1
|
Lucaciu RL, Coste SC, Hangan AC, Iancu M, Orășan OH, Cozma A, Gog Bogdan S, Procopciuc LM. Pathogenesis and Clinical Management of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:5717. [PMID: 40565181 PMCID: PMC12193568 DOI: 10.3390/ijms26125717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Revised: 06/08/2025] [Accepted: 06/12/2025] [Indexed: 06/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic progressive liver disease with a substantial impact on global health. Given that MASLD has a complex etiology, it is a multisystemic disease, a multidisciplinary approach is required when treating MASLD. The optimal drug for MASLD should diminish steatosis, fibrosis and inflammation in the liver. Although the pharmaceutical industry is still lagging in developing an approved pharmacologic therapy for MASLD, research has recently intensified, and many molecules that are in the final stages of clinical trials are expected to be approved in the coming few years. The current review updated information related to the MASLD pathogenesis, diagnosis and therapeutic options, how patients are clinically managed nowadays, and what to expect in the near future.
Collapse
Affiliation(s)
- Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sorina Cezara Coste
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.C.C.); (O.H.O.); (A.C.)
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mihaela Iancu
- Medical Informatics and Biostatistics, Faculty of Nursing and Health Science, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orășan
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.C.C.); (O.H.O.); (A.C.)
| | - Angela Cozma
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.C.C.); (O.H.O.); (A.C.)
| | - Sidonia Gog Bogdan
- Department of Sugery and ATI, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Lucia Maria Procopciuc
- Medical Biochemistry, Department of Molecular Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Young M, Ceddia RP, Thompson-Gray A, Reyes D, Cassada JB, Ayala JE, McGuinness OP, Collins S, Hamm HE. Sex differences in metabolic regulation by Gi/o-coupled receptor modulation of exocytosis. Front Pharmacol 2025; 16:1544456. [PMID: 40176888 PMCID: PMC11962901 DOI: 10.3389/fphar.2025.1544456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025] Open
Abstract
Background Presynaptic Gi/o coupled GPCRs can act as negative feedback regulators of neurotransmitter release via Gβγ effector modulation through two mechanisms: decreased calcium influx and direct inhibition of membrane fusion by soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE). Previously, we discovered that truncation of the last three C-terminal amino acids of SNAP25 (SNAP25Δ3) prevents Gβγ-SNARE interaction, effectively removing the braking mechanism on neurotransmitter release. We have demonstrated enhanced metabolic protection in male SNAP25Δ3/Δ3 mice housed at room temperature (22°C), including increased adipose tissue beiging and glucose uptake and enhanced insulin sensitivity, rendering them resistant to diet-induced obesity (DIO). When male SNAP25Δ3/Δ3 mice were housed at thermoneutrality (30°C), all metabolic protection was abolished, suggesting sympathetic tone is important for the phenotypes. Methods We housed male and female mice at either standard room temperature (21°C) or at thermoneutrality (30°C) and fed them a high fat diet (HFD) for 8 weeks. Glucose tolerance tests were performed before and after the 8 weeks of HFD along with body composition analyses. Organs were then dissected for mass analysis as well as immunohistochemistry. Additionally, we ovariectomized female mice to investigate the role of sex hormones in our phenotypes. Finally, we housed mice in Sable Promethion chambers at various environmental temperatures to investigate the effect of environmental temperature on basal metabolic rates. Results We found SNAP25Δ3/Δ3 female mice exhibited the same metabolic protection at RT (22°C) and displayed enhanced metabolic protection from DIO compared to standard chow just as males did. However, female SNAP25Δ3/Δ3 mice display persistent metabolic protection even when housed at thermoneutrality. In this study, we investigate the mechanisms behind this sex dependent persistent phenotype. Thermoneutral set point did not differ between sexes nor genotype, suggesting that metabolic protection is not due to a difference in hypothalamic temperature regulation. Metabolic protection in SNAP25Δ3/Δ3 persisted in ovariectomized mice despite increased weight gain compared to mice receiving sham operations. Conclusion This study has identified that there is not a sex-dependent difference for thermoneutral set point in mice. Additionally, there is a sex hormone independent mechanism driving the persistent metabolic protection of female SNAP25Δ3/Δ3 mice housed in thermoneutrality.
Collapse
Affiliation(s)
- Montana Young
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Ryan P. Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Analisa Thompson-Gray
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - David Reyes
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Jackson B. Cassada
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, IN, United States
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, IN, United States
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, IN, United States
| | - Heidi E. Hamm
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Wu K, Kuang J, Huang N, Sheng L, Li J, Li R, Gong L, Lu Q, Liu R, Sun R. Shouhui Tongbian Capsule ameliorates obesity by enhancing energy consumption and promoting lipolysis via cAMP-PKA pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156375. [PMID: 39848021 DOI: 10.1016/j.phymed.2025.156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND The prevalence of obesity and its associated diseases has sharply increased, becoming a global health issue. White adipose tissue (WAT), responsible for lipid storage via hyperplasia and hypertrophy, and brown adipose tissue (BAT), which facilitates energy dissipation, have increasingly been recognized as critical regulators of weight loss. Shouhui Tongbian Capsule (SHTB) has traditionally been used for detoxification, weight loss, and lipid reduction, and clinical evidence supports its use for relieving constipation. In traditional Chinese medicine (TCM), "dissipating turbidity" is seen as a shared approach to treating both constipation and obesity. Our evidence suggests that SHTB improves obesity and metabolic disorders, but the underlying mechanisms remain unclear. PURPOSE This study aimed to evaluate the pharmacological effects of SHTB on obesity and to explore the underlying mechanisms involved. METHODS Obese mice induced by a high-fat diet were treated with SHTB, and effects on body weight, adipose tissue, and metabolism were assessed. Active ingredients were identified through UPLC-MS, while metabolomics and RNA sequencing were performed to explore the mechanisms of SHTB in obesity, and molecular biology techniques validated its effects on energy consumption and lipolysis in adipose tissue. Finally, rescue experiments in vivo and in vitro confirmed the proposed mechanisms. RESULTS SHTB significantly reduced body weight, body fat percentage, and WAT mass while increasing BAT weight, and enhancing energy expenditure. Metabolomics and RNA sequencing indicated activation of the G-protein coupled receptor signaling and cAMP-PKA pathway, leading to increased lipolysis in WAT and enhanced thermogenesis in BAT. H89, a PKA agonist, counteracted these effects, supporting the involvement of cAMP-PKA signaling. CONCLUSION SHTB may prevent obesity by promoting lipolysis and enhancing BAT thermogenesis via the cAMP-PKA pathway, offering a potential therapeutic approach for obesity management.
Collapse
Affiliation(s)
- Kaiyi Wu
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Tianjin University of Traditional Chinese Medicine (TCM), Tianjin PR China
| | - Jiangying Kuang
- The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Lisong Sheng
- Advanced Medical Research Institute, Shandong University, Shandong University, Jinan, Shandong, PR China
| | - Jianchao Li
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Rongrong Li
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Liping Gong
- The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Qinghua Lu
- The Second Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Runping Liu
- Beijing University of Chinese Medicine, Beijing, PR China.
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Advanced Medical Research Institute, Shandong University, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Arianti R, Vinnai BÁ, Alrifai R, Karadsheh G, Al-Khafaji YQ, Póliska S, Győry F, Fésüs L, Kristóf E. Upregulation of inhibitor of DNA binding 1 and 3 is important for efficient thermogenic response in human adipocytes. Sci Rep 2024; 14:28272. [PMID: 39550428 PMCID: PMC11569133 DOI: 10.1038/s41598-024-79634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Brown and beige adipocytes can be activated by β-adrenergic agonist via cAMP-dependent signaling. Performing RNA-sequencing analysis in human cervical area-derived adipocytes, we found that dibutyryl-cAMP, which can mimic in vivo stimulation of browning and thermogenesis, enhanced the expression of browning and batokine genes and upregulated several signaling pathway genes linked to thermogenesis. We observed that the expression of inhibitor of DNA binding and cell differentiation (ID) 1 and particularly ID3 was strongly induced by the adrenergic stimulation. The degradation of ID1 and ID3 elicited by the ID antagonist AGX51 during thermogenic activation prevented the induction of proton leak respiration that reflects thermogenesis and abrogated cAMP analogue-stimulated upregulation of thermogenic genes and mitochondrial complex I, II, and IV subunits, independently of the proximal cAMP-PKA signaling pathway. The presented data suggests that ID proteins contribute to efficient thermogenic response of adipocytes during adrenergic stimulation.
Collapse
Affiliation(s)
- Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, 33134, Indonesia
| | - Boglárka Ágnes Vinnai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Rahaf Alrifai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyath Karadsheh
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Yousif Qais Al-Khafaji
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Abobeleira JP, Neto AC, Mauersberger J, Salazar M, Botelho M, Fernandes AS, Martinho M, Serrão MP, Rodrigues AR, Almeida H, Gouveia AM, Neves D. Evidence of Browning and Inflammation Features in Visceral Adipose Tissue of Women with Endometriosis. Arch Med Res 2024; 55:103064. [PMID: 39244839 DOI: 10.1016/j.arcmed.2024.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Patients with endometriosis tend to have a low body mass index, suggesting an inverse relationship between body fat and risk of disease. This is supported by evidence that miRNAs differentially expressed in endometriosis induce browning of pre-adipocytes in vitro. Thus, we hypothesize that endometriosis may underlie adipose tissue (AT) dysfunction and browning. AIMS Identify inflammation and browning processes in AT collected from endometriosis patients. METHODS Visceral and subcutaneous AT samples were obtained during endometriosis (n = 32) or uterine myoma (n = 14; controls) surgery. Blood catecholamines were determined by high-performance liquid chromatography while IL-6 and TGF-β levels were quantified by ELISA. Adipocyte cross-sectional areas were analyzed in H&E-stained sections by computer-assisted morphometry. Macrophages (F4/80; Galectin-3) and browning activation (UCP-1; PGC-1α) in tissues were identified by dual label immunofluorescence. Expression of inflammatory (IL-6; MCP-1; Galectin-3; CD206; TIMP1; TGF-β) and browning-related (UCP-1; PGC-1α; DIO2; CITED1; CIDEA; TMEM26; TBX1; PRDM16; PPAR-γ) molecules in AT were assessed by RT-PCR and Western blotting. RESULTS Compared to controls, patients presented smaller adipocytes, especially in VAT, and lower norepinephrine levels. Serum IL-6, but not TGF-β, was increased in patients. UCP-1, PGC-1α, IL-6, and MCP-1 were upregulated in VAT from endometriosis women, which also evidenced a reduction of CD206, relative to controls. However, no differences were found in mRNA expression of IL-6, TIMP1, and TGF-β nor Galectin-3 protein levels. In SAT, protein expression remained unchanged between patients and controls. CONCLUSIONS Our findings support an endometriosis' role as a pro-catabolic state along with local signals of VAT browning and inflammation.
Collapse
Affiliation(s)
- José Pedro Abobeleira
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Jan Mauersberger
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Maria Salazar
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Maria Botelho
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Ana Sofia Fernandes
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Margarida Martinho
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Maria Paula Serrão
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal.
| |
Collapse
|
7
|
Khani S, Topel H, Kardinal R, Tavanez AR, Josephrajan A, Larsen BDM, Gaudry MJ, Leyendecker P, Egedal NM, Güller AS, Stanic N, Ruppert PMM, Gaziano I, Hansmeier NR, Schmidt E, Klemm P, Vagliano LM, Stahl R, Duthie F, Krause JH, Bici A, Engelhard CA, Gohlke S, Frommolt P, Gnad T, Rada-Iglesias A, Pradas-Juni M, Schulz TJ, Wunderlich FT, Pfeifer A, Bartelt A, Jastroch M, Wachten D, Kornfeld JW. Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function. Nat Metab 2024; 6:1053-1075. [PMID: 38684889 PMCID: PMC11971047 DOI: 10.1038/s42255-024-01033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.
Collapse
Affiliation(s)
- Sajjad Khani
- Institute for Genetics, University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Hande Topel
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark
| | - Ronja Kardinal
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ana Rita Tavanez
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark
| | - Ajeetha Josephrajan
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark
| | | | - Michael James Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Philipp Leyendecker
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nadia Meincke Egedal
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark
| | - Aylin Seren Güller
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Natasa Stanic
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark
| | - Phillip M M Ruppert
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Elena Schmidt
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Lara-Marie Vagliano
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Rainer Stahl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens-Henning Krause
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ana Bici
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Christoph Andreas Engelhard
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Peter Frommolt
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Marta Pradas-Juni
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Copenhagen, Denmark
| | - Tim Julius Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Molecular Metabolism and Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Jan-Wilhelm Kornfeld
- Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
- Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
10
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
11
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
12
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Aboouf MA, Gorr TA, Hamdy NM, Gassmann M, Thiersch M. Myoglobin in Brown Adipose Tissue: A Multifaceted Player in Thermogenesis. Cells 2023; 12:2240. [PMID: 37759463 PMCID: PMC10526770 DOI: 10.3390/cells12182240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Brown adipose tissue (BAT) plays an important role in energy homeostasis by generating heat from chemical energy via uncoupled oxidative phosphorylation. Besides its high mitochondrial content and its exclusive expression of the uncoupling protein 1, another key feature of BAT is the high expression of myoglobin (MB), a heme-containing protein that typically binds oxygen, thereby facilitating the diffusion of the gas from cell membranes to mitochondria of muscle cells. In addition, MB also modulates nitric oxide (NO•) pools and can bind C16 and C18 fatty acids, which indicates a role in lipid metabolism. Recent studies in humans and mice implicated MB present in BAT in the regulation of lipid droplet morphology and fatty acid shuttling and composition, as well as mitochondrial oxidative metabolism. These functions suggest that MB plays an essential role in BAT energy metabolism and thermogenesis. In this review, we will discuss in detail the possible physiological roles played by MB in BAT thermogenesis along with the potential underlying molecular mechanisms and focus on the question of how BAT-MB expression is regulated and, in turn, how this globin regulates mitochondrial, lipid, and NO• metabolism. Finally, we present potential MB-mediated approaches to augment energy metabolism, which ultimately could help tackle different metabolic disorders.
Collapse
Affiliation(s)
- Mostafa A. Aboouf
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Nadia M. Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
15
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
16
|
Liu L, Wess J. Adipocyte G Protein-Coupled Receptors as Potential Targets for Novel Antidiabetic Drugs. Diabetes 2023; 72:825-834. [PMID: 37339353 PMCID: PMC10281224 DOI: 10.2337/db23-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023]
Abstract
The functional state of adipocytes plays a central role in regulating numerous important metabolic functions, including energy and glucose homeostasis. While white adipocytes store excess calories as fat (triglycerides) and release free fatty acids as a fuel source in times of need, brown and beige adipocytes (so-called thermogenic adipocytes) convert chemical energy stored in substrates (e.g., fatty acids or glucose) into heat, thus promoting energy expenditure. Like all other cell types, adipocytes express many G protein-coupled receptors (GPCRs) that are linked to four major functional classes of heterotrimeric G proteins (Gs, Gi/o, Gq/11, and G12/13). During the past few years, novel experimental approaches, including the use of chemogenetic strategies, have led to a series of important new findings regarding the metabolic consequences of activating or inhibiting distinct GPCR/G protein signaling pathways in white, brown, and beige adipocytes. This novel information should guide the development of novel drugs capable of modulating the activity of specific adipocyte GPCR signaling pathways for the treatment of obesity, type 2 diabetes, and related metabolic disorders.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
17
|
Guilherme A, Rowland LA, Wetoska N, Tsagkaraki E, Santos KB, Bedard AH, Henriques F, Kelly M, Munroe S, Pedersen DJ, Ilkayeva OR, Koves TR, Tauer L, Pan M, Han X, Kim JK, Newgard CB, Muoio DM, Czech MP. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep 2023; 42:112488. [PMID: 37163372 PMCID: PMC10286105 DOI: 10.1016/j.celrep.2023.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Guilherme A, Rowland LA, Wang H, Czech MP. The adipocyte supersystem of insulin and cAMP signaling. Trends Cell Biol 2023; 33:340-354. [PMID: 35989245 PMCID: PMC10339226 DOI: 10.1016/j.tcb.2022.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
Adipose tissue signals to brain, liver, and muscles to control whole body metabolism through secreted lipid and protein factors as well as neurotransmission, but the mechanisms involved are incompletely understood. Adipocytes sequester triglyceride (TG) in fed conditions stimulated by insulin, while in fasting catecholamines trigger TG hydrolysis, releasing glycerol and fatty acids (FAs). These antagonistic hormone actions result in part from insulin's ability to inhibit cAMP levels generated through such G-protein-coupled receptors as catecholamine-activated β-adrenergic receptors. Consistent with these antagonistic signaling modes, acute actions of catecholamines cause insulin resistance. Yet, paradoxically, chronically activating adipocytes by catecholamines cause increased glucose tolerance, as does insulin. Recent results have helped to unravel this conundrum by revealing enhanced complexities of these hormones' signaling networks, including identification of unexpected common signaling nodes between these canonically antagonistic hormones.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
20
|
GPCR in Adipose Tissue Function-Focus on Lipolysis. Biomedicines 2023; 11:biomedicines11020588. [PMID: 36831123 PMCID: PMC9953751 DOI: 10.3390/biomedicines11020588] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as "novel" GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.
Collapse
|
21
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
22
|
Yang XD, Ge XC, Jiang SY, Yang YY. Potential lipolytic regulators derived from natural products as effective approaches to treat obesity. Front Endocrinol (Lausanne) 2022; 13:1000739. [PMID: 36176469 PMCID: PMC9513423 DOI: 10.3389/fendo.2022.1000739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemic obesity is contributing to increases in the prevalence of obesity-related metabolic diseases and has, therefore, become an important public health problem. Adipose tissue is a vital energy storage organ that regulates whole-body energy metabolism. Triglyceride degradation in adipocytes is called lipolysis. It is closely tied to obesity and the metabolic disorders associated with it. Various natural products such as flavonoids, alkaloids, and terpenoids regulate lipolysis and can promote weight loss or improve obesity-related metabolic conditions. It is important to identify the specific secondary metabolites that are most effective at reducing weight and the health risks associated with obesity and lipolysis regulation. The aims of this review were to identify, categorize, and clarify the modes of action of a wide diversity of plant secondary metabolites that have demonstrated prophylactic and therapeutic efficacy against obesity by regulating lipolysis. The present review explores the regulatory mechanisms of lipolysis and summarizes the effects and modes of action of various natural products on this process. We propose that the discovery and development of natural product-based lipolysis regulators could diminish the risks associated with obesity and certain metabolic conditions.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xing-Cheng Ge
- Xiangxing College, Hunan University of Chinese Medicine, Changsha, China
| | - Si-Yi Jiang
- Department of Pharmacy, Medical College, Yueyang Vocational Technical College, YueYang, China
| | - Yong-Yu Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Melanocortin-5 Receptor: Pharmacology and Its Regulation of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23158727. [PMID: 35955857 PMCID: PMC9369360 DOI: 10.3390/ijms23158727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R) has unique tissue expression patterns, pharmacological properties, and physiological functions. Different from the other four MCR subtypes, MC5R is widely distributed in both the central nervous system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predominant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus. Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization, and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological properties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out knowledge gaps that need to be explored in the future.
Collapse
|
24
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
25
|
Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling. Proc Natl Acad Sci U S A 2022; 119:2119678119. [PMID: 35149557 PMCID: PMC8851525 DOI: 10.1073/pnas.2119678119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
N-myristoylation on glycine is an irreversible modification that has long been recognized to govern protein localization and function. In contrast, the biological roles of lysine myristoylation remain ill-defined. We demonstrate that the cytoplasmic scaffolding protein, gravin-α/A kinase-anchoring protein 12, is myristoylated on two lysine residues embedded in its carboxyl-terminal protein kinase A (PKA) binding domain. Histone deacetylase 11 (HDAC11) docks to an adjacent region of gravin-α and demyristoylates these sites. In brown and white adipocytes, lysine myristoylation of gravin-α is required for signaling via β2- and β3-adrenergic receptors (β-ARs), which are G protein-coupled receptors (GPCRs). Lysine myristoylation of gravin-α drives β-ARs to lipid raft membrane microdomains, which results in PKA activation and downstream signaling that culminates in protective thermogenic gene expression. These findings define reversible lysine myristoylation as a mechanism for controlling GPCR signaling and highlight the potential of inhibiting HDAC11 to manipulate adipocyte phenotypes for therapeutic purposes.
Collapse
|
26
|
Abstract
The role of β-adrenergic receptors (βARs) in adipose tissue to promote lipolysis and the release of fatty acids and nonshivering thermogenesis in brown fat has been studied for so many decades that one would think there is nothing left to discover. With the rediscovery of brown fat in humans and renewed interest in UCP1 and uncoupled mitochondrial respiration, it seems that a review of adipose tissue as an organ, pivotal observations, and the investigators who made them would be instructive to understanding where the field stands now. The discovery of the β3-adrenergic receptor was important for accurately defining the pharmacology of the adipocyte, while the clinical targeting of this receptor for obesity and metabolic disease has had its highs and lows. Many questions still remain about how βARs regulate adipocyte metabolism and the signaling molecules through which they do it.
Collapse
Affiliation(s)
- Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
27
|
Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23031346. [PMID: 35163277 PMCID: PMC8836184 DOI: 10.3390/ijms23031346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in the adipose tissue. We examined the effect of H2S and polysulfides on adipose tissue lipolysis. H2S and polysulfide production by mesenteric adipose tissue explants in rats was measured. The effect of Na2S and Na2S4, the H2S and polysulfide donors, respectively, on lipolysis markers, plasma non-esterified fatty acids (NEFA) and glycerol, was examined. Na2S but not Na2S4 increased plasma NEFA and glycerol in a time- and dose-dependent manner. Na2S increased cyclic AMP but not cyclic GMP concentration in the adipose tissue. The effect of Na2S on NEFA and glycerol was abolished by the specific inhibitor of protein kinase A, KT5720. The effect of Na2S on lipolysis was not abolished by propranolol, suggesting no involvement of β-adrenergic receptors. In addition, Na2S had no effect on phosphodiesterase activity in the adipose tissue. Obesity induced by feeding rats a highly palatable diet for 1 month was associated with increased plasma NEFA and glycerol concentrations, as well as greater H2S production in the adipose tissue. In conclusion, H2S stimulates lipolysis and may contribute to the enhanced lipolysis associated with obesity.
Collapse
|
28
|
Bottermann K, Kalfhues L, Nederlof R, Hemmers A, Leitner LM, Oenarto V, Nemmer J, Pfeffer M, Raje V, Deenen R, Petzsch P, Zabri H, Köhrer K, Reichert AS, Grandoch M, Fischer JW, Herebian D, Stegbauer J, Harris TE, Gödecke A. Cardiomyocyte p38 MAPKα suppresses a heart-adipose tissue-neutrophil crosstalk in heart failure development. Basic Res Cardiol 2022; 117:48. [PMID: 36205817 PMCID: PMC9542472 DOI: 10.1007/s00395-022-00955-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 01/31/2023]
Abstract
Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.
Collapse
Affiliation(s)
- Katharina Bottermann
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Lisa Kalfhues
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Rianne Nederlof
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Anne Hemmers
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Lucia M Leitner
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Vici Oenarto
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Jana Nemmer
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Mirjam Pfeffer
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Vidisha Raje
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Rene Deenen
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Maria Grandoch
- Institute of Translational Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Jens W Fischer
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
- CARID-Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Postfach 101007, 40001, Düsseldorf, Germany.
- CARID-Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
29
|
Ceddia RP, Liu D, Shi F, Crowder MK, Mishra S, Kass DA, Collins S. Increased Energy Expenditure and Protection From Diet-Induced Obesity in Mice Lacking the cGMP-Specific Phosphodiesterase PDE9. Diabetes 2021; 70:2823-2836. [PMID: 34620617 PMCID: PMC8660992 DOI: 10.2337/db21-0100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022]
Abstract
Cyclic nucleotides cAMP and cGMP are important second messengers for the regulation of adaptive thermogenesis. Their levels are controlled not only by their synthesis, but also their degradation. Since pharmacological inhibitors of cGMP-specific phosphodiesterase 9 (PDE9) can increase cGMP-dependent protein kinase signaling and uncoupling protein 1 expression in adipocytes, we sought to elucidate the role of PDE9 on energy balance and glucose homeostasis in vivo. Mice with targeted disruption of the PDE9 gene, Pde9a, were fed nutrient-matched high-fat (HFD) or low-fat diets. Pde9a -/- mice were resistant to HFD-induced obesity, exhibiting a global increase in energy expenditure, while brown adipose tissue (AT) had increased respiratory capacity and elevated expression of Ucp1 and other thermogenic genes. Reduced adiposity of HFD-fed Pde9a -/- mice was associated with improvements in glucose handling and hepatic steatosis. Cold exposure or treatment with β-adrenergic receptor agonists markedly decreased Pde9a expression in brown AT and cultured brown adipocytes, while Pde9a -/- mice exhibited a greater increase in AT browning, together suggesting that the PDE9-cGMP pathway augments classical cold-induced β-adrenergic/cAMP AT browning and energy expenditure. These findings suggest PDE9 is a previously unrecognized regulator of energy metabolism and that its inhibition may be a valuable avenue to explore for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
| | - Mark K Crowder
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University and School of Medicine, Baltimore, MD
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University and School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University and School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University and School of Medicine, Baltimore, MD
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
30
|
Tsagkaraki E, Nicoloro SM, DeSouza T, Solivan-Rivera J, Desai A, Lifshitz LM, Shen Y, Kelly M, Guilherme A, Henriques F, Amrani N, Ibraheim R, Rodriguez TC, Luk K, Maitland S, Friedline RH, Tauer L, Hu X, Kim JK, Wolfe SA, Sontheimer EJ, Corvera S, Czech MP. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun 2021; 12:6931. [PMID: 34836963 PMCID: PMC8626495 DOI: 10.1038/s41467-021-27190-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.
Collapse
Affiliation(s)
- Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- University of Crete School of Medicine, Crete, 71003, Greece
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yuefei Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nadia Amrani
- University of Crete School of Medicine, Crete, 71003, Greece
| | - Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Tomas C Rodriguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stacy Maitland
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
31
|
Pydi SP, Barella LF, Zhu L, Meister J, Rossi M, Wess J. β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annu Rev Physiol 2021; 84:17-40. [PMID: 34705480 DOI: 10.1146/annurev-physiol-060721-092948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA; .,Current affiliation: Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| |
Collapse
|
32
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
33
|
Blackburn ML, Wankhade UD, Ono-Moore KD, Chintapalli SV, Fox R, Rutkowsky JM, Willis BJ, Tolentino T, Lloyd KCK, Adams SH. On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E47-E62. [PMID: 33969705 PMCID: PMC8321818 DOI: 10.1152/ajpendo.00662.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Renee Fox
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Brandon J Willis
- Mouse Biology Program, University of California, Davis, California
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
34
|
Jain S, Pydi SP, Jung YH, Scortichini M, Kesner EL, Karcz TP, Cook DN, Gavrilova O, Wess J, Jacobson KA. Adipocyte P2Y14 receptors play a key role in regulating whole-body glucose and lipid homeostasis. JCI Insight 2021; 6:146577. [PMID: 34027896 PMCID: PMC8262345 DOI: 10.1172/jci.insight.146577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is the major driver of the worldwide epidemic in type 2 diabetes (T2D). In the obese state, chronically elevated plasma free fatty acid levels contribute to peripheral insulin resistance, which can ultimately lead to the development of T2D. For this reason, drugs that are able to regulate lipolytic processes in adipocytes are predicted to have considerable therapeutic potential. Gi-coupled P2Y14 receptor (P2Y14R; endogenous agonist, UDP-glucose) is abundantly expressed in both mouse and human adipocytes. Because activated Gi-type G proteins exert an antilipolytic effect, we explored the potential physiological relevance of adipocyte P2Y14Rs in regulating lipid and glucose homeostasis. Metabolic studies indicate that the lack of adipocyte P2Y14R enhanced lipolysis only in the fasting state, decreased body weight, and improved glucose tolerance and insulin sensitivity. Mechanistic studies suggested that adipocyte P2Y14R inhibits lipolysis by reducing lipolytic enzyme activity, including ATGL and HSL. In agreement with these findings, agonist treatment of control mice with a P2Y14R agonist decreased lipolysis, an effect that was sensitive to inhibition by a P2Y14R antagonist. In conclusion, we demonstrate that adipose P2Y14Rs were critical regulators of whole-body glucose and lipid homeostasis, suggesting that P2Y14R antagonists might be beneficial for the therapy of obesity and T2D.
Collapse
Affiliation(s)
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | | | | | - Tadeusz P Karcz
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | |
Collapse
|
35
|
Henriques F, Bedard AH, Guilherme A, Kelly M, Chi J, Zhang P, Lifshitz LM, Bellvé K, Rowland LA, Yenilmez B, Kumar S, Wang Y, Luban J, Weinstein LS, Lin JD, Cohen P, Czech MP. Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Rep 2021; 32:107998. [PMID: 32755590 PMCID: PMC7433376 DOI: 10.1016/j.celrep.2020.107998] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
Adipocytes deficient in fatty acid synthase (iAdFASNKO) emit signals that mimic cold exposure to enhance the appearance of thermogenic beige adipocytes in mouse inguinal white adipose tissues (iWATs). Both cold exposure and iAdFASNKO upregulate the sympathetic nerve fiber (SNF) modulator Neuregulin 4 (Nrg4), activate SNFs, and require adipocyte cyclic AMP/protein kinase A (cAMP/PKA) signaling for beige adipocyte appearance, as it is blocked by adipocyte Gsα deficiency. Surprisingly, however, in contrast to cold-exposed mice, neither iWAT denervation nor Nrg4 loss attenuated adipocyte browning in iAdFASNKO mice. Single-cell transcriptomic analysis of iWAT stromal cells revealed increased macrophages displaying gene expression signatures of the alternately activated type in iAdFASNKO mice, and their depletion abrogated iWAT beiging. Altogether, these findings reveal that divergent cellular pathways are sufficient to cause adipocyte browning. Importantly, adipocyte signaling to enhance alternatively activated macrophages in iAdFASNKO mice is associated with enhanced adipose thermogenesis independent of the sympathetic neuron involvement this process requires in the cold. Henriques et al. show an alternative pathway to enhance thermogenesis through an adipocyte cAMP/PKA axis in denervated iWAT. Signals emanating from this pathway generate M2-type macrophages associated with iWAT browning.
Collapse
Affiliation(s)
- Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Karl Bellvé
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shreya Kumar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
36
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
37
|
Pydi SP, Barella LF, Meister J, Wess J. Key Metabolic Functions of β-Arrestins: Studies with Novel Mouse Models. Trends Endocrinol Metab 2021; 32:118-129. [PMID: 33358450 PMCID: PMC7855863 DOI: 10.1016/j.tem.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
β-Arrestin-1 and -2 are intracellular proteins that are able to inhibit signaling via G protein-coupled receptors (GPCRs). However, both proteins can also modulate cellular functions in a G protein-independent fashion. During the past few years, studies with mutant mice selectivity lacking β-arrestin-1 and/or -2 in metabolically important cell types have led to novel insights into the mechanisms through which β-arrestins regulate key metabolic processes in vivo, including whole-body glucose and energy homeostasis. The novel information gained from these studies should inform the development of novel drugs, including β-arrestin- or G protein-biased GPCR ligands, that could prove useful for the therapy of several important pathophysiological conditions, including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
38
|
El-Yazbi AF, Oudit GY. Adipose biology, cardiovascular, and cardiometabolic disease: novel insights and new targets for intervention. Clin Sci (Lond) 2020; 134:1473-1474. [PMID: 32579179 DOI: 10.1042/cs20200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Adipose biology research has grown rapidly offering new insights into the physiological and pathophysiological roles of different body fat depots. This Thematic Collection of Clinical Science brings a well-rounded timely view of the recent development in this field. We highlight the state of the art on adipose tissue function/dysfunction in the context of cardiovascular and metabolic pathologies.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Gavin Y Oudit
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|