1
|
Palmer AT, Watts MR, Timko KJ, Pinnell EF, Keefer KA, Gorman O, Hostnik LD, Burns TA. Corticosteroid Administration Enhances the Glycemic, Insulinemic, and Incretin Responses to a High-Protein Mixed Meal in Adult Horses. J Vet Intern Med 2025; 39:e17305. [PMID: 40062690 PMCID: PMC11891927 DOI: 10.1111/jvim.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Corticosteroids are used routinely in horses and induce insulin dysregulation (ID). Nutrition is important for ID management and includes low nonstructural carbohydrate (NSC) diets and, often, high-protein ration balancers (RB). Insulin and incretin secretion increase after high-protein meals; corticosteroids may influence these effects. HYPOTHESIS A high-protein mixed meal will induce hyperinsulinemia and increased concentrations of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) in horses with ID; dexamethasone (DEX) will amplify this effect. ANIMALS Five horses with naturally occurring ID. METHODS Horses underwent an IV glucose tolerance test and a feed challenge test (FCT; 1 kg RB). Tests were repeated after DEX administration (0.08 mg/kg PO q24h, 7 days). Insulin, glucose, and incretin dynamics were compared pre- and post-DEX. RESULTS Corticosteroids exacerbated post-prandial hyperinsulinemia and hyperglycemia after a high-protein meal. The FCT area under the curve for insulin (AUCINS) after DEX was significantly higher than baseline (558 ± 182 μIU/mL × min vs. 257 ± 93.9 μIU/mL × min; p = 0.03). The maximum concentration of GIP (CmaxGIP) after DEX (381 ± 70.6 pg/mL) was significantly higher than baseline (262 ± 13.7 pg/mL; p = 0.013). The AUC for GLP-1 (AUCGLP-1; 31.1 ± 15.2 vs. 50 ± 20.2 pg/mL; p = 0.19) and the Cmax of GLP-1 (CmaxGLP-1; 39.1 ± 25.3 vs. 29.6 ± 12.2 pg/mL; p = 0.32) did not differ between DEX and baseline. CONCLUSIONS AND CLINICAL IMPORTANCE Metabolic responses to a high-protein mixed meal were exacerbated by corticosteroids. Horses receiving corticosteroids had larger GIP responses, which may enhance post-prandial hyperinsulinemia.
Collapse
Affiliation(s)
- Allison T. Palmer
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Mauria R. Watts
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Kathryn J. Timko
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Erin F. Pinnell
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Katelyn A. Keefer
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Olivia Gorman
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Laura D. Hostnik
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Teresa A. Burns
- The Ohio State University College of Veterinary MedicineColumbusOhioUSA
| |
Collapse
|
2
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
3
|
Zhang Q, Guan G, Liu J, Hu W, Jin P. Gut microbiota dysbiosis and decreased levels of acetic and propionic acid participate in glucocorticoid-induced glycolipid metabolism disorder. mBio 2024; 15:e0294323. [PMID: 38226811 PMCID: PMC10865841 DOI: 10.1128/mbio.02943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Long-term/high-dose glucocorticoid (GC) use results in glycolipid metabolism disorder, which severely limits its clinical application. The role of the gut microbiota and its metabolites in GC-induced glycolipid metabolism disorder remains unclear. Our previous human study found that obvious gut microbiota dysbiosis characterized by an increasing abundance of Proteobacteria and a decreased abundance of Lachnospiraceae and Faecalibacterium were observed in patients with endogenous hypercortisolism. In this study, we established a mouse model of GC-induced glycolipid metabolism disorder (Dex group) and found that the relative abundances of Proteobacteria and Parasuttrerella were increased, while the abundances of Lachnospiraceae, Faecalibacterium, and Lachnospiraceae_NK4A136_group were decreased significantly in the Dex group. Compared with the control group, serum total short-chain fatty acids (SCFAs), acetic acid, propionic acid, and GLP-1 levels were all decreased in the Dex group. The mRNA expression of the GPR41 receptor and Pcsk1 in the colon was significantly decreased in the Dex group. Furthermore, GC-induced glycolipid metabolism disorder could be alleviated by depletion of the gut microbiota or fecal bacteria transplantation with control bacteria. The abundances of Lachnospiraceae_NK4A136_group and the serum GLP-1 levels were significantly increased, while the abundances of Proteobacteria and Parasutterella were significantly decreased after fecal bacteria transplantation with control bacteria. Our work indicates that gut microbiota dysbiosis and decreased levels of serum acetic acid and propionic acid may participate in GC-induced glycolipid metabolism disorder. These findings may provide novel insights into the prevention and treatment of GC-induced metabolic disorders.IMPORTANCEThe role of the gut microbiota in glucocorticoid (GC)-induced glycolipid metabolism disorder remains unclear. In our study, gut microbiota dysbiosis characterized by an increased abundance of Proteobacteria/Parasuttrerella and a decreased abundance of Lachnospiraceae_NK4A136_group was observed in mice with GC-induced glycolipid metabolism disorder. Some bacteria were shared in our previous study in patients with endogenous hypercortisolism and the mouse model used in the study. Furthermore, the depletion of the gut microbiota and fecal bacteria transplantation with control bacteria could alleviate GC-induced glycolipid metabolism disorder. Plasma acetic acid, propionic acid, and GLP-1 and the mRNA expression of the GPR41 receptor and Pcsk1 in the colon were decreased significantly in mice with GC-induced glycolipid metabolism disorder, which indicated that the gut microbiota/SCFA/GPR41/GLP-1 axis may participate in GC-induced glycolipid metabolism disorder. Our findings indicate that the gut microbiota may serve as a novel therapeutic target for GC-related metabolic disorders.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaopeng Guan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenmu Hu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Kuckuck S, van der Valk ES, Scheurink AJW, van der Voorn B, Iyer AM, Visser JA, Delhanty PJD, van den Berg SAA, van Rossum EFC. Glucocorticoids, stress and eating: The mediating role of appetite-regulating hormones. Obes Rev 2023; 24:e13539. [PMID: 36480471 PMCID: PMC10077914 DOI: 10.1111/obr.13539] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Disrupted hormonal appetite signaling plays a crucial role in obesity as it may lead to uncontrolled reward-related eating. Such disturbances can be induced not only by weight gain itself but also by glucocorticoid overexposure, for example, due to chronic stress, disease, or medication use. However, the exact pathways are just starting to be understood. Here, we present a conceptual framework of how glucocorticoid excess may impair hormonal appetite signaling and, consequently, eating control in the context of obesity. The evidence we present suggests that counteracting glucocorticoid excess can lead to improvements in appetite signaling and may therefore pose a crucial target for obesity prevention and treatment. In turn, targeting hormonal appetite signals may not only improve weight management and eating behavior but may also decrease detrimental effects of glucocorticoid excess on cardio-metabolic outcomes and mood. We conclude that gaining a better understanding of the relationship between glucocorticoid excess and circulating appetite signals will contribute greatly to improvements in personalized obesity prevention and treatment.
Collapse
Affiliation(s)
- Susanne Kuckuck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Bibian van der Voorn
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Sjoerd A A van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Chemistry, Erasmus MC, Rotterdam, Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| |
Collapse
|
5
|
Li M, Zhang J, Yang G, Zhang J, Han M, Zhang Y, Liu Y. Effects of Anterior Pituitary Adenomas' Hormones on Glucose Metabolism and Its Clinical Implications. Diabetes Metab Syndr Obes 2023; 16:409-424. [PMID: 36816815 PMCID: PMC9937076 DOI: 10.2147/dmso.s397445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pituitary adenomas have recently become more common and their incidence is increasing yearly. Functional pituitary tumors commonly secrete prolactin, growth hormones, and adrenocorticotropic hormones, which cause diseases such as prolactinoma, acromegaly, and Cushing's disease, but rarely secrete luteinizing, follicle-stimulating, thyroid-stimulating, and melanocyte-stimulating hormones. In addition to the typical clinical manifestations of functional pituitary tumors caused by excessive hormone levels, some pituitary tumors are also accompanied by abnormal glucose metabolism. The effects of these seven hormones on glucose metabolism are important for the treatment of diabetes secondary to pituitary tumors. This review focuses on the effects of hormones on glucose metabolism, providing important clues for the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
6
|
Salehidoost R, Korbonits M. Glucose and lipid metabolism abnormalities in Cushing's syndrome. J Neuroendocrinol 2022; 34:e13143. [PMID: 35980242 DOI: 10.1111/jne.13143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Prolonged excess of glucocorticoids (GCs) has adverse systemic effects leading to significant morbidities and an increase in mortality. Metabolic alterations associated with the high level of the GCs are key risk factors for the poor outcome. These include GCs causing excess gluconeogenesis via upregulation of key enzymes in the liver, a reduction of insulin sensitivity in skeletal muscle, liver and adipose tissue by inhibiting the insulin receptor signalling pathway, and inhibition of insulin secretion in beta cells leading to dysregulated glucose metabolism. In addition, chronic GC exposure leads to an increase in visceral adipose tissue, as well as an increase in lipolysis resulting in higher circulating free fatty acid levels and in ectopic fat deposition. Remission of hypercortisolism improves these metabolic changes, but very often does not result in full resolution of the abnormalities. Therefore, long-term monitoring of metabolic variables is needed even after the resolution of the excess GC levels.
Collapse
Affiliation(s)
- Rezvan Salehidoost
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Barbot M, Mondin A, Regazzo D, Guarnotta V, Basso D, Giordano C, Scaroni C, Ceccato F. Incretin Response to Mixed Meal Challenge in Active Cushing's Disease and after Pasireotide Therapy. Int J Mol Sci 2022; 23:ijms23095217. [PMID: 35563608 PMCID: PMC9105040 DOI: 10.3390/ijms23095217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Cushing’s disease (CD) causes diabetes mellitus (DM) through different mechanisms in a significant proportion of patients. Glucose metabolism has rarely been assessed with appropriate testing in CD; we aimed to evaluate hormonal response to a mixed meal tolerance test (MMTT) in CD patients and analyzed the effect of pasireotide (PAS) on glucose homeostasis. To assess gastro-entero-pancreatic hormones response in diabetic (DM+) and non-diabetic (DM−) patients, 26 patients with CD underwent an MMTT. Ten patients were submitted to a second MMTT after two months of PAS 600 µg twice daily. The DM+ group had significantly higher BMI, waist circumference, glycemia, HbA1c, ACTH levels and insulin resistance indexes than DM− (p < 0.05). Moreover, DM+ patients exhibited increased C-peptide (p = 0.004) and glucose area under the curve (AUC) (p = 0.021) during MMTT, with a blunted insulinotropic peptide (GIP) response (p = 0.035). Glucagon levels were similar in both groups, showing a quick rise after meals. No difference in estimated insulin secretion and insulin:glucagon ratio was found. After two months, PAS induced an increase in both fasting glycemia and HbA1c compared to baseline (p < 0.05). However, this glucose trend after meal did not worsen despite the blunted insulin and C-peptide response to MMTT. After PAS treatment, patients exhibited reduced insulin secretion (p = 0.005) and resistance (p = 0.007) indexes. Conversely, glucagon did not change with a consequent impairment of insulin:glucagon ratio (p = 0.009). No significant differences were observed in incretins basal and meal-induced levels. Insulin resistance confirmed its pivotal role in glucocorticoid-induced DM. A blunted GIP response to MMTT in the DM+ group might suggest a potential inhibitory role of hypercortisolism on enteropancreatic axis. As expected, PAS reduced insulin secretion but also induced an improvement in insulin sensitivity as a result of cortisol reduction. No differences in incretin response to MMTT were recorded during PAS therapy. The discrepancy between insulin and glucagon trends while on PAS may be an important pathophysiological mechanism in this iatrogenic DM; hence restoring insulin:glucagon ratio by either enhancing insulin secretion or reducing glucagon tone can be a potential therapeutic target.
Collapse
Affiliation(s)
- Mattia Barbot
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile 105, 35128 Padova, Italy; (A.M.); (D.R.); (C.S.); (F.C.)
- Correspondence:
| | - Alessandro Mondin
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile 105, 35128 Padova, Italy; (A.M.); (D.R.); (C.S.); (F.C.)
| | - Daniela Regazzo
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile 105, 35128 Padova, Italy; (A.M.); (D.R.); (C.S.); (F.C.)
| | - Valentina Guarnotta
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, UOC di Malattie Endocrine, del Ricambio e della Nutrizione, Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (C.G.)
| | - Daniela Basso
- Laboratory Medicine Unit, Department of Medicine DIMED, University-Hospital of Padova, 35128 Padova, Italy;
| | - Carla Giordano
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, UOC di Malattie Endocrine, del Ricambio e della Nutrizione, Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (C.G.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile 105, 35128 Padova, Italy; (A.M.); (D.R.); (C.S.); (F.C.)
| | - Filippo Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile 105, 35128 Padova, Italy; (A.M.); (D.R.); (C.S.); (F.C.)
| |
Collapse
|
8
|
Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients 2022; 14:nu14091903. [PMID: 35565871 PMCID: PMC9102123 DOI: 10.3390/nu14091903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome (MetS) risks cardiovascular diseases due to its associated Dyslipidemia. It is proposed that a low-carbohydrate, high-fat (LCHF) diet positively ameliorates the MetS and reverses insulin resistance. Therefore, we aimed to investigate the protecting effect of the LCHF diet on MetS-associated Dyslipidemia in an experimental animal model. Forty male Sprague-Dawley rats were divided into four groups (10/group): the control group, dexamethasone-induced MetS (DEX) (250 µg/kg/day), LCHF-fed MetS group (DEX + LCHF), and High-Carbohydrate-Low-Fat-fed MetS group (DEX + HCLF). At the end of the four-week experiment, fasting glucose, insulin, lipid profile (LDL-C, HDL-C, Triglyceride), oxidized-LDL, and small dense-LDL using the ELISA technique were estimated. HOMA-IR, Apo B/Apo A1 ratio, and TG/HDL were calculated. Moreover, histological examination of the liver by H & E and Sudan III stain was carried out. In the DEX group, rats showed a significant (p < 0.05) increase in the HOMA-IR, atherogenic parameters, such as s-LDL, OX-LDL, Apo B/Apo A1 ratio, and TG/HDL. The LCHF diet significantly improved the parameters of Dyslipidemia (p < 0.05) by decreasing the Apo B/Apo A1 and TG/HDL-C ratios. Decreased steatosis in LCHF-fed rats compared to HCLF was also revealed. In conclusion, the LCHF diet ameliorates MetS-associated Dyslipidemia, as noted from biochemical results and histological examination.
Collapse
|
9
|
Henry SS, Ross RA, Rasgon N. Relevance of Sex-Specific Metabolic Phenotypes in Diagnosis and Treatment of Mood Disorders and PTSD. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20211221-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Rep 2021; 73:1020-1032. [PMID: 34003475 PMCID: PMC8413152 DOI: 10.1007/s43440-021-00274-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
Depression is a highly prevalent mood disorder and one of the major health concerns in modern society. Moreover, it is characterized by a high prevalence of coexistence with many other diseases including metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity. Currently used antidepressant drugs, which mostly target brain monoaminergic neurotransmission, have limited clinical efficacy. Although the etiology of depression has not been fully elucidated, current scientific data emphasize the role of neurotrophic factors deficiencies, disturbed homeostasis between the nervous system and the immune and endocrine systems, as well as disturbances in brain energy metabolism and dysfunctions in the gut-brain axis as important factors in the pathogenesis of this neuropsychiatric disorder. Therefore, therapeutic options that could work in a way other than classic antidepressants are being sought to increase the effectiveness of the treatment. Interestingly, glucagon-like peptide-1 receptor agonists (GLP-1RAs), used in the treatment of T2DM and obesity, are known to show pro-cognitive and neuroprotective properties, and exert modulatory effects on immune, endocrine and metabolic processes in the central nervous system. This review article discusses the potential antidepressant effects of GLP-1RAs, especially in the context of their action on the processes related to neuroprotection, inflammation, stress response, energy metabolism, gut-brain crosstalk and the stability of the gut microbiota.
Collapse
Affiliation(s)
- Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland.
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland
| |
Collapse
|
11
|
de Oliveira DM, Tura A, Vasques ACJ, Camilo DF, Lima MM, de Lemos-Marini SHV, Goncalves EM, Guerra-Junior G, Geloneze B. Insulin Resistance in Congenital Adrenal Hyperplasia is Compensated for by Reduced Insulin Clearance. J Clin Endocrinol Metab 2021; 106:e1574-e1585. [PMID: 33421070 DOI: 10.1210/clinem/dgab010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Congenital adrenal hyperplasia (CAH) patients have potential normal longevity. However, a greater risk for cardiovascular disease has been reported. Insulin resistance and hyperinsulinemia have been described in CAH patients, whereas the prevalence of overt type 2 diabetes is not higher in CAH than in normal population. OBJECTIVE To examine the contributions of insulin secretion and of hepatic insulin clearance to compensatory hyperinsulinemia in young insulin-resistant adults with classic CAH due to 21-hydroxylase deficiency (21-OHD). DESIGN Cross-sectional. SETTING University outpatient clinics. METHODS Fifty-one participants: 21 controls, and 30 CAH (15 virilizing and 15 salt-wasting phenotypes), female/male (33/18), age (mean [SD]): 24.0 (3.6) years, body mass index: 24.6 (4.9)kg/m2 with normal glucose tolerance, were submitted to a hyperglycemic clamp study. MAIN OUTCOME MEASURES Insulin sensitivity, beta cell function, and hepatic insulin clearance using appropriate modeling. RESULTS We found an increased insulin resistance in 21-OHD. The systemic hyperinsulinemia (posthepatic insulin delivery) was elevated in CAH patients. No increases were observed in insulin secretory rate (beta cell function) in the first phase or during the hyperglycemic clamp. The increase in insulin concentrations was totally due to a ~33% reduction in insulin clearance. CONCLUSION 21-OHD nonobese subjects have reduced insulin sensitivity and beta cell response unable to compensate for the insulin resistance, probably due to overexposure to glucocorticoids. Compensatory hyperinsulinemia is most related with reduced hepatic insulin clearance. The exclusive adaptation of the liver acts as a gating mechanism to regulate the access of insulin to insulin-sensitive tissues to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Daniel Minutti de Oliveira
- Laboratory of Investigation in Metabolism and Diabetes (LIMED), Gastrocentro, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Ana Carolina Junqueira Vasques
- Laboratory of Investigation in Metabolism and Diabetes (LIMED), Gastrocentro, University of Campinas (UNICAMP), Campinas, Brazil
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Daniella Fernandes Camilo
- Laboratory of Investigation in Metabolism and Diabetes (LIMED), Gastrocentro, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Miranda Lima
- Laboratory of Investigation in Metabolism and Diabetes (LIMED), Gastrocentro, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Ezequiel Moreira Goncalves
- Growth and Development Laboratory-Center for Investigation in Pediatrics (CIPED), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gil Guerra-Junior
- Pediatric Endocrinology Department, University of Campinas (UNICAMP), Campinas, Brazil
- Growth and Development Laboratory-Center for Investigation in Pediatrics (CIPED), University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes (LIMED), Gastrocentro, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci 2021; 22:ijms22020623. [PMID: 33435513 PMCID: PMC7827500 DOI: 10.3390/ijms22020623] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and protein metabolism. Globally, GCs are presented as ‘flight and fight’ hormones and, in that purpose, they are catabolic hormones required to mobilize storage to provide energy for the organism. If acute GC secretion allows fast metabolic adaptations to respond to danger, stress, or metabolic imbalance, long-term GC exposure arising from treatment or Cushing’s syndrome, progressively leads to insulin resistance and, in fine, cardiometabolic disorders. In this review, we briefly summarize the pharmacological actions of GC and metabolic dysregulations observed in patients exposed to an excess of GCs. Next, we describe in detail the molecular mechanisms underlying GC-induced insulin resistance in adipose tissue, liver, muscle, and to a lesser extent in gut, bone, and brain, mainly identified by numerous studies performed in animal models. Finally, we present the paradoxical effects of GCs on beta cell mass and insulin secretion by the pancreas with a specific focus on the direct and indirect (through insulin-sensitive organs) effects of GCs. Overall, a better knowledge of the specific action of GCs on several organs and their molecular targets may help foster the understanding of GCs’ side effects and design new drugs that possess therapeutic benefits without metabolic adverse effects.
Collapse
|
13
|
Shikata M, Ashida K, Goto Y, Nagayama A, Iwata S, Yano M, Hasuzawa N, Hara K, Mawatari K, Sakata K, Tsuruta M, Wada N, Nomura M. Pasireotide-induced hyperglycemia in a patient with Cushing's disease: Potential use of sodium-glucose cotransporter 2 inhibitor and glucagon-like peptide-1 receptor agonist for treatment. Clin Case Rep 2020; 8:2613-2618. [PMID: 33363790 PMCID: PMC7752440 DOI: 10.1002/ccr3.3230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Pasireotide improves hypercortisolemia and induces hyperglycemia via somatostatin receptor type-5 stimulation. GLP-1RA and SGLT2 inhibitor potentially help regulate hyperglycemia in patients with Cushing's disease, especially after pasireotide administration.
Collapse
Affiliation(s)
- Masato Shikata
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Kenji Ashida
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Yuka Goto
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Ayako Nagayama
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Shimpei Iwata
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Mamiko Yano
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Nao Hasuzawa
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Kento Hara
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Kazutoshi Mawatari
- Division of Cardiovascular MedicineDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Kiyohiko Sakata
- Department of NeurosurgeryKurume University School of MedicineFukuokaJapan
| | - Munehisa Tsuruta
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Nobuhiko Wada
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| | - Masatoshi Nomura
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKurume University School of MedicineFukuokaJapan
| |
Collapse
|
14
|
Bastin M, Andreelli F. [Corticosteroid-induced diabetes: Novelties in pathophysiology and management]. Rev Med Interne 2020; 41:607-616. [PMID: 32782164 DOI: 10.1016/j.revmed.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
Diabetes frequently occurs during corticosteroid treatment, sometimes necessitating urgent therapeutic management, with insulin for example. Corticosteroids induce insulin resistance in the liver, adipocytes and skeletal muscle, and have direct deleterious effects on insulin secretion. The development of insulin resistance during corticosteroid treatment, and the insufficient adaptation of insulin secretion, are key elements in the pathophysiology of corticosteroid-induced diabetes. The capacity of pancreatic β-cells to increase insulin secretion in response to insulin resistance is partly genetically determined. A familial history of type 2 diabetes is, therefore, a major risk factor for diabetes development on corticosteroid treatment. Corticosteroid treatments are usually initiated at a fairly high dose, which is subsequently decreased to the lowest level sufficient to achieve disease control. Pharmacological management of diabetes is needed in patients with blood glucose levels exceeding 2.16 g/l (12 mmol/l) and insulin therapy can be started when blood glucose levels are higher than 3.6 g/l (20 mmol/l) with clinical symptoms of diabetes. Insulin can then be replaced with oral hypoglycemic compounds when both blood glucose levels and corticosteroid dose have decreased. Patient education is essential, particularly for the management of hypoglycemia when corticosteroids are withdrawn or their dose tapered.
Collapse
Affiliation(s)
- M Bastin
- CHU Pitié-Salpêtrière, Service de diabétologie-métabolismes, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - F Andreelli
- CHU Pitié-Salpêtrière, Service de diabétologie-métabolismes, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Impairment of glucose metabolism is commonly encountered in Cushing's syndrome. It is the source of significant morbidity and mortality even after successful treatment of Cushing's. This review is to understand the recent advances in understanding the pathophysiology of diabetes mellitus from excess cortisol. RECENT FINDINGS In-vitro studies have led to significant advancement in understanding the molecular effects of cortisol on glucose metabolism. Some of these findings have been translated with human data. There is marked reduction in insulin action and glucose disposal with a concomitant, insufficient increase in insulin secretion. Cortisol has a varied effect on adipose tissue, with increased lipolysis in subcutaneous adipose tissue in the extremities, and increased lipogenesis in visceral and subcutaneous truncal adipose tissue. SUMMARY Cushing's syndrome results in marked impairment in insulin action and glucose disposal resulting in hyperglycemia. Further studies are required to understand the effect on incretin secretion and action, gastric emptying, and its varied effect on adipose tissue.
Collapse
Affiliation(s)
- Anu Sharma
- Division of Diabetes and Endocrinology, University of Utah School of Medicine, Salt Lake City, UT
| | - Adrian Vella
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo College of Medicine, Rochester, MN
| |
Collapse
|
16
|
Alanyl-glutamine Heals Indomethacin-induced Gastric Ulceration in Rats Via Antisecretory and Anti-apoptotic Mechanisms. J Pediatr Gastroenterol Nutr 2019; 69:710-718. [PMID: 31764439 DOI: 10.1097/mpg.0000000000002474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Alanylglutamine (AG) is a dipeptide that fuels enterocytes and has a coadjuvant role during gut healing. The current study aimed to investigate the potential ulcer-healing effect of AG in indomethacin-induced gastropathy. METHODS Animals (n = 10 rats/group) were randomly allocated into 5 groups. Gastric ulcerated rats were administered AG, AG + dexamethasone, or pantoprazole after indomethacin exposure. RESULTS Comparable to pantoprazole, AG inhibited H-KATPase pump, and elevated the pH of gastric juice. Moreover, the dipeptide increased the serum/mucosal contents of glucagon-like peptide-1 (GLP-1), pS473-Akt, and cyclin-D1. On the contrary, AG abated serum tumor necrosis factor-α and gastric mucosal content of pS45-β catenin, pS9-GSK3β, pS133-CREB, pS536-NF-κB, H2O2, claudin-1, and caspase-3. The administration of dexamethasone before AG hampered its effect on almost all the measured parameters. CONCLUSIONS AG confers its antiulcerogenic/antisecretory potentials by repressing the proton pump to increase the gastric juice pH via boosting p-CREB, p-Akt, p-GSK-3β, and GLP-1. Also, it inhibits apoptosis through suppressing nuclear factor-kappa B/tumor necrosis factor-α/H2O2/claudin-1 cue. This trajectory contributes to loosen the tight junction priming AG-mediated GLP-1/β-catenin/cyclin-D1 that results in pronounced increase in gastric mucosa proliferation. Therefore, the crosstalk between multiple pathways orchestrates the action of AG against gastric ulceration.
Collapse
|
17
|
Latek D, Rutkowska E, Niewieczerzal S, Cielecka-Piontek J. Drug-induced diabetes type 2: In silico study involving class B GPCRs. PLoS One 2019; 14:e0208892. [PMID: 30650080 PMCID: PMC6334951 DOI: 10.1371/journal.pone.0208892] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023] Open
Abstract
A disturbance of glucose homeostasis leading to type 2 diabetes mellitus (T2DM) is one of the severe side effects that may occur during a prolonged use of many drugs currently available on the market. In this manuscript we describe the most common cases of drug-induced T2DM, discuss available pharmacotherapies and propose new ones. Among various pharmacotherapies of T2DM, incretin therapies have recently focused attention due to the newly determined crystal structure of incretin hormone receptor GLP1R. Incretin hormone receptors: GLP1R and GIPR together with the glucagon receptor GCGR regulate food intake and insulin and glucose secretion. Our study showed that incretin hormone receptors, named also gut hormone receptors as they are expressed in the gastrointestinal tract, could potentially act as unintended targets (off-targets) for orally administrated drugs. Such off-target interactions, depending on their effect on the receptor (stimulation or inhibition), could be beneficial, like in the case of incretin mimetics, or unwanted if they cause, e.g., decreased insulin secretion. In this in silico study we examined which well-known pharmaceuticals could potentially interact with gut hormone receptors in the off-target way. We observed that drugs with the strongest binding affinity for gut hormone receptors were also reported in the medical information resources as the least disturbing the glucose homeostasis among all drugs in their class. We suggested that those strongly binding molecules could potentially stimulate GIPR and GLP1R and/or inhibit GCGR which could lead to increased insulin secretion and decreased hepatic glucose production. Such positive effect on the glucose homeostasis could compensate for other, adverse effects of pharmacotherapy which lead to drug-induced T2DM. In addition, we also described several top hits as potential substitutes of peptidic incretin mimetics which were discovered in the drug repositioning screen using gut hormone receptors structures against the ZINC15 compounds subset.
Collapse
Affiliation(s)
- Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Barbot M, Ceccato F, Scaroni C. Diabetes Mellitus Secondary to Cushing's Disease. Front Endocrinol (Lausanne) 2018; 9:284. [PMID: 29915558 PMCID: PMC5994748 DOI: 10.3389/fendo.2018.00284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Associated with important comorbidities that significantly reduce patients' overall wellbeing and life expectancy, Cushing's disease (CD) is the most common cause of endogenous hypercortisolism. Glucocorticoid excess can lead to diabetes, and although its prevalence is probably underestimated, up to 50% of patients with CD have varying degrees of altered glucose metabolism. Fasting glycemia may nevertheless be normal in some patients in whom glucocorticoid excess leads primarily to higher postprandial glucose levels. An oral glucose tolerance test should thus be performed in all CD patients to identify glucose metabolism abnormalities. Since diabetes mellitus (DM) is a consequence of cortisol excess, treating CD also serves to alleviate impaired glucose metabolism. Although transsphenoidal pituitary surgery remains the first-line treatment for CD, it is not always effective and other treatment strategies may be necessary. This work examines the main features of DM secondary to CD and focuses on antidiabetic drugs and how cortisol-lowering medication affects glucose metabolism.
Collapse
|
19
|
Scaroni C, Zilio M, Foti M, Boscaro M. Glucose Metabolism Abnormalities in Cushing Syndrome: From Molecular Basis to Clinical Management. Endocr Rev 2017; 38:189-219. [PMID: 28368467 DOI: 10.1210/er.2016-1105] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
An impaired glucose metabolism, which often leads to the onset of diabetes mellitus (DM), is a common complication of chronic exposure to exogenous and endogenous glucocorticoid (GC) excess and plays an important part in contributing to morbidity and mortality in patients with Cushing syndrome (CS). This article reviews the pathogenesis, epidemiology, diagnosis, and management of changes in glucose metabolism associated with hypercortisolism, addressing both the pathophysiological aspects and the clinical and therapeutic implications. Chronic hypercortisolism may have pleiotropic effects on all major peripheral tissues governing glucose homeostasis. Adding further complexity, both genomic and nongenomic mechanisms are directly induced by GCs in a context-specific and cell-/organ-dependent manner. In this paper, the discussion focuses on established and potential pathologic molecular mechanisms that are induced by chronically excessive circulating levels of GCs and affect glucose homeostasis in various tissues. The management of patients with CS and DM includes treating their hyperglycemia and correcting their GC excess. The effects on glycemic control of various medical therapies for CS are reviewed in this paper. The association between DM and subclinical CS and the role of screening for CS in diabetic patients are also discussed.
Collapse
Affiliation(s)
- Carla Scaroni
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Marialuisa Zilio
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Genèva, Switzerland
| | - Marco Boscaro
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| |
Collapse
|
20
|
Thombare K, Ntika S, Wang X, Krizhanovskii C. Long chain saturated and unsaturated fatty acids exert opposing effects on viability and function of GLP-1-producing cells: Mechanisms of lipotoxicity. PLoS One 2017; 12:e0177605. [PMID: 28520810 PMCID: PMC5433723 DOI: 10.1371/journal.pone.0177605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/28/2017] [Indexed: 12/17/2022] Open
Abstract
Background and aim Fatty acids acutely stimulate GLP-1 secretion from L-cells in vivo. However, a high fat diet has been shown to reduce the density of L-cells in the mouse intestine and a positive correlation has been indicated between L-cell number and GLP-1 secretion. Thus, the mechanism of fatty acid-stimulated GLP-1 secretion, potential effects of long-term exposure to elevated levels of different fatty acid species, and underlying mechanisms are not fully understood. In the present study, we sought to determine how long-term exposure to saturated (16:0) and unsaturated (18:1) fatty acids, by direct effects on GLP-1-producing cells, alter function and viability, and the underlying mechanisms. Methods GLP-1-secreting GLUTag cells were cultured in the presence/absence of saturated (16:0) and unsaturated (18:1) fatty acids (0.125 mM for 48 h, followed by analyses of viability and apoptosis, as well as involvement of fatty acid oxidation, free fatty acid receptors (FFAR1) and ceramide synthesis. In addition, effects on the expression of proglucagon, prohormone convertase 1/3 (PC1/3), free fatty acid receptors (FFAR1, FFAR3), sodium glucose co-transporter (SGLT) and subsequent secretory response were determined. Results Saturated (16:0) and unsaturated (18:1) fatty acids exerted opposing effects on the induction of apoptosis (1.4-fold increase in DNA fragmentation by palmitate and a 0.5-fold reduction by oleate; p<0.01). Palmitate-induced apoptosis was associated with increased ceramide content and co-incubation with Fumonisin B1 abolished this lipo apoptosis. Oleate, on the other hand, reduced ceramide content, and—unlike palmitate—upregulated FFAR1 and FFAR3, evoking a 2-fold increase in FFAR1-mediated GLP-1 secretion following acute exposure to 0.125 mmol/L palmitate; (p<0.05). Conclusion/Interpretation Saturated (16:0), but not unsaturated (18:1), fatty acids induce ceramide-mediated apoptosis of GLP-1-producing cells. Further, unsaturated fatty acids confer lipoprotection, enhancing viability and function of GLP-1-secreting cells. These data provide potential mechanistic insight contributing to reduced L-cell mass following a high fat diet and differential effects of saturated and unsaturated fatty acids on GLP-1 secretion in vivo.
Collapse
Affiliation(s)
- Ketan Thombare
- Södertälje Hospital, Department of Internal Medicine, Södertälje, Sweden
| | - Stelia Ntika
- Södertälje Hospital, Department of Internal Medicine, Södertälje, Sweden
| | - Xuan Wang
- Södertälje Hospital, Department of Internal Medicine, Södertälje, Sweden
| | - Camilla Krizhanovskii
- Södertälje Hospital, Department of Internal Medicine, Södertälje, Sweden
- Karolinska Institute, Department of Molecular Medicine and Surgery, Stockholm, Sweden
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
21
|
Gilor C, Niessen S, Furrow E, DiBartola S. What's in a Name? Classification of Diabetes Mellitus in Veterinary Medicine and Why It Matters. J Vet Intern Med 2016; 30:927-40. [PMID: 27461721 PMCID: PMC5108445 DOI: 10.1111/jvim.14357] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes Mellitus (DM) is a syndrome caused by various etiologies. The clinical manifestations of DM are not indicative of the cause of the disease, but might be indicative of the stage and severity of the disease process. Accurately diagnosing and classifying diabetic dogs and cats by the underlying disease process is essential for current and future studies on early detection, prevention, and treatment of underlying disease. Here, we review the current etiology-based classification of DM and definitions of DM types in human medicine and discuss key points on the pathogenesis of each DM type and prediabetes. We then review current evidence for application of this etiology-based classification scheme in dogs and cats. In dogs, we emphasize the lack of consistent evidence for autoimmune DM (Type 1) and the possible importance of other DM types such as DM associated with exocrine pancreatic disease. While most dogs are first examined because of DM in an insulin-dependent state, early and accurate diagnosis of the underlying disease process could change the long-term outcome and allow some degree of insulin independence. In cats, we review the appropriateness of using the umbrella term of Type 2 DM and differentiating it from DM secondary to other endocrine disease like hypersomatotropism. This differentiation could have crucial implications on treatment and prognosis. We also discuss the challenges in defining and diagnosing prediabetes in cats.
Collapse
Affiliation(s)
- C. Gilor
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOH
| | - S.J.M. Niessen
- Department of Clinical Science and ServicesRoyal Veterinary CollegeUniversity of LondonNorth MymmsHertfordshireUK
| | - E. Furrow
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMN
| | - S.P. DiBartola
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOH
| |
Collapse
|
22
|
Boloori A, Saghafian S, Chakkera HA, Cook CB. Characterization of Remitting and Relapsing Hyperglycemia in Post-Renal-Transplant Recipients. PLoS One 2015; 10:e0142363. [PMID: 26551468 PMCID: PMC4638338 DOI: 10.1371/journal.pone.0142363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background Hyperglycemia following solid organ transplant is common among patients without pre-existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple times, which if continued, causes new-onset diabetes after transplantation (NODAT). Objective To study if the first and recurrent incidence of hyperglycemia are affected differently by immunosuppressive regimens, demographic and medical-related risk factors, and inpatient hyperglycemic conditions (i.e., an emphasis on the time course of post-transplant complications). Methods We conducted a retrospective analysis of 407 patients who underwent kidney transplantation at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior to transplant. For this category of patients, we evaluated the impact of (1) immunosuppressive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence of hyperglycemia in one year post-transplant. We employed two versions of Cox regression analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and (2) a time-independent model to analyze the first incidence of hyperglycemia. Results Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus (P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia, while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P = 0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for the recurrent cases of hyperglycemia. Discussion This study draws attention to the importance of analyzing the risk factors associated with a disease (specially a chronic one) with respect to both its first and recurrent incidence, as well as carefully differentiating these two perspectives: a fact that is currently overlooked in the literature.
Collapse
Affiliation(s)
- Alireza Boloori
- Department of Industrial Engineering, School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Soroush Saghafian
- Harvard Kennedy School, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Harini A. Chakkera
- Division of Nephrology and Transplantation, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America
| | - Curtiss B. Cook
- Division of Endocrinology, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America
| |
Collapse
|