak torque at 30°/s. However, NMES did not preserve muscle mass. Though preliminary, our findings highlight the specific nature of clinical interventions and suggest that muscle strength can be independently targeted during rehabilitation. This study was prospectively registered: ClinicalTrials.gov NCT05072652.
Collapse
Affiliation(s)
- Kylie K. Harmon
- Department of Exercise ScienceSyracuse UniversitySyracuseNew YorkUSA
| | - Ryan M. Girts
- Department of Natural and Health SciencesPfeiffer UniversityMisenheimerNorth CarolinaUSA
| | - Gabriela Rodriguez
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Jonathan P. Beausejour
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Jason I. Pagan
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Joshua C. Carr
- Department of KinesiologyTexas Christian UniversityFort WorthTexasUSA
- Department of Medical EducationAnne Burnett Marion School of Medicine at Texas Christian UniversityFort WorthTexasUSA
| | - Jeanette Garcia
- School of Sport SciencesWest Virginia UniversityMorgantownWest VirginiaUSA
| | | | - Debbie L. Hahs‐Vaughn
- Department of Learning Sciences and Educational ResearchUniversity of Central FloridaOrlandoFloridaUSA
| | - Jeffrey R. Stout
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - David H. Fukuda
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Matt S. Stock
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| |
Collapse
|
8
|
Flodin J, Reitzner SM, Emanuelsson EB, Sundberg CJ, Ackermann P. The effect of neuromuscular electrical stimulation on the human skeletal muscle transcriptome. Acta Physiol (Oxf) 2024; 240:e14129. [PMID: 38459757 DOI: 10.1111/apha.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
AIM The influence on acute skeletal muscle transcriptomics of neuromuscular electrical stimulation (NMES), as compared to established exercises, is poorly understood. We aimed to investigate the effects on global mRNA-expression in the quadriceps muscle early after a single NMES-session, compared to the effects of voluntary knee extension exercise (EX), and to explore the discomfort level. METHODS Global vastus lateralis muscle gene expression was assessed (RNA-sequencing) in 30 healthy participants, before and 3 h after a 30-min session of NMES and/or EX. The NMES-treatment was applied using textile electrodes integrated in pants and set to 20% of each participant's pre-tested MVC mean (±SD) 200 (±80) Nm. Discomfort was assessed using Visual Analogue Scale (VAS, 0-10). The EX-protocol was performed at 80% of 1-repetition-maximum. RESULTS NMES at 20% of MVC resulted in VAS below 4 and induced 4448 differentially expressed genes (DEGs) with 80%-overlap of the 2571 DEGs of EX. Genes well-known to be up-regulated following exercise, for example, PPARGC1A, ABRA, VEGFA, and GDNF, were also up-regulated by NMES. Gene set enrichment analysis demonstrated many common pathways after EX and NMES. Also, some pathways were exclusive to either EX, for example, muscle tissue proliferation, or to NMES, for example, neurite outgrowth and connective tissue proliferation. CONCLUSION A 30-min NMES-session at 20% of MVC with NMES-pants, which can be applied with an acceptable level of discomfort, induces over 4000 DEGs, of which 80%-overlap with DEGs of EX. NMES can induce exercise-like molecular effects, that potentially can lead to health and performance benefits in individuals who are unable to perform resistance exercise.
Collapse
Affiliation(s)
- Johanna Flodin
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Paul Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Othman SY, Elbiaa MA, Mansour ER, El-Menshawy AM, Elsayed SM. Effect of neuromuscular electrical stimulation and early physical activity on ICU-acquired weakness in mechanically ventilated patients: A randomized controlled trial. Nurs Crit Care 2024; 29:584-596. [PMID: 37984373 DOI: 10.1111/nicc.13010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Intensive care unit-acquired weakness (ICU-AW) is common in critically ill patients and increases the duration of mechanical ventilation (MV) and weaning time. Early mobilization, range of motion (ROM) exercises, and neuromuscular electrical stimulation (NMES) can prevent ICU-AW by maintaining muscle mass. However, studies highlighting the effects of combining NMES with early physical activity in ICU patients are limited. AIM To evaluate the effect of NMES and early physical activity on ICU-AW in mechanically ventilated patients. STUDY DESIGN A single-blinded randomized controlled trial was conducted in Alexandria, Egypt. Patients were randomly assigned to one of four groups: NMES, ROM, combined therapy (ROM + NMES), or conventional care (control group). The Medical Research Council (MRC) scale was used to assess the ICU-AW for the study patients over a 7-day period. The duration of the patient's MV and ICU stays were recorded. RESULTS Of the 180 patients who were assessed for eligibility, 124 were randomly assigned to one of four groups: 32 patients in ROM exercises, 30 in NMES, 31 in combined therapy (ROM + NMES), and 31 in the control group. On day 7, ROM + NMES and NMES groups showed higher MRC scores than ROM and control groups (50.37 ± 2.34, 49.77 ± 2.19, 44.97 ± 3.61, and 41.10 ± 3.84, respectively). ANOVA test results indicated significant differences (p < .001) across the four groups. ICU-AW occurred in 0% of the ROM + NMES group, 60% of the ROM group, 13% of the NMES group, and 100% of the control group (p < .001). The MV duration (in days) in the ROM + NMES group was shorter (12.80 ± 3.800) than in the ROM, NMES, or control groups (21.80 ± 4.460, 18.73 ± 4.748, and 20.70 ± 3.932, respectively). ICU-LOS was shorter in the ROM + NMES group (17.43 ± 3.17 days) compared with the ROM group (22.53 ± 4.51 days), the NMES group (21.10 ± 5.0 days), and the control group (21.50 ± 4.42 days) with significant differences (p < .001) between the four groups. CONCLUSION Daily sessions of NMES and early physical activity were well tolerated, preserved muscle strength, prevented ICU-AW, and decreased the duration of the MV and ICU stay. RELEVANCE TO CLINICAL PRACTICE The findings of this study support the use of NMES and early physical exercises by critical care nurses as part of routine care for critically ill patients.
Collapse
Affiliation(s)
| | | | - Eman R Mansour
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | |
Collapse
|
10
|
Alqurashi HB, Robinson K, O’Connor D, Piasecki M, Gordon AL, Masud T, Gladman JRF. The effects of neuromuscular electrical stimulation on hospitalised adults: systematic review and meta-analysis of randomised controlled trials. Age Ageing 2023; 52:afad236. [PMID: 38156975 PMCID: PMC10756181 DOI: 10.1093/ageing/afad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Neuromuscular electrical stimulation (NMES) is a treatment to prevent or reverse acquired disability in hospitalised adults. We conducted a systematic review and meta-analysis of its effectiveness. METHOD We searched MEDLINE, EMBASE, Cumulative Index to Nursing & Allied Health (CINAHL) and the Cochrane library. Inclusion criteria: randomised controlled trials of hospitalised adult patients comparing NMES to control or usual care. The primary outcome was muscle strength. Secondary outcomes were muscle size, function, hospital length of stay, molecular and cellular biomarkers, and adverse effects. We assessed risk of bias using the Cochrane risk-of-bias tool. We used Review Manager (RevMan) software for data extraction, critical appraisal and synthesis. We assessed certainty using the Grading of Recommendations Assessment, Development and Evaluation tool. RESULTS A total of 42 papers were included involving 1,452 participants. Most studies had unclear or high risk of bias. NMES had a small effect on muscle strength (moderate certainty) (standardised mean difference (SMD) = 0.33; P < 0.00001), a moderate effect on muscle size (moderate certainty) (SMD = 0.66; P < 0.005), a small effect on walking performance (moderate certainty) (SMD = 0.48; P < 0.0001) and a small effect on functional mobility (low certainty) (SMD = 0.31; P < 0.05). There was a small and non-significant effect on health-related quality of life (very low certainty) (SMD = 0.35; P > 0.05). In total, 9% of participants reported undesirable experiences. The effects of NMES on length of hospital stay, and molecular and cellular biomarkers were unclear. CONCLUSIONS NMES is a promising intervention component that might help to reduce or prevent hospital-acquired disability.
Collapse
Affiliation(s)
- Helal B Alqurashi
- University of Nottingham, Nottingham, UK
- Department of Physical Therapy, Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- NIHR Nottingham Biomedical Research Centre (BRC), UK
| | - Katie Robinson
- University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre (BRC), UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Mathew Piasecki
- University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre (BRC), UK
| | - Adam L Gordon
- University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre (BRC), UK
- NIHR Applied Research Collaboration (ARC) East Midlands, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Tahir Masud
- NIHR Nottingham Biomedical Research Centre (BRC), UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - John R F Gladman
- University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre (BRC), UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Applied Research Collaboration (ARC) East Midlands, UK
| |
Collapse
|
11
|
Zhang B, Xiao Q, Ma Q, Han L. Clinical treatment for persistent inflammation, immunosuppression and catabolism syndrome in patients with severe acute pancreatitis (Review). Exp Ther Med 2023; 26:495. [PMID: 37753297 PMCID: PMC10519614 DOI: 10.3892/etm.2023.12194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a severe disease with a high prevalence and a 3-15% mortality worldwide, and premature activation of zymogen for any reason is the initial factor for the onset of SAP. Gallstone disease and heavy alcohol consumption are the two most common etiologies of SAP. Persistent inflammation, immunosuppression and catabolism syndrome (PICS) is a life-threatening illness, and there are no effective treatments. The relapse state of PICS mainly leads to high mortality due to septic shock or severe trauma, both of which are dangerous and challenging conditions for clinicians. Thus, it is important for medical staff to identify patients at high risk of PICS and to master the prevention and treatment of PICS in patients with SAP. The present review aims to increase the understanding of the pathogenesis of PICS, produce evidence for PICS diagnosis and highlight clinical treatment for PICS in patients with SAP. With this information, clinical workers could implement standardized and integrated measures at an early stage of SAP to stop its progression to PICS.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qigui Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Zhou F, Fan D, Feng Y, Zhou C, Chen X, Ran X, Tan B. Effectiveness of neuromuscular electrical stimulation in severe acute pancreatitis complicated patients with acute respiratory distress syndrome: study protocol for a randomized controlled trial. Trials 2023; 24:600. [PMID: 37735425 PMCID: PMC10514984 DOI: 10.1186/s13063-023-07642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Severe acute pancreatitis complicated by acute respiratory distress is a common cause of intensive care unit (ICU) admission. These patients are at risk of a decline in physical activity due to bed rest. Neuromuscular electrical stimulation (NMES) has been recommended for ICU patients to strengthen muscles, but its effects on muscle atrophy, respiratory function, multiple organ dysfunction, and functional status of these patients remain to be proven. METHODS Patients (n = 80) will be prospectively randomized into an NMES group and a control group. The NMES group will receive NMES for 1 h per day for 7 days, and both the control and NMES groups will receive usual care. The efficacy will be assessed by an experienced physiotherapist and sonographer who will be blinded to the patient's group assignment. Muscle power assessment (MRC scale), lower extremity circumference, grip strength, activities of daily living (Barthel index), and Marshall scores will be measured at baseline and posttreatment. The functions of the diaphragm assessments will be measured daily. Barthel index measurements will be followed up in the 1st month, 3rd month, and 6th month after discharge. DISCUSSION The trial will explore the effectiveness of NMES in functional status and diaphragm function in patients with SAP complicated with ARDS. The results of this trial will provide strong evidence of the efficacy of NMES in treating SAP patients with ARDS. TRIAL REGISTRATION This trial has been registered at the Chinese Clinical Trial Registry, and the registry name is "Effectiveness of neuromuscular electrical stimulation in severe acute pancreatitis complicated patients with acute respiratory distress syndrome: study protocol for a randomized controlled trial," URL: https://www.chictr.org.cn , numbered ChiCTR2300068995. Date of Registration: 2023-03-03.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China
| | - Dingrong Fan
- Department of Pediatrics, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China
- School of Nursing, Chongqing Medical University, Medical College Road, Yuzhong District, ChongqingChongqing, 400016, China
| | - Yan Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China
| | - Cuijuan Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China
| | - Xiaodong Chen
- Department of Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China
| | - Xiaoyun Ran
- Department of Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China
| | - Botao Tan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 40010, China.
| |
Collapse
|
13
|
Vieira L, Silva PE, de Melo PF, Maldaner V, Durigan JQ, Marqueti RDC, Nobrega O, Mathur S, Burtin C, Barin F, Machado-Silva W, Ramalho S, Chiappa GR, Gomes NO, Carvalho CRF, Cipriano GFB, Cipriano G. Early Neuromuscular Electrical Stimulation Preserves Muscle Size and Quality and Maintains Systemic Levels of Signaling Mediators of Muscle Growth and Inflammation in Patients with Traumatic Brain Injury: A Randomized Clinical Trial. Crit Care Res Pract 2023; 2023:9335379. [PMID: 37547450 PMCID: PMC10397495 DOI: 10.1155/2023/9335379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/15/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To investigate the effects of an early neuromuscular electrical stimulation (NMES) protocol on muscle quality and size as well as signaling mediators of muscle growth and systemic inflammation in patients with traumatic brain injury (TBI). Design Two-arm, single-blinded, parallel-group, randomized, controlled trial with a blinded assessment. Setting. Trauma intensive care unit at a university hospital. Participants. Forty consecutive patients on mechanical ventilation (MV) secondary to TBI were prospectively recruited within the first 24 hours following admission. Interventions. The intervention group (NMES; n = 20) received a daily session of NMES on the rectus femoris muscle for five consecutive days (55 min/each session). The control group (n = 20) received usual care. Main Outcome Measures. Muscle echogenicity and thickness were evaluated by ultrasonography. A daily blood sample was collected to assess circulating levels of insulin-like growth factor I (IGF-I), inflammatory cytokines, and matrix metalloproteinases (MMP). Results Both groups were similar at baseline. A smaller change in muscle echogenicity and thickness (difference between Day 1 and Day 7) was found in the control group compared to the NMES group (29.9 ± 2.1 vs. 3.0 ± 1.2, p < 0.001; -0.79 ± 0.12 vs. -0.01 ± 0.06, p < 0.001, respectively). Circulating levels of IGF-I, pro-inflammatory cytokines (IFN-y), and MMP were similar between groups. Conclusion An early NMES protocol can preserve muscle size and quality and maintain systemic levels of signaling mediators of muscle growth and inflammation in patients with TBI. This trial is registered with https://www.ensaiosclinicos.gov.br under number RBR-2db.
Collapse
Affiliation(s)
- Luciana Vieira
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, DF, Brazil
| | - Paulo Eugênio Silva
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, DF, Brazil
| | - Priscilla Flavia de Melo
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, DF, Brazil
| | - Vinicius Maldaner
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Human Movement and Rehabilitation Program, UniEVANGÉLICA, Anápolis, GO, Brazil
| | - Joao Q. Durigan
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| | - Rita de Cassia Marqueti
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| | - Otavio Nobrega
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Medical Sciences Graduate Program (PPGCM), University of Brasilia (UnB), Brasília, DF, Brazil
| | - Sunita Mathur
- School of Rehabilitation Therapy, Queen's University, Kingston, ON, Canada
| | - Chris Burtin
- Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Fabrício Barin
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
| | - Wilcelly Machado-Silva
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
| | - Sergio Ramalho
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
| | - Gaspar R. Chiappa
- Human Movement and Rehabilitation Program, UniEVANGÉLICA, Anápolis, GO, Brazil
| | | | | | - Graziella F. B. Cipriano
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| | - Gerson Cipriano
- University of Brasilia, Faculty of Ceilãndia, Sciences and Technologies in Health Program (PPGCTS), Brasília, DF, Brazil
- Human Movement and Rehabilitation Program, UniEVANGÉLICA, Anápolis, GO, Brazil
- University of Brasilia, Faculty of Ceilãndia, Rehabilitation Sciences Program (PPGCR), Brasília, DF, Brazil
| |
Collapse
|
14
|
Maffiuletti NA, Dirks ML, Stevens-Lapsley J, McNeil CJ. Electrical stimulation for investigating and improving neuromuscular function in vivo: Historical perspective and major advances. J Biomech 2023; 152:111582. [PMID: 37088030 DOI: 10.1016/j.jbiomech.2023.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
This historical review summarizes the major advances - particularly from the last 50 years - in transcutaneous motor-level electrical stimulation, which can be used either as a tool to investigate neuromuscular function and its determinants (electrical stimulation for testing; EST) or as a therapeutic/training modality to improve neuromuscular and physical function (neuromuscular electrical stimulation; NMES). We focus on some of the most important applications of electrical stimulation in research and clinical settings, such as the investigation of acute changes, chronic adaptations and pathological alterations of neuromuscular function with EST, as well as the enhancement, preservation and restoration of muscle strength and mass with NMES treatment programs in various populations. For both EST and NMES, several major advances converge around understanding and optimizing motor unit recruitment during electrically-evoked contractions, also taking into account the influence of stimulation site (e.g., muscle belly vs nerve trunk) and type (e.g., pulse duration, frequency, and intensity). This information is equally important both in the context of mechanistic research of neuromuscular function as well as for clinicians who believe that improvements in neuromuscular function are required to provide health-related benefits to their patients.
Collapse
Affiliation(s)
| | - Marlou L Dirks
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jennifer Stevens-Lapsley
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
15
|
Ikeda T, Katayama S, Kitagawa T. The combined intervention of neuromuscular electrical stimulation and nutrition therapy: A scoping review. Clin Nutr ESPEN 2023; 54:239-250. [PMID: 36963869 DOI: 10.1016/j.clnesp.2023.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Neuromuscular electrical stimulation (NMES) is a safe and appropriate complement to voluntary resistance training for muscle weakness. However, its feasibility and effectiveness in combination with nutritional therapy remains unclear. This scoping review aimed to summarize the evidence on combined interventions for individuals with or at risk of sarcopenia for guiding future relevant research. METHODS A systematic electronic search was conducted using the following databases and registry: MEDLINE, CINAHL, Web of Science, PEDro, and ClinicalTrials. gov. Two independent reviewers summarized the characteristics, effectiveness, and feasibility of the combined intervention and the risk of bias in the literature. RESULTS Nine RCTs and four non-RCTs involving 802 participants were eligible. A diverse group of participants were included: older adults with sarcopenic obesity, patients in intensive care, and patients with cancer. Evidence-based interventions combining NMES and nutritional therapy were tailored to each patient's underlying disease. Although most studies were of low to moderate quality, it can be suggested that combined interventions may be feasible and effective for increasing skeletal muscle mass. CONCLUSION This scoping review demonstrates the potential of combined interventions as a new sarcopenia treatment strategy and highlights the need to examine the effects in high-quality RCTs with larger sample sizes.
Collapse
Affiliation(s)
- Tomohiro Ikeda
- Department of Rehabilitation Medicine, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Sho Katayama
- Department of Rehabilitation Medicine, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan
| | - Takashi Kitagawa
- Department of Physical Therapy, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
16
|
Bradford JM, Cardenas TCP, Lara S, Olson K, Teixeira PG, Aydelotte JD, Trust MD, DuBose J, Ali S, Brown CV. The more you have, the more you lose: Muscle mass changes in trauma patients with prolonged hospitalizations. Injury 2023; 54:1102-1105. [PMID: 36801130 DOI: 10.1016/j.injury.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Sarcopenia is a clinically relevant loss of muscle mass with implications of increased morbidity and mortality in adult trauma populations. Our study aimed to evaluate loss of muscle mass change in adult trauma patients with prolonged hospital stays. METHODS Retrospective analysis using institutional trauma registry to identify all adult trauma patients with hospital length of stay >14 days admitted to our Level 1 center between 2010 and 2017. All CT images were reviewed, and cross-sectional area (cm2) of the left psoas muscle was measured at the level of the third lumbar vertebral body to determine total psoas area (TPA) and Total Psoas Index (TPI) normalized for patient stature. Sarcopenia was defined as a TPI on admission below gender specific thresholds of 5.45(cm2/m2) in men and 3.85(cm2/m2) in women. TPA, TPI, and rates of change in TPI were then evaluated and compared between sarcopenic and non-sarcopenic adult trauma patients. RESULTS There were 81 adult trauma patients who met inclusion criteria. The average change in TPA was -3.8 cm2 and TPI was -1.3 cm2. On admission, 23% (n = 19) of patients were sarcopenic while 77% (n = 62) were not. Non-sarcopenic patients had a significantly greater change in TPA (-4.9 vs. -0.31, p<0.0001), TPI (-1.7 vs. -0.13, p<0.0001), and rate of decrease in muscle mass (p = 0.0002). 37% of patients who were admitted with normal muscle mass developed sarcopenia during admission. Older age was the only risk factor independently associated with developing sarcopenia (OR: 1.04, 95%CI 1.00-1.08, p = 0.045). CONCLUSION Over a third of patients with normal muscle mass at admission subsequently developed sarcopenia with older age as the primary risk factor. Patients with normal muscle mass at admission had greater decreases in TPA and TPI, and accelerated rates of muscle mass loss compared to sarcopenic patients.
Collapse
Affiliation(s)
- James M Bradford
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA.
| | - Tatiana C P Cardenas
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Sabino Lara
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Kristofor Olson
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Pedro G Teixeira
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Jayson D Aydelotte
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Marc D Trust
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Joseph DuBose
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Sadia Ali
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| | - Carlos Vr Brown
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, USA
| |
Collapse
|
17
|
Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2023; 24:ijms24055040. [PMID: 36902469 PMCID: PMC10003568 DOI: 10.3390/ijms24055040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle mass, reduced muscle fiber size, and decreased muscle strength, resulting in persistent physical disability accompanied by sepsis. Systemic inflammatory cytokines are the main cause of SAMW, which occurs in 40-70% of patients with sepsis. The pathways associated with the ubiquitin-proteasome and autophagy systems are particularly activated in the muscle tissues during sepsis and may lead to muscle wasting. Additionally, expression of muscle atrophy-related genes Atrogin-1 and MuRF-1 are seemingly increased via the ubiquitin-proteasome pathway. In clinical settings, electrical muscular stimulation, physiotherapy, early mobilization, and nutritional support are used for patients with sepsis to prevent or treat SAMW. However, there are no pharmacological treatments for SAMW, and the underlying mechanisms are still unknown. Therefore, research is urgently required in this field.
Collapse
|
18
|
Verceles AC, Serra M, Davis D, Alon G, Wells CL, Parker E, Sorkin J, Bhatti W, Terrin ML. Combining exercise, protein supplementation and electric stimulation to mitigate muscle wasting and improve outcomes for survivors of critical illness-The ExPrES study. Heart Lung 2023; 58:229-235. [PMID: 36473808 PMCID: PMC9992240 DOI: 10.1016/j.hrtlng.2022.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) with high protein supplementation (HPRO) to preserve muscle mass and function has not been assessed in ICU patients. We compared the effects of combining NMES and HPRO with mobility and strength rehabilitation (NMES+HPRO+PT) to standardized ICU care. OBJECTIVES To assess the effectiveness of combined NMES+HPRO+PT in mitigating sarcopenia as evidenced by CT volume and cross-sectional area when compared to usual ICU care. Additionally, we assessed the effects of the combined therapy on select clinical outcomes, including nutritional status, nitrogen balance, delirium and days on mechanical ventilation. METHODS Participants were randomized by computer generated assignments to receive either NMES+HPRO+PT or standard care. Over 14 days the standardized ICU care group (N = 23) received usual critical care and rehabilitation while the NMES+HPRO+PT group (N = 16) received 30 min neuromuscular electrical stimulation of quadriceps and dorsiflexors twice-daily for 10 days and mean 1.3 ± 0.4 g/kg body weight of high protein supplementation in addition to standard care. Nonresponsive participants received passive exercises and, once responsive, were encouraged to exercise actively. Primary outcome measures were muscle volume and cross-sectional area measured using CT-imaging. Secondary outcomes included nutritional status, nitrogen balance, delirium and days on mechanical ventilation. RESULTS The NMES+HPRO+PT group (N = 16) lost less lower extremity muscle volume compared to the standard care group (N = 23) and had larger mean combined thigh cross-sectional area. The nitrogen balance remained negative in the standard care group, while positive on days 5, 9, and 14 in the NMES+HPRO+PT group. Standard care group participants experienced more delirium than the NMES+HPRO+PT group. No differences between groups when comparing length of stay or mechanical ventilation days. CONCLUSIONS The combination of neuromuscular electrical stimulation, high protein supplementation and mobility and strength rehabilitation resulted in mitigation of lower extremity muscle loss and less delirium in mechanically ventilated ICU patients. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02509520. Registered July 28, 2015.
Collapse
Affiliation(s)
- Avelino C Verceles
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Monica Serra
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies at University of Texas Health Science, San Antonio, TX, USA
| | - Derik Davis
- Division of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gad Alon
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Chris L Wells
- Department of Rehabilitation Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Elizabeth Parker
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - John Sorkin
- Department of Medicine, Division of Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore MD, USA; Department of Veterans Affairs, Baltimore VA Maryland Health Care System, Geriatric Research, Education and Clinical Center, Baltimore, MD, USA
| | - Waqas Bhatti
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael L Terrin
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Effects of Kilohertz Frequency, Burst Duty Cycle, and Burst Duration on Evoked Torque, Perceived Discomfort and Muscle Fatigue: A Systematic Review. Am J Phys Med Rehabil 2023; 102:175-183. [PMID: 35121683 DOI: 10.1097/phm.0000000000001982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ABSTRACT Kilohertz-frequency alternating current is used to minimize muscle atrophy and muscle weakness and improve muscle performance. However, no systematic reviews have evaluated the best Kilohertz-frequency alternating current parameters for this purpose. We investigated the effects of the carrier frequency, burst duty cycles, and burst durations on evoked torque, perceived discomfort, and muscle fatigue. A search of eight data sources by two independent reviewers resulted in 13 peer-reviewed studies being selected, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, and rated using the PEDro scale to evaluate the methodological quality of the studies. Most studies showed that carrier frequencies up to 1 kHz evoked higher torque, while carrier frequencies between 2.5 and 5 kHz resulted in lower perceived discomfort. In addition, most studies showed that shorter burst duty cycles (10%-50%) induced higher evoked torque and lower perceived discomfort. Methodological quality scores ranged from 5 to 8 on the PEDro scale. We conclude that Kilohertz-frequency alternating current develops greater evoked torque for carrier frequencies between 1 and 2.5 kHz and burst duty cycles less than 50%. Lower perceived discomfort was generated using Kilohertz-frequency alternating currents between 2.5 and 5 kHz and burst duty cycles less than 50%.
Collapse
|
20
|
Weijzen ME, Holwerda AM, Jetten GH, Houben LH, Kerr A, Davis H, Keogh B, Khaldi N, Verdijk LB, van Loon LJ. Vicia Faba peptide network supplementation does not differ from milk protein in modulating changes in muscle size during short-term immobilization and subsequent remobilization, but increases muscle protein synthesis rates during remobilization in healthy young men. J Nutr 2023. [DOI: 10.1016/j.tjnut.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
21
|
Hardy EJ, Hatt J, Doleman B, Smart TF, Piasecki M, Lund JN, Phillips BE. Post-operative electrical muscle stimulation attenuates loss of muscle mass and function following major abdominal surgery in older adults: a split body randomised control trial. Age Ageing 2022; 51:afac234. [PMID: 36315433 PMCID: PMC9621149 DOI: 10.1093/ageing/afac234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Significant losses of muscle mass and function occur after major abdominal surgery. Neuromuscular electrical stimulation (NMES) has been shown to reduce muscle atrophy in some patient groups, but evidence in post-operative patients is limited. This study assesses the efficacy of NMES for attenuating muscle atrophy and functional declines following major abdominal surgery in older adults. METHODS Fifteen patients undergoing open colorectal resection completed a split body randomised control trial. Patients' lower limbs were randomised to control (CON) or NMES (STIM). The STIM limb underwent 15 minutes of quadriceps NMES twice daily on post-operative days (PODs) 1-4. Ultrasound measurements of Vastus Lateralis cross-sectional area (CSA) and muscle thickness (MT) were made preoperatively and on POD 5, as was dynamometry to determine knee extensor strength (KES). Change in CSA was the primary outcome. All outcomes were statistically analysed using linear mixed models. RESULTS NMES significantly reduced the loss of CSA (-2.52 versus -9.16%, P < 0.001), MT (-2.76 versus -8.145, P = 0.001) and KES (-10.35 versus -19.69%, P = 0.03) compared to CON. No adverse events occurred, and patients reported that NMES caused minimal or no discomfort and felt that ~90-minutes of NMES daily would be tolerable. DISCUSSION NMES reduces losses of muscle mass and function following major abdominal surgery, and as such, may be the promising tool for post-operative recovery. This is important in preventing long-term post-operative dependency, especially in the increasingly frail older patients undergoing major abdominal surgery. Further studies should establish the efficacy of bilateral NMES for improving patient-centred outcomes.
Collapse
Affiliation(s)
- Edward J Hardy
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Jacob Hatt
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Brett Doleman
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
- Department of Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Thomas F Smart
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Matthew Piasecki
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Jonathan N Lund
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| |
Collapse
|
22
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
23
|
Fernandes JA, Silva MLD, Trancho AC, Macedo JRDD, Martins HR, Silva PE. Assessment of neuromuscular electrical stimulation in critically ill patients: physical therapists’ knowledge and barriers to its use. FISIOTERAPIA E PESQUISA 2022. [DOI: 10.1590/1809-2950/21003529032022en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Transcutaneous neuromuscular electrical stimulation (NMES) is considered an important tool to prevent muscle mass and strength loss in patients admitted to intensive care units (ICU). This study aimed to evaluate physical therapists’ profile and knowledge of NMES and identify the main barriers to its use in ICUs. This observational cross-sectional study was conducted via a structured questionnaire created by the authors. It consisted of 12 objective questions to analyze physical therapists’ knowledge of NMES use in critically ill patients. Physical therapists were invited to participate in this study during an international symposium on NMES. In total, 56 physical therapists, with a mean age of 33.5±7.2 years and working an average of 9.7±7 years after graduation, completed the survey. Overall, 34 respondents worked in ICUs, of which only four (12%) reported regular NMES use in their ICUs. We found a low average of correct answers to our questionnaire (25%; 3/12). The main barriers reported to using NMES in ICUs were lack of knowledge (28; 50%) and equipment (24; 43%). The number of correct answers expert and non-expert physical therapists was not statistically significant (p=0.68). Thus, we observed participants’ poor knowledge of NMES use in critically ill patients. Respondents showed that NMES has been underused in their ICUs. Lack of knowledge and equipment seems to be the main barriers for the use of NMES in ICUs.
Collapse
|
24
|
Prevention of muscle atrophy in ICU patients without nerve injury by neuromuscular electrical stimulation: a randomized controlled study. BMC Musculoskelet Disord 2022; 23:780. [PMID: 35974369 PMCID: PMC9380284 DOI: 10.1186/s12891-022-05739-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extensive muscle atrophy is a common occurrence in orthopaedics patients who are bedridden or immobilized. The incidence is higher in intensive care unit (ICU) inpatients. There is still controversy about how to use neuromuscular electrical stimulation (NMES) in ICU patients. We aim to compare the effectiveness and safety of NMES to prevent muscle atrophy in intensive care unit (ICU) patients without nerve injury. Methods ICU patients without central and peripheral nerve injury were randomized into experimental group I (Exp I: active and passive activity training (APAT) + NMES treatment on the gastrocnemius and tibialis anterior muscle), experimental group II (Exp II: APAT + NMES treatment on gastrocnemius alone), and control group (Ctl: APAT alone). Changes in the strength of gastrocnemius, the ankle range of motion, and the muscle cross-section area of the lower leg were evaluated before and after the intervention. Also, changes in prothrombin time, lactic acid, and C-reactive protein were monitored during the treatment. Results The gastrocnemius muscle strength, ankle joint range of motion, and cross-sectional muscle area of the lower leg in the three groups showed a downward trend, indicating that the overall trend of muscle atrophy in ICU patients was irreversible. The decrease in gastrocnemius muscle strength in Exp I and Exp II was smaller than that in the control group (P < 0.05), but there was no difference between Exp I and Exp II. The decrease in active ankle range of motion and cross-sectional area of the lower leg Exp I and Exp II was smaller than that in the control group (P < 0.05), and the decrease in Exp I was smaller than that of Exp II (all P < 0.05). The curative effect in Exp I was better than in Exp II. There were no significant differences in the dynamic changes of prothrombin time, lactic acid, and C-reactive protein during the three groups (P > 0.05). Conclusion In addition to early exercise training, NMES should be applied to prevent muscle atrophy for patients without nerve injury in ICU. Also, simultaneous NMES treatment on agonist/antagonist muscle can enhance the effect of preventing muscle atrophy. Trial registration This study was prospectively registered in China Clinical Trial Registry (www.chictr.org.cn) on 16/05/2020 as ChiCTR2000032950.
Collapse
|
25
|
Rahiminezhad E, Sadeghi M, Ahmadinejad M, Mirzadi Gohari SI, Dehghan M. A randomized controlled clinical trial of the effects of range of motion exercises and massage on muscle strength in critically ill patients. BMC Sports Sci Med Rehabil 2022; 14:96. [PMID: 35619171 PMCID: PMC9134983 DOI: 10.1186/s13102-022-00489-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Atrophy and muscle weakness is a common problem in critically ill patients admitted to the intensive care unit (ICU). Muscle weakness in severe cases can lead to tetraplegia, reduced or lost tendon reflexes, delayed weaning from mechanical ventilation, physical disability, and increased mortality. The aim of this study was to compare the effects of range of motion exercises (ROM) and massage on muscle strength of the patients admitted to ICUs. METHODS This study was a single-blinded randomized controlled trial conducted in ICUs of Afzalipour hospital in Kerman, southeastern Iran. Ninety conscious ICU patients were randomly divided into three groups (massage, ROM exercises and control). The researcher/co-researcher massaged or did ROM exercises on the patients' extremities once a day for seven consecutive days. Using a hand-held dynamometer, the co-researcher, rated the muscle strength before, on the fourth and seventh days of intervention at 8 p.m. RESULTS The mean muscles strength of the right arm in the ROM exercise and massage groups increased by 0.63 kg, and 0.29 kg, respectively after the intervention compared with before the intervention. The muscle strength of the right arm in the control group reduced by 0.55 kg. The mean muscles strength of the left arm in the ROM exercise and massage groups increased by 0.61 kg and 0.28 kg after the intervention, respectively while it reduced by 0.56 kg in the control group. The mean muscles strength of the right leg in the ROM exercise and massage groups increased by 0.53 kg and 0.27 kg after the intervention compared with before the intervention while it reduced by 0.70 kg in the control group. The mean muscles strength of the left leg in the ROM exercise and massage groups increased by 0.54 kg and 0.26 kg after the intervention compared with before the intervention while it reduced by 0.71 kg in the control group. CONCLUSION The results of the present study showed that ROM exercises and massage were effective interventions in increasing muscle strength of the critically ill patients admitted to intensive care units.
Collapse
Affiliation(s)
- Elham Rahiminezhad
- Department of Critical Care Nursing, Razi Faculty of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Sadeghi
- Department of Physical Therapy, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ahmadinejad
- Department of Anesthesiology, Shahid Bahonar Hospital, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahlagha Dehghan
- Department of Critical Care Nursing, Razi Faculty of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
26
|
Balke M, Teschler M, Schäfer H, Pape P, Mooren FC, Schmitz B. Therapeutic Potential of Electromyostimulation (EMS) in Critically Ill Patients—A Systematic Review. Front Physiol 2022; 13:865437. [PMID: 35615672 PMCID: PMC9124773 DOI: 10.3389/fphys.2022.865437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Ample evidence exists that intensive care unit (ICU) treatment and invasive ventilation induce a transient or permanent decline in muscle mass and function. The functional deficit is often called ICU-acquired weakness with critical illness polyneuropathy (CIP) and/or myopathy (CIM) being the major underlying causes. Histopathological studies in ICU patients indicate loss of myosin filaments, muscle fiber necrosis, atrophy of both muscle fiber types as well as axonal degeneration. Besides medical prevention of risk factors such as sepsis, hyperglycemia and pneumonia, treatment is limited to early passive and active mobilization and one third of CIP/CIM patients discharged from ICU never regain their pre-hospitalization constitution. Electromyostimulation [EMS, also termed neuromuscular electrical stimulation (NMES)] is known to improve strength and function of healthy and already atrophied muscle, and may increase muscle blood flow and induce angiogenesis as well as beneficial systemic vascular adaptations. This systematic review aimed to investigate evidence from randomized controlled trails (RCTs) on the efficacy of EMS to improve the condition of critically ill patients treated on ICU. A systematic search of the literature was conducted using PubMed (Medline), CENTRAL (including Embase and CINAHL), and Google Scholar. Out of 1,917 identified records, 26 articles (1,312 patients) fulfilled the eligibility criteria of investigating at least one functional measure including muscle function, functional independence, or weaning outcomes using a RCT design in critically ill ICU patients. A qualitative approach was used, and results were structured by 1) stimulated muscles/muscle area (quadriceps muscle only; two to four leg muscle groups; legs and arms; chest and abdomen) and 2) treatment duration (≤10 days, >10 days). Stimulation parameters (impulse frequency, pulse width, intensity, duty cycle) were also collected and the net EMS treatment time was calculated. A high grade of heterogeneity between studies was detected with major cofactors being the analyzed patient group and selected outcome variable. The overall efficacy of EMS was inconclusive and neither treatment duration, stimulation site or net EMS treatment time had clear effects on study outcomes. Based on our findings, we provide practical recommendations and suggestions for future studies investigating the therapeutic efficacy of EMS in critically ill patients. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021262287].
Collapse
Affiliation(s)
- Maryam Balke
- St. Marien Hospital Cologne, Department of Early Rehabilitation, Cologne, Germany
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- *Correspondence: Maryam Balke,
| | - Marc Teschler
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Hendrik Schäfer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Pantea Pape
- St. Marien Hospital Cologne, Department of Early Rehabilitation, Cologne, Germany
| | - Frank C. Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| |
Collapse
|
27
|
Early Neuromuscular Electrical Stimulation in Addition to Early Mobilization Improves Functional Status and Decreases Hospitalization Days of Critically Ill Patients. Crit Care Med 2022; 50:1116-1126. [PMID: 35412472 DOI: 10.1097/ccm.0000000000005557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To evaluate the impact of the additional use of early neuromuscular electrical stimulation (NMES) on an early mobilization (EM) protocol. DESIGN Randomized controlled trial. SETTING ICU of the Clinical Hospital of Ribeirão Preto, University of São Paulo, Brazil. PATIENTS One hundred and thirty-nine consecutive mechanically ventilated patients were included in the first 48 hours of ICU admission. INTERVENTIONS The patients were divided into two groups: EM and EM+NMES. Both groups received EM daily. In the EM+NMES group, patients additionally received NMES 5 days a week, for 60 minutes, starting in the first 48 hours of ICU admission until ICU discharge. MEASUREMENTS AND MAIN RESULTS Functional status, muscle strength, ICU and hospital length of stay (LOS), frequency of delirium, days on mechanical ventilation, mortality, and quality of life were assessed. Patients in the EM+NMES group presented a significant higher score of functional status measured by the Functional Status Score for the ICU scale when compared with the EM group in the first day awake: 22 (15-26) versus 12 (8-22) (p = 0.019); at ICU discharge: 28 (21-33) versus 18 (11-26) (p = 0.004); and hospital discharge: 33 (27-35) versus 25 (17-33) (p = 0.014), respectively. They also had better functional status measured by the Physical Function Test in the ICU scale, took less days to stand up during the ICU stay, and had a significant shorter hospital LOS, lower frequency of ICU-acquired weakness, and better global muscle strength. CONCLUSIONS The additional application of early NMES promoted better functional status outcomes on the first day awake and at ICU and hospital discharge. The patients in the EM+NMES group also took fewer days to stand up and had shorter hospital LOS, lower frequency of ICU-acquired weakness, and better muscle strength. Future studies are still necessary to clarify the effects of therapies associated with EM, especially to assess long-term outcomes.
Collapse
|
28
|
Righetti RF, Grams ST, Costa WNDS, Saraiva LT, de Salles ICD, Yamaguti WP. Neuromuscular Electrical Stimulation in Patients With Severe COVID-19 Associated With Sepsis and Septic Shock. Front Med (Lausanne) 2022; 9:751636. [PMID: 35252228 PMCID: PMC8888402 DOI: 10.3389/fmed.2022.751636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) can be applied to critically ill patients. However, its results on muscle strength and functionality in patients with COVID-19 are unknown. OBJECTIVE Evaluate the effects of intervention with NMES on muscle mass and functionality of patients with severe COVID-19 associated with sepsis and septic shock. METHODS Seven patients with COVID-19 associated with sepsis or septic shock were selected, but only 5 patients completed all days of the intervention with NMES. The intervention was performed by a single physiotherapist on 7 consecutive days in a daily session of 40 min. The outcome measures were the femoris cross-sectional area; thickness of the anterior compartment of the quadriceps muscle; rectus femoris echogenicity; International Classification of Functioning, Disability, and Health (ICF)-muscle strength; PFIT-s, DEMMI, and the SOMS; feasibility, and safety. The patients were evaluated on days 1, 5, and 8. RESULTS The rectus femoris cross-sectional area decreased significantly from days 1 to 8, but showed maintenance of the thickness of the anterior compartment of the quadriceps muscle from days 1 to 8. The MRC score increased significantly from days 1 to 5 and kept this improvement until day 8. All patients showed an increase in the MRC score and reduction of the ICF-muscle strength, meaning improved muscle strength from days 1 to 8. The PFIT-s increased significantly from days 1 to 5 and improved until day 8 compared to day 5. DEMMI and SOMS score increased significantly on day 8 compared to days 1 and 5. CONCLUSION Rehabilitation with NMES showed improvement in muscle strength and functionality of patients in this study with a potential protective effect on muscle mass loss in patients with critical COVID-19 associated with sepsis and septic shock. This study is the first report of the potential effects of neuromuscular electrical stimulation in patients with severe COVID-19 associated with sepsis and septic shock.
Collapse
|
29
|
Lago AF, Basile-Filho A, de Oliveira AS, de Souza HCD, dos Santos DO, Gastaldi AC. Effects of physical therapy with neuromuscular electrical stimulation in acute and late septic shock patients: A randomised crossover clinical trial. PLoS One 2022; 17:e0264068. [PMID: 35176099 PMCID: PMC8853464 DOI: 10.1371/journal.pone.0264068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients with sepsis and immobility in the intensive care unit are associated with muscle weakness, and early mobilisation can counteract it. However, during septic shock, mobilisation is often delayed due to the severity of the illness. Neuromuscular electrical stimulation (NMES) may be an alternative to mobilise these patients early. This study aims to identify whether NMES performed within the first 72 hours of septic shock diagnosis or later is safe from a metabolic perspective. METHODS This is the analysis of two randomised controlled crossover studies. Patients with acute septic shock (within the first 72 hours of diagnosis) and sepsis and septic shock in the late phase (after 72 hours of diagnosis) were eligible. Patients were submitted in a random order to the intervention protocol (dorsal decubitus position with the lower limbs raised and NMES) and control (dorsal decubitus position with the lower limbs raised without NMES). The patients were allocated in group 1 (intervention and control) or group 2 (control and intervention) with a wash-out period of 4 to 6 hours. Metabolic variables were evaluated by indirect calorimetry. RESULTS Sixteen patients were analysed in the acute septic shock study and 21 in the late sepsis/septic shock study. There were no significant differences between Oxygen Consumption (VO2) values in the acute phase of septic shock when the baseline period, intervention, and control protocols were compared (186.59 ± 46.10; 183.64 ± 41.39; 188.97 ± 44.88, p>0.05- expressed in mL/Kg/min). The same was observed when the VO2 values in the late phase were compared (224.22 ± 53.09; 226.20 ± 49.64; 226.79 ± 58.25, p>0.05). The other metabolic variables followed the same pattern, with no significant differences between the protocols. When metabolic variables were compared between acute to late phase, significant differences were observed (p<0.05). CONCLUSIONS As metabolic rates in septic shock patients had no increase during NMES, either in the first 72 hours of diagnosis or later, NMES can be considered safe from a metabolic viewpoint, even despite the higher metabolic demand in the acute phase of shock. TRIAL REGISTRATION NCT03193164; NCT03815994. Registered on June 5, 2017; November 13, 2018 (clinicaltrials.gov/).
Collapse
Affiliation(s)
- Alessandra Fabiane Lago
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anibal Basile-Filho
- Division of Intensive Care Medicine, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil
| | - Anamaria Siriani de Oliveira
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniele Oliveira dos Santos
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ada Clarice Gastaldi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
30
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|
31
|
de Campos Biazon TMP, Libardi CA, Junior JCB, Caruso FR, da Silva Destro TR, Molina NG, Borghi-Silva A, Mendes RG. The effect of passive mobilization associated with blood flow restriction and combined with electrical stimulation on cardiorespiratory safety, neuromuscular adaptations, physical function, and quality of life in comatose patients in an ICU: a randomized controlled clinical trial. Trials 2021; 22:969. [PMID: 34969405 PMCID: PMC8719392 DOI: 10.1186/s13063-021-05916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Background Intensive care unit-acquired atrophy and weakness are associated with high mortality, a reduction in physical function, and quality of life. Passive mobilization (PM) and neuromuscular electrical stimulation were applied in comatose patients; however, evidence is inconclusive regarding atrophy and weakness prevention. Blood flow restriction (BFR) associated with PM (BFRp) or with electrical stimulation (BFRpE) was able to reduce atrophy and increase muscle mass in spinal cord-injured patients, respectively. Bulky venous return occurs after releasing BFR, which can cause unknown repercussions on the cardiovascular system. Hence, the aim of this study was to investigate the effect of BFRp and BFRpE on cardiovascular safety and applicability, neuromuscular adaptations, physical function, and quality of life in comatose patients in intensive care units (ICUs). Methods Thirty-nine patients will be assessed at baseline (T0–18 h of coma) and randomly assigned to the PM (control group), BFRp, or BFRpE groups. The training protocol will be applied in both legs alternately, twice a day with a 4-h interval until coma awake, death, or ICU discharge. Cardiovascular safety and applicability will be evaluated at the first training session (T1). At T0 and 12 h after the last session (T2), muscle thickness and quality will be assessed. Global muscle strength and physical function will be assessed 12 h after T2 and ICU and hospital discharge for those who wake up from coma. Six and 12 months after hospital discharge, physical function and quality of life will be re-assessed. Discussion In view of applicability, the data will be used to inform the design and sample size of a prospective trial to clarify the effect of BFRpE on preventing muscle atrophy and weakness and to exert the greatest beneficial effects on physical function and quality of life compared to BFRp in comatose patients in the ICU. Trial registration Universal Trial Number (UTN) Registry UTN U1111-1241-4344. Retrospectively registered on 2 October 2019. Brazilian Clinical Trials Registry (ReBec) RBR-2qpyxf. Retrospectively registered on 21 January 2020, http://ensaiosclinicos.gov.br/rg/RBR-2qpyxf/ Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05916-z.
Collapse
Affiliation(s)
- Thaís Marina Pires de Campos Biazon
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Cleiton Augusto Libardi
- Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Jose Carlos Bonjorno Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, Brazil.,Department of Anesthesiology and Intensive Care Unit at the Irmandade da Santa Casa de Misericórdia de São Carlos, São Carlos, Brazil
| | - Flávia Rossi Caruso
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Tamara Rodrigues da Silva Destro
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Naiara Garcia Molina
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Audrey Borghi-Silva
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil.
| |
Collapse
|
32
|
No effect of intradialytic neuromuscular electrical stimulation on inflammation and quality of life: a randomized and parallel design clinical trial. Sci Rep 2021; 11:22176. [PMID: 34772982 PMCID: PMC8590010 DOI: 10.1038/s41598-021-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) elicits muscle contraction and has been shown to improvement of quality of life. However, if NMES improvement the quality of life and attenuate the inflammation is not fully understood. Therefore, our aim sought to assess the effects of short-term of intradialytic NMES on inflammation and quality of life in patients with chronic kidney disease patients undergoing hemodialysis. A randomized clinical trial conducted with parallel design enrolled adult hemodialysis patients three times a week during 1 month. Patients were randomly assigned to two groups (control group, n = 11; 4F/7 M) or (NMES group, n = 10; 4F/6 M). Pre-and post-intervention, was measured the high-sensitivity C reactive protein, interleukin-6, interleukin-10, and TNFα by the ELISA, and quality of life was applied using the SF-36. During each hemodialysis session, NMES was applied bilaterally at thigh and calves for 40 min. There was not change in cytokines (hs-CRP, IL-6, IL-10, and TNFα) concentrations time × group interaction. In addition, no difference was found in eight domains of quality of life. In addition, the groups did not differ for muscle strength and muscle mass. In conclusion, we found that intradialytic NMES did not change inflammation neither quality of life.
Collapse
|
33
|
Jameson TSO, Kilroe SP, Fulford J, Abdelrahman DR, Murton AJ, Dirks ML, Stephens FB, Wall BT. Muscle damaging eccentric exercise attenuates disuse-induced declines in daily myofibrillar protein synthesis and transiently prevents muscle atrophy in healthy men. Am J Physiol Endocrinol Metab 2021; 321:E674-E688. [PMID: 34632796 PMCID: PMC8791791 DOI: 10.1152/ajpendo.00294.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Short-term disuse leads to muscle loss driven by lowered daily myofibrillar protein synthesis (MyoPS). However, disuse commonly results from muscle damage, and its influence on muscle deconditioning during disuse is unknown. Twenty-one males [20 ± 1 yr, BMI = 24 ± 1 kg·m-2 (± SE)] underwent 7 days of unilateral leg immobilization immediately preceded by 300 bilateral, maximal, muscle-damaging eccentric quadriceps contractions (DAM; subjects n = 10) or no exercise (CON; subjects n = 11). Participants ingested deuterated water and underwent temporal bilateral thigh MRI scans and vastus lateralis muscle biopsies of immobilized (IMM) and nonimmobilized (N-IMM) legs. N-IMM quadriceps muscle volume remained unchanged throughout both groups. IMM quadriceps muscle volume declined after 2 days by 1.7 ± 0.5% in CON (P = 0.031; and by 1.3 ± 0.6% when corrected to N-IMM; P = 0.06) but did not change in DAM, and declined equivalently in CON [by 6.4 ± 1.1% (5.0 ± 1.6% when corrected to N-IMM)] and DAM [by 2.6 ± 1.8% (4.0 ± 1.9% when corrected to N-IMM)] after 7 days. Immobilization began to decrease MyoPS compared with N-IMM in both groups after 2 days (P = 0.109), albeit with higher MyoPS rates in DAM compared with CON (P = 0.035). Frank suppression of MyoPS was observed between days 2 and 7 in CON (IMM = 1.04 ± 0.12, N-IMM = 1.86 ± 0.10%·day-1; P = 0.002) but not DAM (IMM = 1.49 ± 0.29, N-IMM = 1.90 ± 0.30%·day-1; P > 0.05). Declines in MyoPS and quadriceps volume after 7 days correlated positively in CON (r2 = 0.403; P = 0.035) but negatively in DAM (r2 = 0.483; P = 0.037). Quadriceps strength declined following immobilization in both groups, but to a greater extent in DAM. Prior muscle-damaging eccentric exercise increases MyoPS and prevents loss of quadriceps muscle volume after 2 (but not 7) days of disuse.NEW & NOTEWORTHY We investigated the impact of prior muscle-damaging eccentric exercise on disuse-induced muscle deconditioning. Two and 7 days of muscle disuse per se lowered quadriceps muscle volume in association with lowered daily myofibrillar protein synthesis (MyoPS). Prior eccentric exercise prevented the decline in muscle volume after 2 days and attenuated the decline in MyoPS after 2 and 7 days. These data indicate eccentric exercise increases MyoPS and transiently prevents quadriceps muscle atrophy during muscle disuse.
Collapse
Affiliation(s)
- Tom S O Jameson
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sean P Kilroe
- Department of Nutrition and Metabolism, Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Jonathan Fulford
- Peninsula NIHR Clinical Research Facility, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
34
|
Sabatino A, Broers NJH, van der Sande FM, Hemmelder MH, Fiaccadori E, Kooman JP. Estimation of Muscle Mass in the Integrated Assessment of Patients on Hemodialysis. Front Nutr 2021; 8:697523. [PMID: 34485360 PMCID: PMC8415223 DOI: 10.3389/fnut.2021.697523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023] Open
Abstract
Assessment of muscle mass (MM) or its proxies, lean tissue mass (LTM) or fat-free mass (FFM), is an integral part of the diagnosis of protein-energy wasting (PEW) and sarcopenia in patients on hemodialysis (HD). Both sarcopenia and PEW are related to a loss of functionality and also increased morbidity and mortality in this patient population. However, loss of MM is a part of a wider spectrum, including inflammation and fluid overload. As both sarcopenia and PEW are amendable to treatment, estimation of MM regularly is therefore of major clinical relevance. Whereas, computer-assisted tomography (CT) or dual-energy X-ray absorptiometry (DXA) is considered a reference method, it is unsuitable as a method for routine clinical monitoring. In this review, different bedside methods to estimate MM or its proxies in patients on HD will be discussed, with emphasis on biochemical methods, simplified creatinine index (SCI), bioimpedance spectroscopy (BIS), and muscle ultrasound (US). Body composition parameters of all methods are related to the outcome and appear relevant in clinical practice. The US is the only parameter by which muscle dimensions are measured. BIS and SCI are also dependent on either theoretical assumptions or the use of population-specific regression equations. Potential caveats of the methods are that SCI can be influenced by residual renal function, BIS can be influenced by fluid overload, although the latter may be circumvented by the use of a three-compartment model, and that muscle US reflects regional and not whole body MM. In conclusion, both SCI and BIS as well as muscle US are all valuable methods that can be applied for bedside nutritional assessment in patients on HD and appear suitable for routine follow-up. The choice for either method depends on local preferences. However, estimation of MM or its proxies should always be part of a multidimensional assessment of the patient followed by a personalized treatment strategy.
Collapse
Affiliation(s)
- Alice Sabatino
- Nephrology Unit, Department of Medicine and Surgery, Parma University Hospital, University of Parma, Parma, Italy
| | - Natascha J H Broers
- Division on Nephrology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frank M van der Sande
- Division on Nephrology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Marc H Hemmelder
- Division on Nephrology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Enrico Fiaccadori
- Nephrology Unit, Department of Medicine and Surgery, Parma University Hospital, University of Parma, Parma, Italy
| | - Jeroen P Kooman
- Division on Nephrology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
35
|
Pinto Damo NL, Modesto KA, Neto IVDS, Bottaro M, Babault N, Durigan JLQ. Effects of different electrical stimulation currents and phase durations on submaximal and maximum torque, efficiency, and discomfort: a randomized crossover trial. Braz J Phys Ther 2021; 25:593-600. [PMID: 33840592 PMCID: PMC8536851 DOI: 10.1016/j.bjpt.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is an important therapeutic tool for rehabilitation. However, best stimulation parameters remain to be determined. OBJECTIVE To determine the influence of different electrical stimulation currents and phase durations on torque, efficiency, and discomfort. METHODS Using a cross-over design, kHz frequency alternating currents (KFAC) and pulsed currents (PC) with narrow (200 µs) or wide (500 µs) phase durations were randomly applied on knee extensor muscles of healthy participants with a minimum of seven days between sessions. The NMES-evoked torque, NMES-efficiency, and discomfort (visual 0-10 cm analogue scale) were measured for each stimulation intensity increments (10 mA). Statistics were conducted using a three-way analysis of variances (phase duration x current x intensity), followed by Tukey post-hoc. RESULTS Twenty-four males (age 22.3 ± 3.5years) were included. No effect of NMES current was observed for torque, efficiency, and discomfort. For wide phase durations (500 µs), torque significantly increased for all stimulation intensities. For narrow phase durations (200 µs) evoked torque significantly increased only after 40% of maximal stimulation intensity. Phase durations of 500 µs produced greater torque than 200 µs. Discomfort was greater with 500 µs when compared to 200 µs. Submaximal relative torque, for example 40% of maximum voluntary contraction (MVC), was obtained with ∼ 60% and ∼ 80% of the maximal current intensity for 500 µs and 200 µs, respectively. CONCLUSION KFAC and PC current applied with the same phase duration induced similar relative submaximal and maximum evoked-torque, efficiency, and perceived discomfort. However, currents with 500 µs induced higher evoked-torque, current efficiency, and perceived discomfort.
Collapse
Affiliation(s)
| | | | - Ivo Vieira de Sousa Neto
- Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Martim Bottaro
- College of Physical Education Department, Universidade de Brasília, Brasília, DF, Brazil
| | - Nicolas Babault
- INSERM U1093 CAPS, Faculty of Sport Sciences, University of Burgundy, Dijon, France
| | | |
Collapse
|
36
|
Cavka K, Fuller DD, Tonuzi G, Fox EJ. Diaphragm Pacing and a Model for Respiratory Rehabilitation After Spinal Cord Injury. J Neurol Phys Ther 2021; 45:235-242. [PMID: 34049339 PMCID: PMC8711094 DOI: 10.1097/npt.0000000000000360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Cervical spinal cord injury (CSCI) can cause severe respiratory impairment. Although mechanical ventilation (MV) is a lifesaving standard of care for these patients, it is associated with diaphragm atrophy and dysfunction. Diaphragm pacing (DP) is a strategy now used acutely to promote MV weaning and to combat the associated negative effects. Initial reports indicate that DP also may promote neuromuscular plasticity and lead to improvements in spontaneous diaphragm activation and respiratory function. These outcomes suggest the need for reevaluation of respiratory rehabilitation for patients with CSCI using DP and consideration of new rehabilitation models for these patients and their unique care needs. SUMMARY OF KEY POINTS This article discusses the rationale for consideration of DP as a rehabilitative strategy, particularly when used in combination with established respiratory interventions. In addition, a model of respiratory rehabilitation and recovery (RRR) is presented, providing a framework for rehabilitation and consideration of DP as an adjuvant rehabilitation approach. The model promotes goals such as respiratory recovery and independence, and lifelong respiratory health, via interdisciplinary care, respiratory training, quantitative measurement, and use of adjuvant strategies such as DP. Application of the model is demonstrated through a description of an inpatient rehabilitation program that applies model components to patients with CSCI who require DP. RECOMMENDATIONS FOR CLINICAL PRACTICE As DP use increases for patients with acute CSCI, so does the need and opportunity to advance rehabilitation approaches for these patients. This perspective article is a critical step in addressing this need and motivating the advancement of rehabilitation strategies for CSCI patients. (See Video Abstract, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A348).
Collapse
Affiliation(s)
- Kathryn Cavka
- Brooks Rehabilitation, Jacksonville, Florida (K.C., G.T., E.J.F.); and Department of Physical Therapy, University of Florida, Gainesville (D.D.F., E.J.F.)
| | | | | | | |
Collapse
|
37
|
Chapple LAS, Dirks ML, Kouw IW. Stable isotope approaches to study muscle mass outcomes in clinical populations. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Inns TB, McCormick D, Greig CA, Atherton PJ, Phillips BE, Piasecki M. Factors associated with electrical stimulation-induced performance fatigability are dependent upon stimulation location. Exp Physiol 2021; 106:828-836. [PMID: 33638246 DOI: 10.1113/ep089204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does peripheral nerve stimulation (PNS) compare with neuromuscular electrical stimulation (NMES) used clinically to reduce muscle atrophy? What is the main finding and its importance? NMES resulted in progressive increases in M-wave duration and delay of muscle relaxation throughout a single stimulation protocol, findings not observed with PNS. This suggests PNS recruits from a wider pool of muscle fibres/motor units, providing a more favourable alternative to NMES for rehabilitation intervention. ABSTRACT Neuromuscular electrical stimulation (NMES) is increasingly viewed as a central tenet to minimise muscle loss during periods of disuse/illness - typically applied directly over a muscle belly. Peripheral nerve stimulation (PNS) is afforded less attention, despite providing a more global contractile stimulus to muscles. We investigated NMES versus PNS in relation to performance fatigability and peripheral contributions to voluntary force capacity. Two fatigue protocols were assessed separately: (1) over-quadriceps NMES and (2) peripheral (femoral) nerve stimulation (PNS). Before and after each session, a maximal voluntary contraction (MVC) was performed to assess force loss. Knee-extensor force was measured throughout to assess contractile function in response to submaximal electrical stimulation, and M-wave features quantified myoelectrical activity. NMES and PNS induced similar voluntary (MVC, NMES: -12 ± 9%, PNS: -10 ± 8%, both P < 0.001) and stimulated (NMES: -45 ± 12%, PNS -27 ± 27%, both P < 0.001) force reductions. Although distinct between protocols, myoelectrical indicators of muscle recruitment (M-wave area and amplitude) and nerve conduction time did not change throughout either protocol. Myoelectrical propagation speed, represented as M-wave duration, and the delay before muscle relaxation began both progressively increased during NMES only (P < 0.05 and P < 0.001, respectively). NMES myoelectrical changes suggested performance fatigability, indicating activation of superficial fibres only, which was not observed with PNS. This suggests PNS recruits a wider pool of muscle fibres and motor units and is a favourable alternative for rehabilitation. Future work should focus on implementing PNS interventions in clinically relevant scenarios such as immobilisation, care homes and critical illness.
Collapse
Affiliation(s)
- Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Daniel McCormick
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Carolyn A Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,MRC-Versus Arthritis Research UK Centre for Musculoskeletal Ageing Research, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Kakehi S, Wakabayashi H, Inuma H, Inose T, Shioya M, Aoyama Y, Hara T, Uchimura K, Tomita K, Okamoto M, Yoshida M, Yokota S, Suzuki H. Rehabilitation Nutrition and Exercise Therapy for Sarcopenia. World J Mens Health 2021; 40:1-10. [PMID: 33831974 PMCID: PMC8761238 DOI: 10.5534/wjmh.200190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is an age-related loss of skeletal muscle associated with adverse outcomes such as falls, fractures, disability, and increased mortality in older people and hospitalized patients. About half of older male nursing home residents have sarcopenia. The diagnostic criteria by the European Working Group on Sarcopenia in Older People (EWGSOP) and the Asian Working Group for Sarcopenia (AWGS) have led to increased interest in sarcopenia. Exercise and nutritional management are crucial for the prevention and treatment of sarcopenia. Nutritional therapy for sarcopenia that includes 20 g of whey protein and 800 IU of vitamin D twice a day improves lower limb strength. Exercise therapy for sarcopenia, such as resistance training and 6 months of home exercises, improves muscle strength and physical function. Combination therapy that includes both nutritional and exercise therapy improves gait speed and knee extension strength more than either exercise alone or nutrition therapy alone. Excessive bedrest and mismanagement of nutrition in medical facilities can lead to iatrogenic sarcopenia. Iatrogenic sarcopenia is sarcopenia caused by the activities of health care workers in health care facilities. Appropriate nutritional management and exercise programs through rehabilitation nutrition are important for prevention and treatment of iatrogenic sarcopenia. Nutritional and exercise therapy should be started very early after admission and adjusted to the level of inflammation and disease status. Repeated assessment, diagnosis, goal setting, interventions, and monitoring using the rehabilitation nutrition care process is important to maximize treatment effectiveness and improve patients' functional recovery and quality of life.
Collapse
Affiliation(s)
- Shingo Kakehi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hayato Inuma
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomomi Inose
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Moeka Shioya
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yohei Aoyama
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiki Hara
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosuke Uchimura
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazusa Tomita
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Mizuki Okamoto
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Yoshida
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shohei Yokota
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hayato Suzuki
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
40
|
Neuromuscular Electrical Stimulation Improves Energy Substrate Metabolism and Survival in Mice With Acute Endotoxic Shock. Shock 2021; 53:236-241. [PMID: 31935202 PMCID: PMC6964866 DOI: 10.1097/shk.0000000000001354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the therapeutic benefits of neuromuscular electrical stimulation (NMES). C57BL/6 mice were administered lipopolysaccharide (LPS; 20 mg/kg body weight) by intraperitoneal injection and divided into control (C) and NMES groups (n = 10–12 each). The latter received NMES to the bilateral gastrocnemius muscle for 1 h at low or high frequency (LF = 2 Hz and HF = 50 Hz, respectively) and low or high voltage (LV = 10 V and HV = 50 V, respectively). In LF–LV and LF–HV groups, NMES was performed twice and the results were compared with those for mice that received one round of NMES. Changes in energy metabolism were measured by indirect calorimetry up to 24 h; survival was evaluated up to 72 h after LPS administration; peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α expression in the liver and gastrocnemius muscle was evaluated by quantitative PCR; and plasma concentration of interleukin (IL)-6 was determined by enzyme-linked immunosorbent assay. Survival was improved only in the LF–LV group with one round of NMES (P < 0.01) and the LF–HV group with two rounds of NMES (P < 0.05). Fatty acid oxidation (FAO) was slightly increased in these two groups, whereas carbohydrate oxidation (CHO) was decreased or not changed. Significant upregulation of PGC-1α in muscle as well as a decrease in plasma IL-6 level were also observed in these two groups (P < 0.05). Thus, NMES exerts therapeutic effects under conditions that induce a mild switch in energy metabolism from glucose to lipid predominant metabolism through PGC-1α upregulation and suppression of inflammation, and may be an effective early intervention even in hemodynamically unstable patients.
Collapse
|
41
|
Clegg MH, Harris TI, Zhang X, Barney JT, Jones JA, Vargis E. Silkworm Silk Fiber Bundles as Improved In Vitro Scaffolds for Skeletal Muscle. ACS Biomater Sci Eng 2020; 6:6853-6863. [PMID: 33320626 DOI: 10.1021/acsbiomaterials.0c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To mimic skeletal muscle tissues in vitro, native and transgenic spider silk/silkworm silks were seeded with C2C12 myoblasts to observe if these three-dimensional substrates are preferable to a traditional two-dimensional polystyrene cell culture surface. Silks were wound around an acrylic chassis to produce a novel, three-dimensional cell culture device with suspended muscle fibers that genetically and morphologically resemble native skeletal muscle tissue. The transgenic spider silk/silkworm silk has never before been studied for this application. Genetic expression verified skeletal muscle lineage and differentiation, while fluorescent imaging verified contractile protein synthesis. Genetic analysis also revealed an increase in expression of the Myh2 contractile protein gene on silkworm silks, particularly on the transgenic silk. Mechanical properties and protein secondary structure content of the silks indicated correlation between substrate properties and Myh2 gene expression. This increase in contractile protein gene expression suggests that biologically derived silk substrates that are suspended may be a preferable substrate for in vitro muscle modeling because of the proteinaceous character and mechanical flexibility of the silk.
Collapse
Affiliation(s)
- Matthew H Clegg
- Department of Biological Engineering, Utah State University, Logan, Utah 84322, United States
| | - Thomas I Harris
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| | - Xiaoli Zhang
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| | - Jacob T Barney
- Department of Biological Engineering, Utah State University, Logan, Utah 84322, United States
| | - Justin A Jones
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
42
|
Karlsen A, Cullum CK, Norheim KL, Scheel FU, Zinglersen AH, Vahlgren J, Schjerling P, Kjaer M, Mackey AL. Neuromuscular Electrical Stimulation Preserves Leg Lean Mass in Geriatric Patients. Med Sci Sports Exerc 2020; 52:773-784. [PMID: 31688649 DOI: 10.1249/mss.0000000000002191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM This study aimed to examine changes in lean mass during hospitalization in geriatric patients and the effect of muscle activation by neuromuscular electrical stimulation. METHODS Thirteen patients (69-94 yr) at a geriatric ward completed tests at hospital admission (days 2-3) and discharge (days 8-10). One leg received daily stimulation of the knee extensors, whereas the other leg served as a control leg. Lean mass was evaluated by dual-energy x-ray absorptiometry scans and muscle thickness by ultrasound scans. Muscle biopsies were collected from both legs at admission and discharge in nine patients and analyzed for fiber size, satellite cell number, and activation and expression of genes associated with muscle protein synthesis and breakdown, connective tissue, and cellular stress. RESULTS The relative decline in leg lean mass and midthigh region lean mass was larger in the control (-2.8% ± 1.5%) versus the stimulated leg (-0.5% ± 1.4%, P < 0.05). Although there were no changes in fiber size or satellite cell number, the mRNA data revealed that, compared with control, the stimulation resulted in a downregulation of myostatin (P < 0.05) and a similar trend for MAFbx (P = 0.099), together with an upregulation of Collagen I (P < 0.001), TenascinC (P < 0.001), CD68 (P < 0.01), and Ki67 (P < 0.05) mRNA. CONCLUSION These findings demonstrate a moderate decline in leg lean mass during a hospital stay in geriatric patients, whereas leg lean mass was preserved with daily neuromuscular electrical muscle activation. At the cellular level, the stimulation had a clear influence on suppression of atrophy signaling pathways in parallel with a stimulation of connective tissue and cellular remodeling processes.
Collapse
|
43
|
Segers J, Vanhorebeek I, Langer D, Charususin N, Wei W, Frickx B, Demeyere I, Clerckx B, Casaer M, Derese I, Derde S, Pauwels L, Van den Berghe G, Hermans G, Gosselink R. Early neuromuscular electrical stimulation reduces the loss of muscle mass in critically ill patients - A within subject randomized controlled trial. J Crit Care 2020; 62:65-71. [PMID: 33285371 DOI: 10.1016/j.jcrc.2020.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate the effect of Neuromuscular Electrical Stimulation (NMES) on muscle thickness, strength and morphological and molecular markers of the quadriceps. MATERIALS AND METHODS Adult critically ill patients with an expected prolonged stay received unilateral quadriceps NMES sessions for 7 consecutive days. Before and after the intervention period, quadriceps thickness was measured with ultrasound. After the intervention period, strength was assessed in cooperative patients and muscle biopsies were taken. Multivariable regression was performed to identify factors affecting muscle thickness loss. RESULTS Muscle thickness decreased less in the stimulated leg (-6 ± 16% versus -12 ± 15%, p = 0.014, n = 47). Strength was comparable. Opioid administration, minimal muscle contraction and more muscle thickness loss in the non-stimulated muscle were independently associated with better muscle thickness preservation. Stimulated muscles showed a shift towards larger myofibers and higher MyHC-I gene expression. NMES did not affect gene expression of other myofibrillary proteins, MuRF-1 or atrogin-1. Signs of myofiber necrosis and inflammation were comparable for both muscles. CONCLUSIONS NMES attenuated the loss of muscle mass, but not of strength, in critically ill patients. Preservation of muscle mass was more likely in patients receiving opioids, patients with a minimal muscle contraction during NMES and patients more prone to lose muscle mass. TRIAL REGISTRATION clinicaltrials.govNCT02133300.
Collapse
Affiliation(s)
- Johan Segers
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; Department of Intensive Care, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Daniel Langer
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Noppawan Charususin
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; Department of Physical therapy, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Weili Wei
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; Department of Respiratory and Critical Care, Tongji Hospital, Shangai, China
| | - Bregje Frickx
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Inge Demeyere
- Department of Intensive Care, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Beatrix Clerckx
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; Department of Intensive Care, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael Casaer
- Department of Intensive Care, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium; Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Sarah Derde
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Greet Van den Berghe
- Department of Intensive Care, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium; Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; Department of Intensive Care, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
44
|
Badjatia N, Sanchez S, Judd G, Hausladen R, Hering D, Motta M, Parikh G, Chang W, Morris N, Simard JM, Sorkin J, Wittenberg GF, Ryan AS. Neuromuscular Electrical Stimulation and High-Protein Supplementation After Subarachnoid Hemorrhage: A Single-Center Phase 2 Randomized Clinical Trial. Neurocrit Care 2020; 35:46-55. [PMID: 33150572 DOI: 10.1007/s12028-020-01138-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Aneurysmal subarachnoid hemorrhage (SAH) survivors live with long-term residual physical and cognitive disability. We studied whether neuromuscular electrical stimulation (NMES) and high-protein supplementation (HPRO) in the first 2 weeks after SAH could preserve neuromotor and cognitive function as compared to standard of care (SOC) for nutrition and mobilization. METHODS SAH subjects with a Hunt Hess (HH) grade > 1,modified Fisher score > 1 and BMI < 40 kg/m2 were randomly assigned to SOC or NMES + HPRO. NMES was delivered to bilateral quadricep muscles daily during two 30-min sessions along with HPRO (goal:1.8 g/kg/day) between post-bleed day (PBD) 0 and 14. Primary endpoint was atrophy in the quadricep muscle as measured by the percentage difference in the cross-sectional area from baseline to PBD14 on CT scan. All subjects underwent serial assessments of physical (short performance physical battery, SPPB) cognitive (Montreal Cognitive Assessment Scale, MoCA) and global functional recovery (modified Rankin Scale, mRS) at PBD 14, 42, and 90. RESULTS Twenty-five patients (SOC = 13, NMES + HPRO = 12) enrolled between December 2017 and January 2019 with no between-group differences in baseline characteristics (58 years old, 68% women, 50% HH > 3). Median duration of interventions was 12 days (range 9-14) with completion of 98% of NMES sessions and 83% of goal HPRO, and no reported serious adverse events. There was no difference in caloric intake between groups, but HPRO + NMES group received more protein (1.5 ± 0.5 g/kg/d v 0.9 ± 0.4 g/kg/d, P < 0.01). Muscle atrophy was less in NMES + HPRO than the SOC group (6.5 ± 4.1% vs 12.5 ± 6.4%, P 0.01). Higher atrophy was correlated with lower daily protein intake (ρ = - 0.45, P = 0.03) and lower nitrogen balance (ρ = 0.47, P = 0.02); and worse 3 month SPPB (ρ = - 0.31, P = 0.1) and mRS (ρ = 0.4, P = 0.04). NMES + HPRO patients had a better median [25%,75] SPPB (12[10, 12] v. 9 [4, 12], P = 0.01) and mRS (1[0,2] v.2[1, 3], P = 0.04) than SOC at PBD 90. CONCLUSIONS NMES + HPRO appears to be feasible and safe acutely after SAH and may reduce acute quadriceps muscle wasting with a lasting benefit on recovery after SAH.
Collapse
Affiliation(s)
- Neeraj Badjatia
- Program in Trauma, University of Maryland School of Medicine, 22 S. Greene Street G7K19, Baltimore, MD, 21201, USA.
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, USA.
| | - Stephanie Sanchez
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, USA
| | - Gabriella Judd
- Department of Clinical Nutrition, University of Maryland Medical Center, Baltimore, USA
| | - Rachel Hausladen
- Advanced Practice Provider Program, Neurocritical Care Unit, University of Maryland Medical Center, Baltimore, USA
| | - David Hering
- Advanced Practice Provider Program, Neurocritical Care Unit, University of Maryland Medical Center, Baltimore, USA
| | - Melissa Motta
- Program in Trauma, University of Maryland School of Medicine, 22 S. Greene Street G7K19, Baltimore, MD, 21201, USA
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, USA
| | - Gunjan Parikh
- Program in Trauma, University of Maryland School of Medicine, 22 S. Greene Street G7K19, Baltimore, MD, 21201, USA
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, USA
| | - Wendy Chang
- Program in Trauma, University of Maryland School of Medicine, 22 S. Greene Street G7K19, Baltimore, MD, 21201, USA
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Nicholas Morris
- Program in Trauma, University of Maryland School of Medicine, 22 S. Greene Street G7K19, Baltimore, MD, 21201, USA
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - John Sorkin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - George F Wittenberg
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Alice S Ryan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
45
|
Strasser B. Importance of Assessing Muscular Fitness in Secondary Care. Front Genet 2020; 11:583810. [PMID: 33193714 PMCID: PMC7655542 DOI: 10.3389/fgene.2020.583810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| |
Collapse
|
46
|
High-intensity interval training on body composition, functional capacity and biochemical markers in healthy young versus older people. Exp Gerontol 2020; 141:111096. [PMID: 32971179 DOI: 10.1016/j.exger.2020.111096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of the following study was to identify the effects of a 12-week high-intensity interval training (HIIT) program on the modification of parameters of body composition, functional capacity as well as lipid and glucose homeostasis markers in healthy young people versus older adults. DESIGN Experimental trial. METHODS Healthy young (YNG, 21 ± 1 years, BMI 26.01 ± 2.64 kg·m-2, n = 10) and older (OLD, 66 ± 5 years, BMI 27.43 ± 3.11 kg·m-2, n = 10) males were subjected to 12 weeks of HIIT. Prior to and immediately after the HIIT program, dual-energy X-ray absorptiometry, dominant leg strength one-repetition maximum (1-RM), maximal oxygen uptake (VO2max) and physical performance tests were performed. Blood samples were also taken. RESULTS Flexibility (P = 0.000), static balance (P = 0.004), timed up and go test (TUG) (P = 0.015), short physical performance battery (SPPB) (P = 0.005), dominant leg strength 1-RM (P = 0.012), and VO2max (P = 0.000) were better in YNG versus OLD. HIIT improved the % whole-body fat mass (P = 0.031), leg lean mass (P = 0.047), dominant leg strength 1-RM (P = 0.025), VO2max (P = 0.000), fasting cholesterol (P = 0.017) and fasting glucose (P = 0.006). TUG was improved by the training only in the OLD group (P = 0.016), but insulin (P = 0.002) and the homeostasis model assessment - insulin sensitivity (HOMA-IS) (P = 0.000) decreased only in the YNG group. HOMA-IS was correlated positive with BMI (R = 0.474, P = 0.035) and with whole-body fat mass (R = 0.517, P = 0.019). CONCLUSIONS HIIT for 12 weeks improves parameters of body composition, functional capacity and fasting serum lipid and glucose homeostasis markers in healthy young and older participants. Young people are shown as benefiting more.
Collapse
|
47
|
Snijders T, Aussieker T, Holwerda A, Parise G, Loon LJC, Verdijk LB. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol (Oxf) 2020; 229:e13465. [PMID: 32175681 PMCID: PMC7317456 DOI: 10.1111/apha.13465] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Within the current paradigm of the myonuclear domain theory, it is postulated that a linear relationship exists between muscle fibre size and myonuclear content. The myonuclear domain is kept (relatively) constant by adding additional nuclei (supplied by muscle satellite cells) during muscle fibre hypertrophy and nuclear loss (by apoptosis) during muscle fibre atrophy. However, data from recent animal studies suggest that myonuclei that are added to support muscle fibre hypertrophy are not lost within various muscle atrophy models. Such myonuclear permanence has been suggested to constitute a mechanism allowing the muscle fibre to (re)grow more efficiently during retraining, a phenomenon referred to as "muscle memory." The concept of "muscle memory by myonuclear permanence" has mainly been based on data attained from rodent experimental models. Whether the postulated mechanism also holds true in humans remains largely ambiguous. Nevertheless, there are several studies in humans that provide evidence to potentially support or contradict (parts of) the muscle memory hypothesis. The goal of the present review was to discuss the evidence for the existence of "muscle memory" in both animal and human models of muscle fibre hypertrophy as well as atrophy. Furthermore, to provide additional insight in the potential presence of muscle memory by myonuclear permanence in humans, we present new data on previously performed exercise training studies. Finally, suggestions for future research are provided to establish whether muscle memory really exists in humans.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Thorben Aussieker
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Andy Holwerda
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences McMaster University Hamilton ON Canada
| | - Luc J. C. Loon
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | | |
Collapse
|
48
|
Liu M, Luo J, Zhou J, Zhu X. Intervention effect of neuromuscular electrical stimulation on ICU acquired weakness: A meta-analysis. Int J Nurs Sci 2020; 7:228-237. [PMID: 32685621 PMCID: PMC7355203 DOI: 10.1016/j.ijnss.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/27/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Objective The early use of neuromuscular electrical stimulation (NMES) to prevent intensive care unit-acquired weakness (ICU-AW) in critical patients is still a controversial topic. We conducted a systematic review to clarify the effectiveness of NMES in preventing ICU-AW. Methods The Cochrane Library, PubMed, EMBASE, MEDLINE, Web of Science, Ovid, CNKI, Wanfang, VIP, China Biology Medicine disc (CBMdisc) and other databases were searched for randomized controlled trials on the influence of NMES on ICU-AW. The studies were selected according to the inclusion and exclusion criteria. After data and quality were evaluated, a meta-analysis was performed by RevMan 5.3 software. Results A total of 11 randomized controlled trials with 576 patients were included. The meta-analysis results showed that NMES can improve muscle strength [MD = 1.78, 95% CI (0.44, 3.12, P = 0.009); shorten the mechanical ventilation (MV) time [SMD = −0.65, 95% CI (−1.03, −0.27, P = 0.001], ICU length of stay [MD = −3.41, 95% CI (−4.58, −4.24), P < 0.001], and total length of stay [MD = −3.97, 95% CI (−6.89, −1.06, P = 0.008]; improve the ability of patients to perform activities of daily living [SMD = 0.9, 95% CI (0.45, 1.35), P = 0.001]; and increase walking distance [MD = 239.03, 95% CI (179.22298.85), P < 0.001]. However, there is no evidence indicating that NMES can improve the functional status of ICU patients during hospitalization, promote the early awakening of patients or reduce mortality (P > 0.05). Conclusion Early implementation of the NMES intervention in ICU patients can prevent ICU-AW and improve their quality of life by enhancing their muscle strength and shortening the MV duration, length of stay in the ICU and total length of stay in the hospital.
Collapse
Affiliation(s)
- Miao Liu
- School of Nursing, Yangtze University, Hubei, China.,Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jian Luo
- Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jun Zhou
- School of Nursing, Yangtze University, Hubei, China
| | - Xiaomin Zhu
- School of Nursing, Yangtze University, Hubei, China
| |
Collapse
|
49
|
Dirks ML, Miotto PM, Goossens GH, Senden JM, Petrick HL, Kranenburg J, Loon LJ, Holloway GP. Short‐term bed rest‐induced insulin resistance cannot be explained by increased mitochondrial H2O2emission. J Physiol 2019; 598:123-137. [DOI: 10.1113/jp278920] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Marlou L. Dirks
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ the Netherlands
| | - Paula M. Miotto
- Human Health & Nutritional SciencesUniversity of Guelph Guelph Ontario Canada
| | - Gijs H. Goossens
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ the Netherlands
| | - Joan M. Senden
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ the Netherlands
| | - Heather L. Petrick
- Human Health & Nutritional SciencesUniversity of Guelph Guelph Ontario Canada
| | - Janneau Kranenburg
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ the Netherlands
| | - Luc J.C. Loon
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ the Netherlands
| | - Graham P. Holloway
- Human Health & Nutritional SciencesUniversity of Guelph Guelph Ontario Canada
| |
Collapse
|
50
|
Waldauf P, Gojda J, Urban T, Hrušková N, Blahutová B, Hejnová M, Jiroutková K, Fric M, Jánský P, Kukulová J, Stephens F, Řasová K, Duška F. Functional electrical stimulation-assisted cycle ergometry in the critically ill: protocol for a randomized controlled trial. Trials 2019; 20:724. [PMID: 31842936 PMCID: PMC6915865 DOI: 10.1186/s13063-019-3745-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Intensive care unit (ICU)-acquired weakness is the most important cause of failed functional outcome in survivors of critical care. Most damage occurs during the first week when patients are not cooperative enough with conventional rehabilitation. Functional electrical stimulation-assisted cycle ergometry (FES-CE) applied within 48 h of ICU admission may improve muscle function and long-term outcome. METHODS An assessor-blinded, pragmatic, single-centre randomized controlled trial will be performed. Adults (n = 150) mechanically ventilated for < 48 h from four ICUs who are estimated to need > 7 days of critical care will be randomized (1:1) to receive either standard of care or FES-CE-based intensified rehabilitation, which will continue until ICU discharge. PRIMARY OUTCOME quality of life measured by 36-Item Short Form Health Survey score at 6 months. SECONDARY OUTCOMES functional performance at ICU discharge, muscle mass (vastus ultrasound, N-balance) and function (Medical Research Council score, insulin sensitivity). In a subgroup (n = 30) we will assess insulin sensitivity and perform skeletal muscle biopsies to look at mitochondrial function, fibre typing and regulatory protein expression. TRIAL REGISTRATION ClinicalTrials.gov, NCT02864745. Registered on 12 August 2016.
Collapse
Affiliation(s)
- Petr Waldauf
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Jan Gojda
- Department of Internal Medicine II, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Tomáš Urban
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Natália Hrušková
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Barbora Blahutová
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Marie Hejnová
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Kateřina Jiroutková
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Michal Fric
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Pavel Jánský
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Jana Kukulová
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic
| | - Francis Stephens
- College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Kamila Řasová
- Department of Rehabilitation, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - František Duška
- Department of Anaesthesiology and Intensive Care Medicine, Charles University, 3rd Faculty of Medicine and KAR FNKV University Hospital, Fac Med 3, Srobarova 50, 10034, Prague, Czech Republic.
| |
Collapse
|