1
|
Moreira BR, Vega J, García-Sánchez M, González-Fernández C, Avilés A, Bonomi-Barufi J, Figueroa FL. Photomorphogenic and Biochemical Effects of Radiation and Nitrate Availability on the Red Alga Plocamium cartilagineum. PLANTS (BASEL, SWITZERLAND) 2025; 14:1121. [PMID: 40219188 PMCID: PMC11991008 DOI: 10.3390/plants14071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Non-photosynthetic photoreceptors detecting different wavelength ranges in the UV and visible region of spectra may trigger algal acclimation and homeostasis. We studied Plocamium cartilagineum responses based on the saturation of photosynthesis by Amber light and supplementation by different light qualities, applying an experimental design able to simulate a daily cycle in a fully automated system. Thalli were exposed to Amber, Amber + UV-A, Amber + Blue and Amber + Green radiation treatments under two nitrate levels (60 and 240 μM) for enrichment lasting two weeks. P. cartilagineum photosynthesis and biochemistry were measured during different experimental periods. Photosynthesis showed only slight variations, emphasizing that other response variations could be activated by photomorphogenic pathways. Nitrate assimilation was higher in the treatments containing blue and green lights, potentially caused by increasing nitrate reductase activity. Photosynthetic pigments and mycosporine-like amino acids were affected over the two weeks, being mostly influenced by UV-A and blue radiations with the highest nitrate concentration. The shinorine content of thalli under blue radiation with 240 μM of nitrate increased at day 7, possibly modulated by a blue light photoreceptor. The increase in the bioactive compounds in the short-term by specific light qualities under optimal photosynthetic performance was found to be a relevant biotechnological strategy.
Collapse
Affiliation(s)
- Bruna Rodrigues Moreira
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Julia Vega
- Centro Experimental Grice Hutchisnon, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Lomas de San Julián, 2, 29004 Málaga, Spain; (J.V.); (M.G.-S.); (C.G.-F.); (A.A.)
| | - Marta García-Sánchez
- Centro Experimental Grice Hutchisnon, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Lomas de San Julián, 2, 29004 Málaga, Spain; (J.V.); (M.G.-S.); (C.G.-F.); (A.A.)
| | - Cristina González-Fernández
- Centro Experimental Grice Hutchisnon, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Lomas de San Julián, 2, 29004 Málaga, Spain; (J.V.); (M.G.-S.); (C.G.-F.); (A.A.)
| | - Antonio Avilés
- Centro Experimental Grice Hutchisnon, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Lomas de San Julián, 2, 29004 Málaga, Spain; (J.V.); (M.G.-S.); (C.G.-F.); (A.A.)
| | - José Bonomi-Barufi
- Laboratório de Ficologia, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Félix L. Figueroa
- Centro Experimental Grice Hutchisnon, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Lomas de San Julián, 2, 29004 Málaga, Spain; (J.V.); (M.G.-S.); (C.G.-F.); (A.A.)
| |
Collapse
|
2
|
Jiang Y, Khan NM, Ali A, Zhou G, Zhou Y, Li P, Wan Y. AcMYB176-Regulated AcCHS5 Enhances Salt Tolerance in Areca catechu by Modulating Flavonoid Biosynthesis and Reactive Oxygen Species Scavenging. Int J Mol Sci 2025; 26:3216. [PMID: 40244041 PMCID: PMC11989180 DOI: 10.3390/ijms26073216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
High-salinity stress induces severe oxidative damage in plants, leading to growth inhibition through cellular redox imbalance. Chalcone synthase (CHS), a pivotal enzyme in the flavonoid biosynthesis pathway, plays critical roles in plant stress adaptation. However, the molecular mechanisms underlying CHS-mediated salt tolerance remain uncharacterized in Areca catechu L., a tropical crop of high economic and ecological significance. Here, we systematically identified the CHS gene family in A. catechu and revealed tissue-specific and salt-stress-responsive expression patterns, with AcCHS5 exhibiting the most pronounced induction under salinity. Transgenic Arabidopsis overexpressing AcCHS5 displayed enhanced salt tolerance compared to wild-type plants, characterized by elevated activities of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), increased flavonoid accumulation, and reduced reactive oxygen species (ROS) accumulation. Furthermore, we identified the transcription factor AcMYB176 as a direct activator of AcCHS5 through binding to its promoter. Our findings demonstrate that the AcMYB176-AcCHS5 regulatory module enhances salt tolerance by orchestrating flavonoid biosynthesis and ROS scavenging. This study provides functional evidence of CHS-mediated salt adaptation in A. catechu and highlights its potential for improving stress resilience in tropical crops.
Collapse
Affiliation(s)
- Yiqi Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.J.); (N.M.K.); (A.A.); (P.L.)
| | - Noor Muhammad Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.J.); (N.M.K.); (A.A.); (P.L.)
| | - Akhtar Ali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.J.); (N.M.K.); (A.A.); (P.L.)
| | - Guangzhen Zhou
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.Z.); (Y.Z.)
| | - Yue Zhou
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.Z.); (Y.Z.)
| | - Panjing Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.J.); (N.M.K.); (A.A.); (P.L.)
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.J.); (N.M.K.); (A.A.); (P.L.)
- The Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.Z.); (Y.Z.)
| |
Collapse
|
3
|
Li X, Lu B, He J, Fan X, Zhai J. V-ATPase-Inspired Artificially Rectified Nanochannel Ion Pumps Using a TpPa-SO 3/TiO 2-C 3N 4 Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409834. [PMID: 40103430 DOI: 10.1002/smll.202409834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/22/2025] [Indexed: 03/20/2025]
Abstract
The cation transport pump is a critical process in the realm of organismal energy utilization and acquisition. In this study, a TpPa-SO3/TiO2-C3N4 nanochannel membrane is fabricated to emulate the energy-consuming ion pump mechanism of V-ATPase. The channels exhibit ion rectification properties, excellent cation selectivity due to negatively charged TpPa-SO3 groups, while the TiO2-C3N4 heterojunction acted as the light-harnessing component for counter-gradient ion transport, enabling light-driven cation pumping through their synergistic effect. Asymmetric visible light irradiation on one side of the TpPa-SO3/TiO2-C3N4 nanochannel membrane generates a built-in electric field across the membrane due to the intrinsic photoelectronic properties of TiO2-C3N4, driving cation transport against the concentration gradients and demonstrating an ion-pumping effect. Impressively, the nanochannels can utilize external light energy to generate a chemical potential gradient, enabling an entropy reduction process similar to reverse concentration gradient transport in living organisms. These distinctive ion rectification and pumping properties offer great potential for advancements in ion circuits and energy conversion systems, expanding the frontiers of scientific exploration.
Collapse
Affiliation(s)
- Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Qi M, Taunt HN, Bečková M, Xia Z, Trinugroho JP, Komenda J, Nixon PJ. Enhancing the production of chlorophyll f in the cyanobacterium Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2025; 177:e70169. [PMID: 40139952 PMCID: PMC11946780 DOI: 10.1111/ppl.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
One potential approach to improve the productivity of cyanobacteria and microalgae is to enhance photosynthetic efficiency by introducing far-red absorbing pigment molecules (such as chlorophylls f and d) into the photosynthetic apparatus to expand the range of photosynthetically active radiation. We have shown previously that expressing the ChlF subunit of Chroococcidiopsis thermalis PCC 7203 in the model cyanobacterium Synechocystis sp. PCC 6803 (Syn6803) is sufficient to drive the production of chlorophyll f (Chl f), but only to low levels (0.24% Chl f/Chl a). By using the strong Pcpc560 promoter and an N-terminal truncated derivative of ChlF, we have been able to increase the yield of Chl f in white light by over 30-fold to about 8.2% Chl f/Chl a, close to the level displayed by far-red photoacclimated C. thermalis 7203. Additionally, we demonstrate that ChlF from Fisherella thermalis PCC 7521, like ChlF from C. thermalis 7203, assembles into a variant of the monomeric photosystem II (PSII) core complex termed the super-rogue PSII complex when expressed in Syn6803. This contrasts with the originally reported formation of a ChlF homodimeric complex in Synechococcus sp. PCC 7002. Overall, our work is an important starting point for mechanistic and structural studies of super-rogue PSII and for incorporating Chl f into the photosynthetic apparatus of Syn6803.
Collapse
Affiliation(s)
- Man Qi
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
| | - Henry N. Taunt
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
- Present address:
Baseimmune, BioScience Innovation CentreLondonUK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Center AlgatechTřeboňCzech Republic
| | - Zhi Xia
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
| | - Joko P. Trinugroho
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
- Present address:
Research Center for Genetic Engineering, Research Organization for Life Science and Environment, National Research and Innovation AgencyCibinongBogorIndonesia
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Center AlgatechTřeboňCzech Republic
| | - Peter J. Nixon
- Sir Ernst Chain Building‐Wolfson Laboratories, Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
5
|
Karami S, Shiran B, Ravash R. Molecular investigation of how drought stress affects chlorophyll metabolism and photosynthesis in leaves of C3 and C4 plant species: A transcriptome meta-analysis. Heliyon 2025; 11:e42368. [PMID: 39981367 PMCID: PMC11840503 DOI: 10.1016/j.heliyon.2025.e42368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Drought stress has a significant impact on photosynthesis in plants, leading to reduced photosynthesis rates and affecting plant growth and yield. Understanding the effects of drought stress on photosynthetic pathways, particularly in C3 and C4 plants, is crucial for maximizing agricultural productivity and maintaining food security. In this study, we analyzed RNA-seq data from leaves of common wheat (Triticum aestivum) and sorghum (Sorghum bicolor), as representatives of C3 and C4, using a meta-analysis approach to investigate the photosynthesis-related genes involved in the response to drought stress. We identified specific genes and components of the photosynthesis pathway that are affected by drought stress. The findings suggest that wheat and sorghum respond differently to drought stress, with sorghum showing a more effective defense system against photoinhibition and damage to photosystems. On the other hand, it seems that in wheat, in order to deal with oxidative stress, the expression of homologous genes of C4 enzyme and genes involved in heme and siroheme synthesis pathway has increased under stress. This is probably due to the higher photoinhibition in C3 photosynthetic system compared to C4. Furthermore, drought stress affected chlorophyll biosynthesis and degradation pathways in both wheat and sorghum, but compared with sorghum, drought stress had a greater inhibitory effect on chlorophyll biosynthesis in wheat, which indicates the difference in their ability to cope with photoinhibition.
Collapse
Affiliation(s)
- Shima Karami
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
6
|
An W, Zhao M, Chen L, Li Q, Yu L, Chen S, Ma J, Cao X, Zhang S, Chi W, Ji D. LcASR enhances tolerance to abiotic stress in Leymus chinensis and Arabidopsis thaliana by improving photosynthetic performance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2752-2769. [PMID: 39555628 DOI: 10.1111/tpj.17144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
As a crucial forage grass, Leymus chinensis plays significant roles in soil and water conservation owing to its robust stress resistance. However, the underlying molecular mechanisms of its stress tolerance remain unclear. In this study, a novel gene, designated as LcASR (Abiotic Stress Resistance in Leymus chinensis), imparting resilience to both high light and drought, was identified. Under normal growth conditions, heterologous overexpression of LcASR in Arabidopsis (HO lines) showed no significant difference in appearance compared to wild-type. Nevertheless, HO lines accumulate significantly higher chlorophyll content during the dark-to-light transition compared to the wild-type, indicating that the LcASR protein participates in chlorophyll synthesis during chloroplast development. Meanwhile, transgenic Arabidopsis and L. chinensis plants exhibited resistance to abiotic stresses such as high light and drought. Photosystem complexes analysis revealed that LHCII proteins remained stable within their respective complexes during high light stress. We hypothesize that LcASR may play a role in fine tuning of chlorophyll synthesis to enable plant adaptation to diverse stress conditions. Moreover, overexpression of LcASR in L. chinensis led to agronomically valuable traits such as deeper green color, higher biomass accumulation, prolonged withering period, and extended grazing durations. This study uncovers a novel gene in L. chinensis that enhances forage yield and provides valuable genetic resources for sheepgrass breeding.
Collapse
Affiliation(s)
- Wenjing An
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjie Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiuxin Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longjiang Yu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangyan Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfang Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaofeng Cao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaibin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Daili Ji
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
7
|
Egesa AO, Vallejos CE, Begcy K. Cell size differences affect photosynthetic capacity in a Mesoamerican and an Andean genotype of Phaseolus vulgaris L. FRONTIERS IN PLANT SCIENCE 2024; 15:1422814. [PMID: 39328793 PMCID: PMC11425597 DOI: 10.3389/fpls.2024.1422814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The efficiency of CO2 flux in the leaf is hindered by a several structural and biochemical barriers which affect the overall net photosynthesis. However, the dearth of information about the genetic control of these features is limiting our ability for genetic manipulation. We performed a comparative analysis between three-week-old plants of a Mesoamerican and an Andean cultivar of Phaseolus vulgaris at variable light and CO2 levels. The Mesoamerican bean had higher photosynthetic rate, maximum rate of rubisco carboxylase activity and maximum rate of photosynthetic electron transport at light saturation conditions than its Andean counterpart. Leaf anatomy comparison between genotypes showed that the Mesoamerican bean had smaller cell sizes than the Andean bean. Smaller epidermal cells in the Mesoamerican bean resulted in higher stomata density and consequently higher stomatal conductance for water vapor and CO2 than in the Andean bean. Likewise, smaller palisade and spongy mesophyll cells in the Mesoamerican than in the Andean bean increased the cell surface area per unit of volume and consequently increased mesophyll conductance. Finally, smaller cells in the Mesoamerican also increased chlorophyll and protein content per unit of leaf area. In summary, we show that different cell sizes controls the overall net photosynthesis and could be used as a target for genetic manipulation to improve photosynthesis.
Collapse
Affiliation(s)
- Andrew Ogolla Egesa
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
| | - C. Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Nazari M, Kordrostami M, Ghasemi-Soloklui AA, Eaton-Rye JJ, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Cells 2024; 13:1319. [PMID: 39195209 PMCID: PMC11352682 DOI: 10.3390/cells13161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
- Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
9
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Sukkasam N, Kaewbai-Ngam J, Leksingto J, In-Na P, Nootong K, Incharoensakdi A, Hallam SJ, Monshupanee T. Disrupted H 2 synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 2024; 114:87. [PMID: 39023834 DOI: 10.1007/s11103-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Janine Kaewbai-Ngam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasidit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Singh DV, Singh RP. Competence of algal consortia under municipal wastewater: remediation efficiency, photosynthetic performance, antioxidant defense mechanisms and biofuel production. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:466. [PMID: 38647712 DOI: 10.1007/s10661-024-12620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Utilizing monoalgal species for wastewater treatment is facing tremendous challenges owing to changing wastewater complexity in terms of physico-chemical characteristic, nutrient and metal concentration. The environmental conditions are also fluctuating therefore, the formation of robust system is of utmost importance for concomitant sustainable wastewater treatment and bioenergy production. In the present study, the tolerance and adaptability potential of algal consortia-1 (Chlorococcum humicola and Tetradesmus sp.) and consortia-2 (Chlorococcum humicola, Scenedesmus vacuolatus and Tetradesmus sp.) treated with municipal wastewater were examined under natural environmental conditions. The results exhibited that consortia-2 was more competent in recovering nitrate-nitrogen (82.92%), phosphorus (70.47%), and heavy metals (31-73.70%) from municipal wastewater (100%) than consortia-1. The results further depicted that total chlorophyll, carbohydrate, and protein content decreased significantly in wastewater-treated consortia-1 as compared to consortia-2. However, lipid content was increased by 4.01 and 1.17 folds in algal consortia-1 and consortia-2 compared to their respective controls. Moreover, absorption peak at 1740.6 cm-1 reflected higher biofuel-producing potential of consortia-1 as compared to consortia-2 as confirmed through FTIR spectroscopy. The results also revealed that consortia-2 showed the highest photosynthetic performance which was evident from the increment in the active photosystem-II reaction center (1.724 ± 0.068), quantum efficiency (0.633 ± 0.038), and performance index (3.752 ± 0.356). Further, a significant increase in photosynthetic parameters was observed in selected consortia at lag phase, while a noteworthy decline was observed at exponential and stationary phases in consortia-1 than consortia-2. The results also showed the maximum enhancement in ascorbic acid (2.43 folds), proline (3.34 folds), and cysteine (1.29 folds) in consortia-2, while SOD (1.75 folds), catalase (2.64 folds), and GR (1.19 folds) activity in consortia-1. Therefore, it can be concluded that due to remarkable flexibility and photosynthetic performance, consortia-2 could serve as a potential candidate for sustainable nutrient resource recovery and wastewater treatment, while consortia-1 for bio-fuel production in a natural environment. Thus, formation of algal consortia as the robust biosystem tolerates diverse environmental fluctuations together with wastewater complexity and ultimately can serve appropriate approach for environmental-friendly wastewater treatment and bioenergy production.
Collapse
Affiliation(s)
- Dig Vijay Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Rana Pratap Singh
- Centre for Sustinable Agriculture and Environment, Professor HS Srivastava Foundation for Science and Society, Lucknow, India.
| |
Collapse
|
12
|
Bhaskar R, Pandey SP, Kumar U, Kim H, Jayakodi SK, Gupta MK, Han SS. Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests. OPENNANO 2024; 15:100198. [DOI: 10.1016/j.onano.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
13
|
Martos de la Fuente GC, Viñegla B, Illana Rico E, Fernández Ocaña AM. Study of the Photosynthesis Response during the Gradual Lack of Water for 14 Olea europaea L. subsp europaea Cultivars and Their Adaptation to Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:4136. [PMID: 38140463 PMCID: PMC10748137 DOI: 10.3390/plants12244136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Understanding the tolerance of plants to drought and their gradual response to lack of water is a multifaceted challenge that requires a combination of scientific research and technological innovation. Selecting naturally drought-tolerant plants and knowing their response to photosynthesis in a wide range of water availability opens a door to making decisions about the suitability of different cultivars to be implanted in specific geographical areas, based on their tolerance to drought and light absorption capacity. In this work, photosynthesis-light curves were carried out using a LiCor LI-6800 IRGA device, applying increasing light intensities to plants of 14 olive cultivars, either under control conditions (no water stress) or subject to moderate and severe water deficits. The plants were grown in a culture chamber under controlled conditions for photoperiod, air humidity, temperature, and carbon dioxide concentration. For each cultivar, the electronic transference ratio (ETR) in response to light was also obtained. Different equations were used to fit experimental data allowing us to calculate, with a regression coefficient above 0.95, different photosynthetic parameters such as the maximum photosynthetic capacity, the photosynthetic efficiency, the number of electrons or the number of photons to assimilate a molecule of CO2, and the effect of the lack of water on these parameters. This work represents the first contribution of the response to photosynthesis of many olive cultivars subjected to moderate and severe drought conditions. The parameters described, and the results provided, pave the road for subsequent work related to plant physiology and other areas of science and technology, and allow us to objectively compare the tolerance to water stress in these fourteen olive cultivars.
Collapse
Affiliation(s)
| | | | | | - Ana Maria Fernández Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecologia, Facultad de Ciencias Experimentales, Campus de Las Lagunillas s/n, Universidad de Jaén, 23071 Jaén, Spain; (G.C.M.d.l.F.); (B.V.); (E.I.R.)
| |
Collapse
|
14
|
Guo Y, Li Q, Ji D, Tian L, Meurer J, Chi W. A Ubiquitin-Based Module Directing Protein-Protein Interactions in Chloroplasts. Int J Mol Sci 2023; 24:16673. [PMID: 38068997 PMCID: PMC10706609 DOI: 10.3390/ijms242316673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
A promising approach for the genetic engineering of multiprotein complexes in living cells involves designing and reconstructing the interaction between two proteins that lack native affinity. Thylakoid-embedded multiprotein complexes execute the light reaction of plant photosynthesis, but their engineering remains challenging, likely due to difficulties in accurately targeting heterologous membrane-bound proteins to various sub-compartments of thylakoids. In this study, we developed a ubiquitin-based module (Nub-Cub) capable of directing interactions in vivo between two chloroplast proteins lacking native affinities. We applied this module to genetically modify thylakoid multiprotein complexes. We demonstrated the functionality of the Nub-Cub module in the model organism Arabidopsis thaliana. Employing this system, we successfully modified the Photosystem II (PSII) complex by ectopically attaching an extrinsic subunit of PSII, PsbTn1, to CP26-a component of the antenna system of PSII. Surprisingly, this mandatory interaction between CP26 and PsbTn1 in plants impairs the efficiency of electron transport in PSII and unexpectedly results in noticeable defects in leaf development. Our study not only offers a general strategy to modify multiprotein complexes embedded in thylakoid membranes but it also sheds light on the possible interplay between two proteins without native interaction.
Collapse
Affiliation(s)
- Yinjie Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
| | - Lijin Tian
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
| | - Jörg Meurer
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians University, D-82152 Munich, Germany;
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Gu L. Optimizing the electron transport chain to sustainably improve photosynthesis. PLANT PHYSIOLOGY 2023; 193:2398-2412. [PMID: 37671674 PMCID: PMC10663115 DOI: 10.1093/plphys/kiad490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Genetically improving photosynthesis is a key strategy to boosting crop production to meet the rising demand for food and fuel by a rapidly growing global population in a warming climate. Many components of the photosynthetic apparatus have been targeted for genetic modification for improving photosynthesis. Successful translation of these modifications into increased plant productivity in fluctuating environments will depend on whether the electron transport chain (ETC) can support the increased electron transport rate without risking overreduction and photodamage. At present atmospheric conditions, the ETC appears suboptimal and will likely need to be modified to support proposed photosynthetic improvements and to maintain energy balance. Here, I derive photochemical equations to quantify the transport capacity and the corresponding reduction level based on the kinetics of redox reactions along the ETC. Using these theoretical equations and measurements from diverse C3/C4 species across environments, I identify several strategies that can simultaneously increase the transport capacity and decrease the reduction level of the ETC. These strategies include increasing the abundances of reaction centers, cytochrome b6f complexes, and mobile electron carriers, improving their redox kinetics, and decreasing the fraction of secondary quinone-nonreducing photosystem II reaction centers. I also shed light on several previously unexplained experimental findings regarding the physiological impacts of the abundances of the cytochrome b6f complex and plastoquinone. The model developed, and the insights generated from it facilitate the development of sustainable photosynthetic systems for greater crop yields.
Collapse
Affiliation(s)
- Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
16
|
Liu X, Qiao Y, Zhou W, Dong W, Gu L. Determinants of photochemical characteristics of the photosynthetic electron transport chain of maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1279963. [PMID: 38053761 PMCID: PMC10694277 DOI: 10.3389/fpls.2023.1279963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Introduction The photosynthetic electron transport chain (ETC) is the bridge that links energy harvesting during the photophysical reactions at one end and energy consumption during the biochemical reactions at the other. Its functioning is thus fundamental for the proper balance between energy supply and demand in photosynthesis. Currently, there is a lack of understanding regarding how the structural properties of the ETC are affected by nutrient availability and plant developmental stages, which is a major roadblock to comprehensive modeling of photosynthesis. Methods Redox parameters reflect the structural controls of ETC on the photochemical reactions and electron transport. We conducted joint measurements of chlorophyll fluorescence (ChlF) and gas exchange under systematically varying environmental conditions and growth stages of maize and sampled foliar nutrient contents. We utilized the recently developed steady-state photochemical model to infer redox parameters of electron transport from these measurements. Results and discussion We found that the inferred values of these photochemical redox parameters varied with leaf macronutrient content. These variations may be caused either directly by these nutrients being components of protein complexes on the ETC or indirectly by their impacts on the structural integrity of the thylakoid and feedback from the biochemical reactions. Also, the redox parameters varied with plant morphology and developmental stage, reflecting seasonal changes in the structural properties of the ETC. Our findings will facilitate the parameterization and simulation of complete models of photosynthesis.
Collapse
Affiliation(s)
- Xiuping Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yunzhou Qiao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wangming Zhou
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
17
|
Machín A, Cotto M, Ducongé J, Márquez F. Artificial Photosynthesis: Current Advancements and Future Prospects. Biomimetics (Basel) 2023; 8:298. [PMID: 37504186 PMCID: PMC10807655 DOI: 10.3390/biomimetics8030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Artificial photosynthesis is a technology with immense potential that aims to emulate the natural photosynthetic process. The process of natural photosynthesis involves the conversion of solar energy into chemical energy, which is stored in organic compounds. Catalysis is an essential aspect of artificial photosynthesis, as it facilitates the reactions that convert solar energy into chemical energy. In this review, we aim to provide an extensive overview of recent developments in the field of artificial photosynthesis by catalysis. We will discuss the various catalyst types used in artificial photosynthesis, including homogeneous catalysts, heterogeneous catalysts, and biocatalysts. Additionally, we will explore the different strategies employed to enhance the efficiency and selectivity of catalytic reactions, such as the utilization of nanomaterials, photoelectrochemical cells, and molecular engineering. Lastly, we will examine the challenges and opportunities of this technology as well as its potential applications in areas such as renewable energy, carbon capture and utilization, and sustainable agriculture. This review aims to provide a comprehensive and critical analysis of state-of-the-art methods in artificial photosynthesis by catalysis, as well as to identify key research directions for future advancements in this field.
Collapse
Affiliation(s)
- Abniel Machín
- Divisionof Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA
| | - María Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - José Ducongé
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| |
Collapse
|
18
|
Tan KY, Low SS, Manickam S, Ma Z, Banat F, Munawaroh HSH, Show PL. Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Res Int 2023; 169:112870. [PMID: 37254319 DOI: 10.1016/j.foodres.2023.112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Nutraceutical supplements provide health benefits, such as fulfilling the lack of nutrients in the human body or being utilized to treat or cure certain diseases. As the world population is growing, certain countries are experiencing food crisis challenges, causing natural foods are not sustainable to be used for nutraceutical production because it will require large-scale of food supply to produce enriched nutraceutics. The high demand for abundant nutritional compounds has made microalgae a reliable source as they can synthesize high-value molecules through photosynthetic activities. However, some microalgae species are limited in growth and unable to accumulate a significant amount of biomass due to several factors related to environmental conditions. Therefore, adding nanoparticles (NPs) as a photocatalyst is considered to enhance the yield rate of microalgae in an energy-saving and economical way. This review focuses on the composition of microalgal biomass for nutraceutical production, the health perspectives of nutritional compounds on humans, and the application of nanotechnology on microalgae for improved production and harvesting. The results obtained show that microalgal-based compounds indeed have better nutrients content than natural foods. However, nanotechnology must be further comprehended to make them non-hazardous and sustainable.
Collapse
Affiliation(s)
- Kai Yao Tan
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100 China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou 325035, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi, 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
19
|
Sharma N, Nagar S, Thakur M, Suriyakumar P, Kataria S, Shanker A, Landi M, Anand A. Photosystems under high light stress: throwing light on mechanism and adaptation. PHOTOSYNTHETICA 2023; 61:250-263. [PMID: 39650670 PMCID: PMC11515824 DOI: 10.32615/ps.2023.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/15/2023] [Indexed: 12/11/2024]
Abstract
High light stress decreases the photosynthetic rate in plants due to photooxidative damage to photosynthetic apparatus, photoinhibition of PSII, and/or damage to PSI. The dissipation of excess energy by nonphotochemical quenching and degradation of the D1 protein of PSII and its repair cycle help against photooxidative damage. Light stress also activates stress-responsive nuclear genes through the accumulation of phosphonucleotide-3'-phosphoadenosine-5'-phosphate, methylerythritol cyclodiphosphate, and reactive oxygen species which comprise the chloroplast retrograde signaling pathway. Additionally, hormones, such as abscisic acid, cytokinin, brassinosteroids, and gibberellins, play a role in acclimation to light fluctuations. Several alternate electron flow mechanisms, which offset the excess of electrons, include activation of plastid or plastoquinol terminal oxidase, cytochrome b 6/f complex, cyclic electron flow through PSI, Mehler ascorbate peroxidase pathway or water-water cycle, mitochondrial alternative oxidase pathway, and photorespiration. In this review, we provided insights into high light stress-mediated damage to photosynthetic apparatus and strategies to mitigate the damage by decreasing antennae size, enhancing NPQ through the introduction of mutants, expression of algal proteins to improve photosynthetic rates and engineering ATP synthase.
Collapse
Affiliation(s)
- N. Sharma
- Department of Basic Sciences, College of Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230 Solan, India
| | - S. Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - M. Thakur
- Department of Basic Sciences, College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, 177001 Hamirpur, India
| | - P. Suriyakumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - S. Kataria
- School of Biochemistry, Devi Ahilya University, 452001 Indore, Madhya Pradesh, India
| | - A.K. Shanker
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - A. Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| |
Collapse
|
20
|
Xu P, Li J, Qian J, Wang B, Liu J, Xu R, Chen P, Zhou W. Recent advances in CO 2 fixation by microalgae and its potential contribution to carbon neutrality. CHEMOSPHERE 2023; 319:137987. [PMID: 36720412 DOI: 10.1016/j.chemosphere.2023.137987] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Many countries and regions have set their schedules to achieve the carbon neutrality between 2030 and 2070. Microalgae are capable of efficiently fixing CO2 and simultaneously producing biomass for multiple applications, which is considered one of the most promising pathways for carbon capture and utilization. This work reviews the current research on microalgae CO2 fixation technologies and the challenges faced by the related industries and government agencies. The technoeconomic analysis indicates that cultivation is the major cost factor. Use of waste resources such as wastewater and flue gas can significantly reduce the costs and carbon footprints. The life cycle assessment has identified fossil-based electricity use as the major contributor to the global warming potential of microalgae-based CO2 fixation approach. Substantial efforts and investments are needed to identify and bridge the gaps among the microalgae strain development, cultivation conditions and systems, and use of renewable resources and energy.
Collapse
Affiliation(s)
- Peilun Xu
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Qian
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Bang Wang
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd., Nanchang, 330096, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN, 55108, USA.
| | - Wenguang Zhou
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
21
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
22
|
Pigment Production of Chlamydomonas Strains in Response to Norflurazon and ZnO Nanoparticles. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Numerous species of microalgae have been utilized for pigment production. More and more species are gaining popularity due to their ability to accumulate pigments with varying chemical compositions and the fact that some have distinctive byproducts that can be co-produced. Despite the fact that many of the species have unique by-products and traits, they are not being used economically due to high production costs. Utilizing agricultural and industrial wastewater for algae cultivation is one way to lower manufacturing costs. Herbicide-contaminated wastewater can result from agricultural contamination. Norflurazon is a popular pesticide frequently used for weed control. The presence of norflurazon in water renders that water unusable and requires proper treatment. Nanoparticles of ZnO (ZnO NPs), on the other hand, are utilized in a variety of industrial productions of numerous household goods. Water contaminated with ZnO NPs can present potential risks to human health and the environment. In this study, two field isolates of the green microalga Chlamydomonas reinhardtii, a widely used model organism, were examined for their reaction to these two compounds in order to assess the responses of different natural strains to environmental stresses. Norflurazon at 10 µM had a higher inhibitory effect on growth and pigment production than ZnO NPs at 200 mg L−1. Although both norflurazon and ZnO NPs inhibit cell growth and pigmentation, they do so through distinct processes. Norflurazon induces oxidative stress in cells, resulting in photosystem damage. ZnO nanoparticles, on the other hand, did not cause photosystem damage but rather mechanical cell damage and disintegration. In addition, the physiological responses of the two Chlamydomonas strains were distinct, supporting the utilization of natural algal strains for specific types of environmental pollutants.
Collapse
|
23
|
Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int J Mol Sci 2023; 24:ijms24031898. [PMID: 36768215 PMCID: PMC9915242 DOI: 10.3390/ijms24031898] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Even though sunlight energy far outweighs the energy required by human activities, its utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods of microalgal improvement are likely to have reached their limits, genetic engineering is expected to allow for further increases in the photosynthesis and productivity of microalgae. Understanding the mechanisms that control photosynthesis will enable researchers to identify targets for genetic engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems and downstream biomass processing. This review describes the molecular events that happen during photosynthesis and microalgal productivity through genetic engineering and discusses future strategies and the limitations of genetic engineering in microalgal productivity. We highlight the major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis and biomass production, as well as promising approaches for making significant contributions to upcoming microalgal-based biotechnology.
Collapse
|
24
|
Improving
C
3
photosynthesis by exploiting natural genetic variation:
Hirschfeldia incana
as a model species. Food Energy Secur 2022. [DOI: 10.1002/fes3.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Piro A, Nisticò DM, Oliva D, Fagà FA, Mazzuca S. Physiological and Metabolic Response of Arthrospira maxima to Organophosphates. Microorganisms 2022; 10:microorganisms10051063. [PMID: 35630505 PMCID: PMC9146548 DOI: 10.3390/microorganisms10051063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The Spirulina spp. exhibited an ability to tolerate the organophosphates. This study aimed to explore the effects of the herbicide glyphosate on a selected strain of the cyanobacteria Arthrospira maxima cultivated in a company. Experimental cultivations acclimated in aquaria were treated with 0.2 mM glyphosate [N-(phosphonomethyl) glycine]. The culture biomass, the phycocyanin, and the chlorophyll a concentrations were evaluated every week during 42 days of treatment. The differentially expressed proteins in the treated cyanobacteria versus the control cultivations were evaluated weekly during 21 days of treatment. Even if the glyphosate treatment negatively affected the biomass and the photosynthetic pigments, it induced resistance in the survival A. maxima population. Proteins belonging to the response to osmotic stress and methylation pathways were strongly accumulated in treated cultivation; the response to toxic substances and the negative regulation of transcription seemed to have a role in the resistance. The glyphosate-affected enzyme, chorismate synthase, a key enzyme in the shikimic acid pathway, was accumulated during treatment, suggesting that the surviving strain of A. maxima expressed a glyphosate-resistant target enzyme.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
- Correspondence:
| | - Dante Matteo Nisticò
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| | - Daniela Oliva
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| | | | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 12/C, 87036 Rende, Italy; (D.M.N.); (D.O.); (S.M.)
| |
Collapse
|
26
|
Niklas J, Agostini A, Carbonera D, Di Valentin M, Lubitz W. Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy. PHOTOSYNTHESIS RESEARCH 2022; 152:213-234. [PMID: 35290567 PMCID: PMC9424170 DOI: 10.1007/s11120-022-00905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Collapse
Affiliation(s)
- Jens Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
27
|
Hernández-Prieto MA, Hiller R, Chen M. Chlorophyll f can replace chlorophyll a in the soluble antenna of dinoflagellates. PHOTOSYNTHESIS RESEARCH 2022; 152:13-22. [PMID: 34988868 DOI: 10.1007/s11120-021-00890-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Chlorophyll f is a new type of chlorophyll isolated from cyanobacteria. The absorption and fluorescence characteristics of chlorophyll f permit these oxygenic-photosynthetic organisms to thrive in environments where white light is scarce but far-red light is abundant. To explore the ligand properties of chlorophyll f and its energy transfer profiles we established two different in vitro reconstitution systems. The reconstituted peridinin-chlorophyll f protein complex (chlorophyll f-PCP) showed a stoichiometry ratio of 4:1 between peridinin and chlorophyll f, consistent with the peridinin:chlorophyll a ratio from native PCP complexes. Using emission wavelength at 712 nm, the excitation fluorescence featured a broad peak at 453 nm and a shoulder at 511 nm confirming energy transfer from peridinin to chlorophyll f. In addition, by using a synthetic peptide mimicking the first transmembrane helix of light-harvesting chlorophyll proteins of plants, we report that chlorophyll f, similarly to chlorophyll b, did not interact with the peptide contrarily to chlorophyll a, confirming the accessory role of chlorophyll f in photosystems. The binding of chlorophyll f, even in the presence of chlorophylls a and b, by PCP complexes shows the flexibility of chlorophyll-protein complexes and provides an opportunity for the introduction of new chlorophyll species to extend the photosynthetic spectral range.
Collapse
Affiliation(s)
| | - Roger Hiller
- Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
28
|
Yuan JQ, Sun DW, Lu Q, Yang L, Wang HW, Fu XX. Responses of Physiology, Photosynthesis, and Related Genes to Saline Stress in Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang. PLANTS 2022; 11:plants11070940. [PMID: 35406920 PMCID: PMC9002922 DOI: 10.3390/plants11070940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang is a native evergreen species with high ornamental value for abundant variations in leaf, bract, fruit, and tree gesture. To broaden its cultivation in coastal saline soil, salt damage and survival rate, physiological responses, photosynthetic performance, and related genes were evaluated for annual seedlings exposed to 0.3% salt (ST) concentrations for 60 days. Syndromes of salt damage were aggravated, and the survival rate decreased with prolonged stress duration; all stressed seedlings displayed salt damage, and 58.3% survived. Under short-term saline stress (5 d), marked increases in malondialdehyde (MDA), relative electrical conductivity (REC), and decreases in superoxide dismutase (SOD), photosynthetic rate (Pn), stomatal conductance (gs), and internal carbon dioxide concentration (Ci) were recorded. The stable leaf water use efficiency (WUE) and chlorophyll content were positive physiological responses to ensure photosynthetic performance. Meanwhile, the expression levels of genes related to photosystem II (psbA) and photorespiration (SGAT and GGAT) were upregulated, indicating the role of photorespiration in protecting photosynthesis from photoinhibition. After 30 days of stress (≥30 d), there was a significant increase in MDA, REC, soluble sugar (SS), soluble protein (SP), and Ci, whereas descending patterns in Pn, gs, WUE, the maximal photochemical efficiency of photosystem II (Fv/Fm), and potential activities of PSII (Fv/F0) occurred in salt-stressed seedlings, compared with CK. Meanwhile, the expression levels of related genes significantly dropped, such as psbA, LFNR, GGAT, GLYK, and PGK, indicating photoinhibition and worse photosynthetic performance. Our results suggest that the moderate salt tolerance of C. hongkongensis subsp. tonkinensis mostly lies in a better photosynthetic system influenced by active photorespiration. Hence, these results provide a framework for better understanding the photosynthetic responses of C. hongkongensis subsp. tonkinensis to salt stress.
Collapse
Affiliation(s)
- Jia-Qiu Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Da-Wei Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Yang
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200336, China;
| | | | - Xiang-Xiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-8542-7403
| |
Collapse
|
29
|
Shahid S, Ali Q, Ali S, Al-Misned FA, Maqbool S. Water Deficit Stress Tolerance Potential of Newly Developed Wheat Genotypes for Better Yield Based on Agronomic Traits and Stress Tolerance Indices: Physio-Biochemical Responses, Lipid Peroxidation and Antioxidative Defense Mechanism. PLANTS 2022; 11:plants11030466. [PMID: 35161446 PMCID: PMC8839292 DOI: 10.3390/plants11030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Changing environmental conditions, fresh water shortages for irrigation and the rapid increase in world population have created the problems of food insecurity and malnutrition. Different strategies, including the development of water stress-tolerant, high-yielding genotypes through breeding are used to fulfil the world food demand. The present study was conducted for the selection of high-yielding, drought-tolerant wheat genotypes, considering different morpho-physio-biochemical, agronomic and yield attributes in relation to the stress tolerance indices (STI). The experiment was carried out in field in a split-plot arrangement. Water deficit stress was maintained based on the number of irrigations. All genotypes showed a differential decreasing trend in different agronomic traits. However, the increasing or decreasing trend in leaf photosynthetic pigments, non-enzymatic and enzymatic antioxidants under limited water supply also found to be genotype-specific. Genotypes MP1, MP3, MP5, MP8 and MP10 performed better regarding the yield performance under water deficit stress, which was associated with their better maintenance of water relations, photosynthetic pigments and antioxidative defense mechanisms. In conclusion, the physio-biochemical mechanisms should also be considered as the part of breeding programs for the selection of stress-tolerant genotypes, along with agronomic traits, in wheat.
Collapse
Affiliation(s)
- Sumreena Shahid
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
- Correspondence: (Q.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Q.A.); (S.A.)
| | - Fahad A. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saliha Maqbool
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
30
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
31
|
Lodeyro AF, Krapp AR, Carrillo N. Photosynthesis and chloroplast redox signaling in the age of global warming: stress tolerance, acclimation, and developmental plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5919-5937. [PMID: 34111246 DOI: 10.1093/jxb/erab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Contemporary climate change is characterized by the increased intensity and frequency of environmental stress events such as floods, droughts, and heatwaves, which have a debilitating impact on photosynthesis and growth, compromising the production of food, feed, and biofuels for an expanding population. The need to increase crop productivity in the context of global warming has fueled attempts to improve several key plant features such as photosynthetic performance, assimilate partitioning, and tolerance to environmental stresses. Chloroplast redox metabolism, including photosynthetic electron transport and CO2 reductive assimilation, are primary targets of most stress conditions, leading to excessive excitation pressure, photodamage, and propagation of reactive oxygen species. Alterations in chloroplast redox poise, in turn, provide signals that exit the plastid and modulate plant responses to the environmental conditions. Understanding the molecular mechanisms involved in these processes could provide novel tools to increase crop yield in suboptimal environments. We describe herein various interventions into chloroplast redox networks that resulted in increased tolerance to multiple sources of environmental stress. They included manipulation of endogenous components and introduction of electron carriers from other organisms, which affected not only stress endurance but also leaf size and longevity. The resulting scenario indicates that chloroplast redox pathways have an important impact on plant growth, development, and defense that goes beyond their roles in primary metabolism. Manipulation of these processes provides additional strategies for the design of crops with improved performance under destabilized climate conditions as foreseen for the future.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
32
|
Engineering Climate-Change-Resilient Crops: New Tools and Approaches. Int J Mol Sci 2021; 22:ijms22157877. [PMID: 34360645 PMCID: PMC8346029 DOI: 10.3390/ijms22157877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world's population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.
Collapse
|
33
|
Chia MA, Ameh I, Agee JT, Otogo RA, Shaba AF, Bashir H, Umar F, Yisa AG, Uyovbisere EE, Sha'aba RI. Effects of the antimalarial lumefantrine on Lemna minor, Raphidocelis subcapitata and Chlorella vulgaris. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103635. [PMID: 33716093 DOI: 10.1016/j.etap.2021.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 μg l-1 and 16-10000 μg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.
Collapse
Affiliation(s)
| | - Ilu Ameh
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Jerry Tersoo Agee
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Hadiza Bashir
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima Umar
- Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
34
|
Esparza-Reynoso S, Ruíz-Herrera LF, Pelagio-Flores R, Macías-Rodríguez LI, Martínez-Trujillo M, López-Coria M, Sánchez-Nieto S, Herrera-Estrella A, López-Bucio J. Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. PLANT, CELL & ENVIRONMENT 2021; 44:1961-1976. [PMID: 33529396 DOI: 10.1111/pce.14014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plants host a diverse microbiome and differentially react to the fungal species living as endophytes or around their roots through emission of volatiles. Here, using divided Petri plates for Arabidopsis-T. atroviride co-cultivation, we show that fungal volatiles increase endogenous sugar levels in shoots, roots and root exudates, which improve Arabidopsis root growth and branching and strengthen the symbiosis. Tissue-specific expression of three sucrose phosphate synthase-encoding genes (AtSPS1F, AtSPS2F and AtSPS3F), and AtSUC2 and SWEET transporters revealed that the gene expression signatures differ from those of the fungal pathogens Fusarium oxysporum and Alternaria alternata and that AtSUC2 is largely repressed either by increasing carbon availability or by perception of the fungal volatile 6-pentyl-2H-pyran-2-one. Our data point to Trichoderma volatiles as chemical signatures for sugar biosynthesis and exudation and unveil specific modulation of a critical, long-distance sucrose transporter in the plant.
Collapse
Affiliation(s)
- Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | | | - Montserrat López-Coria
- Departamento de Bioquímica, Facultad de Bioquímica, Conjunto E, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Bioquímica, Conjunto E, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
35
|
Almeida GM, Costa AC, Batista PF, Junqueira VB, Rodrigues AA, Santos ECD, Vieira DA, de Oliveira MM, Silva AA. Can light intensity modulate the physiological, anatomical, and reproductive responses of soybean plants to water deficit? PHYSIOLOGIA PLANTARUM 2021; 172:1301-1320. [PMID: 33554371 DOI: 10.1111/ppl.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the role of light intensity in modulating plant responses to stress due to water deficit (WD). Thus, the objective of this study was to determine the WD and contrasting irradiance effects on the physiology, anatomy, and grain yield of soybean plants. The experimental design was a randomized block in a growth chamber and a 2 × 2 factorial treatment arrangement: 90% (well-watered, WW) and 40% (WD) of soil field capacities (FC); and 750 (medium irradiance, MI) and 1500 (higher irradiance, HI) μmol (photons) m-2 s-1 irradiance. The WD caused a lower photosynthetic rate - as well as observed in the light curve and in the relative parameters, such as apparent quantum efficiency -, less investment in shoot biomass and pollen grain germination, resulting in lower grain yield. However, there was an increase in non-photochemical energy dissipation, a higher concentration of total soluble sugars, proline, and malondialdehyde. The WD + MI-soybean plants developed thicker spongy parenchyma (related to higher mesophilic conductance of CO2 ). In the WW + HI condition the palisade parenchyma was thicker, conferring maintenance of photosynthetic efficiency. In addition, there was an increase in the activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes in leaves due to HI, regardless of FC. This induced higher energy expenditure, reflected in the reduction of the number of leaf and branches, leaf area, dry mass of leaves and stem in the WW + HI. Interestingly, these strategies of osmotic adjustment, photoprotection, and antioxidant defenses act together in the WD + HI.
Collapse
Affiliation(s)
- Gabriel Martins Almeida
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Alan Carlos Costa
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Priscila Ferreira Batista
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Verônica Barbosa Junqueira
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Arthur Almeida Rodrigues
- Laboratório de Sementes, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Emily Carolina Duarte Santos
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Dheynne Alves Vieira
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Mariela Melo de Oliveira
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Adinan Alves Silva
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| |
Collapse
|
36
|
Silva JDGD, Müller C, Galon L, Pawelkiewicz R, Menegat AD, Brandler D, Toso JO, Perin GF. Selectivity of metsulfuron applied to soybean before sowing in different intervals and soils. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:623-633. [PMID: 34029160 DOI: 10.1080/03601234.2021.1929004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aimed to evaluate the selectivity of the herbicide metsulfuron applied at different times on the development of soybeans grown in soils with different characteristics. The experiment was conducted in a randomized block design, in a factorial scheme (4 x 4), with four replicates. Factor A was application time (0, 15, 30, and 45 days before sowing, DBS) and factor B was soil type (Erechim, Itaqui, Piratini, and Santa Maria). Soybean plants cultivated in the Erechim soil showed moderate phytotoxicity, with greater damage to the leaf area and plant dry matter, mainly after application at 30 DBS. Those cultivated in Itaqui soil showed gradual phytotoxicity between 14 and 28 days after emergence (DAE). Soybean plants grown in the Piratini and Santa Maria soils showed the highest phytotoxicity and photosynthetic reduction, mainly at 15 and 0 DBS. Metsulfuron application at 45 DBS caused reduced plant growth by up to 40%, and reduced shoot development (30%) in soybean plants grown in Piratini and Santa Maria soils, respectively. There were gradual changes in phytotoxicity and the morphophysiological traits of soybean plants exposed to the residual effect of metsulfuron in different soils, which indicates that soybeans should be sown more than 45 days after the application of metsulfuron, regardless of soil characteristics.
Collapse
Affiliation(s)
- Jessica Dias Gomes da Silva
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - Caroline Müller
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - Leandro Galon
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - Renan Pawelkiewicz
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - André Dalponte Menegat
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - Daiani Brandler
- Laboratory of Weeds, Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil
| | - Janaíne Oliveira Toso
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - Gismael Francisco Perin
- Laboratory of Sustainable Management of Agricultural Systems, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| |
Collapse
|
37
|
Jeevanandam J, Chan YS, Danquah MK. Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles. 3 Biotech 2020; 10:489. [PMID: 33123456 DOI: 10.1007/s13205-020-02480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
38
|
Ko SS, Jhong CM, Lin YJ, Wei CY, Lee JY, Shih MC. Blue Light Mediates Chloroplast Avoidance and Enhances Photoprotection of Vanilla Orchid. Int J Mol Sci 2020; 21:E8022. [PMID: 33126662 PMCID: PMC7663427 DOI: 10.3390/ijms21218022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 μmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 μmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 μmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 μmol m-2s-1) and high light (1000 μmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan; (C.-M.J.); (Y.-J.L.)
| | - Ching-Yu Wei
- National Chiayi University Department of Forestry and Natural Resources, Chiayi 600, Taiwan;
| | - Ju-Yin Lee
- National Taiwan University Department of Horticulture and Landscape Architecture, Taipei 10617, Taiwan;
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
39
|
Gideon DA, Nirusimhan V, Manoj KM. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J Biomol Struct Dyn 2020; 40:1995-2009. [PMID: 33073701 DOI: 10.1080/07391102.2020.1835715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the light reaction of oxygenic photosynthesis, plastocyanin (PC) and ferredoxins (Fd) are small/diffusible redox-active proteins playing key roles in electron transfer/transport phenomena. In the Z-scheme mechanistic purview, they are considered as specific affinity binding-based electron-relay agents, linking the functions of Cytochrome b6f (Cyt. b6f), Photosystem I (PS I) and Fd:NADPH oxidoreductase (FNR). The murburn explanation for photolytic photophosphorylation deems PC/Fd as generic 'redox capacitors', temporally accepting and releasing one-electron equivalents in reaction milieu. Herein, we explore the two theories with respect to structural, distributional and functional aspects of PC/Fd. Amino acid residues located on the surface loci of key patches of PC/Fd vary in electrostatic/contour (topography) signatures. Crystal structures of four different complexes each of Cyt.f-PC and Fd-FNR show little conservation in the contact-surfaces, thereby discrediting 'affinity binding-based electron transfers (ET)' as an evolutionary logic. Further, thermodynamic and kinetic data of wildtype and mutant proteins interactions do not align with Z-scheme. Furthermore, micromolar physiological concentrations of PC and the non-conducive architecture of chloroplasts render the classical model untenable. In the murburn model, as PC is optional, the observation that plants lacking PC survive and grow is justified. Further, the low physiological concentration/distribution of PC in chloroplast lumen/stroma is supported by murburn equilibriums, as higher concentrations would limit electron transfers. Thus, structural evidence, interactive dynamics with redox partners and physiological distribution/role of PC/Fd support the murburn perspective that these proteins serve as generic redox-capacitors in chloroplasts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India
| |
Collapse
|
40
|
Assembly of eukaryotic photosystem II with diverse light-harvesting antennas. Curr Opin Struct Biol 2020; 63:49-57. [PMID: 32389895 DOI: 10.1016/j.sbi.2020.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 11/21/2022]
Abstract
Photosystem II (PSII) catalyzes the light-driven oxygen-evolving reaction via its catalytic core and peripheral light-harvesting antennas. Oxyphototrophs have evolved diverse antenna systems, enabling them to adapt to different habitats. Recently, high-resolution structures of PSII-antenna supercomplexes from the green lineage (higher plants and green algae) and the red lineage (diatoms) were solved. The antenna complexes from the two lineages share similar protein folding, but differ in terms of the oligomeric states, pigment composition, and assembly patterns with the core. These differences result in distinct pigment-protein networks in PSII from different organisms. We herein summarize the similarities and differences in these structures and outline the molecular basis of the assembly, energy transfer, and regulation of the eukaryotic PSII-antenna supercomplexes.
Collapse
|
41
|
Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Curr Opin Biotechnol 2020; 62:1-6. [DOI: 10.1016/j.copbio.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
|
42
|
Lacour T, Babin M, Lavaud J. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. JOURNAL OF PHYCOLOGY 2020; 56:245-263. [PMID: 31674660 DOI: 10.1111/jpy.12944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/04/2019] [Indexed: 05/12/2023]
Abstract
Xanthophyll cycle-related nonphotochemical quenching (NPQ), which is present in most photoautotrophs, allows dissipation of excess light energy. Xanthophyll cycle-related NPQ depends principally on xanthophyll cycle pigments composition and their effective involvement in NPQ. Xanthophyll cycle-related NPQ is tightly controlled by environmental conditions in a species-/strain-specific manner. These features are especially relevant in microalgae living in a complex and highly variable environment. The goal of this study was to perform a comparative assessment of NPQ ecophysiologies across microalgal taxa in order to underline the specific involvement of NPQ in growth adaptations and strategies. We used both published results and data acquired in our laboratory to understand the relationships between growth conditions (irradiance, temperature, and nutrient availability), xanthophyll cycle composition, and xanthophyll cycle pigments quenching efficiency in microalgae from various taxa. We found that in diadinoxanthin-containing species, the xanthophyll cycle pigment pool is controlled by energy pressure in all species. At any given energy pressure, however, the diatoxanthin content is higher in diatoms than in other diadinoxanthin-containing species. XC pigments quenching efficiency is species-specific and decreases with acclimation to higher irradiances. We found a clear link between the natural light environment of species/ecotypes and quenching efficiency amplitude. The presence of diatoxanthin or zeaxanthin at steady state in all species examined at moderate and high irradiances suggests that cells maintain a light-harvesting capacity in excess to cope with potential decrease in light intensity.
Collapse
Affiliation(s)
| | - Marcel Babin
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Johann Lavaud
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
43
|
Trinugroho JP, Bečková M, Shao S, Yu J, Zhao Z, Murray JW, Sobotka R, Komenda J, Nixon PJ. Chlorophyll f synthesis by a super-rogue photosystem II complex. NATURE PLANTS 2020; 6:238-244. [PMID: 32170286 DOI: 10.1038/s41477-020-0616-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 05/21/2023]
Abstract
Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
Collapse
Affiliation(s)
- Joko P Trinugroho
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Ziyu Zhao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
44
|
Yan Z, Zuo J, Zhou F, Shi J, Xu D, Hu W, Jiang A, Liu Y, Wang Q. Integrated Analysis of Transcriptomic and Metabolomic Data Reveals the Mechanism by Which LED Light Irradiation Extends the Postharvest Quality of Pak-choi ( Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Biomolecules 2020; 10:E252. [PMID: 32046153 PMCID: PMC7072264 DOI: 10.3390/biom10020252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Low-intensity (10 μmol m-2 s-1) white LED (light-emitting diode) light effectively delayed senescence and maintained the quality of postharvest pakchoi during storage at 20 °C. To investigate the mechanism of LED treatment in maintaining the quality of pakchoi, metabolite profiles reported previously were complemented by transcriptomic profiling to provide greater information. A total of 7761 differentially expressed genes (DEGs) were identified in response to the LED irradiation of pak-choi during postharvest storage. Several pathways were markedly induced by LED irradiation, with photosynthesis being the most notable. More specifically, porphyrin and chlorophyll metabolism and glucosinolate biosynthesis were significantly induced by LED irradiation, which is consistent with metabolomics reported previously. Additionally, chlorophyllide a, chlorophyll, as well as total glucosinolate content was positively induced by LED irradiation. Overall, LED irradiation delayed the senescence of postharvest pak-choi mainly by activating photosynthesis, inducting glucosinolate biosynthesis, and inhibiting the down-regulation of porphyrin and chlorophyll metabolism pathways. The present study provides new insights into the effect and the underlying mechanism of LED irradiation on delaying the senescence of pak-choi. LED irradiation represents a useful approach for extending the shelf life of pak-choi.
Collapse
Affiliation(s)
- Zhicheng Yan
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Fuhui Zhou
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Junyan Shi
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Dongying Xu
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Wenzhong Hu
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Aili Jiang
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Yao Liu
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| |
Collapse
|
45
|
Sukhova E, Khlopkov A, Vodeneev V, Sukhov V. Simulation of a nonphotochemical quenching in plant leaf under different light intensities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148138. [PMID: 31825810 DOI: 10.1016/j.bbabio.2019.148138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
An analysis of photosynthetic response on action of stressors is an important problem, which can be solved by experimental and theoretical methods, including mathematical modeling of photosynthetic processes. The aim of our work was elaboration of a mathematical model, which simulated development of a nonphotochemical quenching under different light conditions. We analyzed two variants of the model: the first variant included a light-induced activation of the electron transport chain; in contrast, the second variant did not describe this activation. Both variants of the model described interactions between transitions from open reaction centers to closed ones (and vice versa) and development of the nonphotochemical quenching. Investigation of both variants of the model showed well qualitative and quantitative accordance between simulated and experimental changes in coefficient of the nophotochemical quenching which were analyzed under different light regimes: (i) the stepped increase of the light intensity without dark intervals between steps, (ii) periodical illuminations by different light intensities with constant durations which were separated by constant dark intervals, and (iii) periodical illuminations by the constant light intensity with different durations which were separated by different dark intervals. Thus, the model can be used for theoretical prediction of stress changes in photosynthesis under fluctuations in light intensity and search of optimal regimes of plant illumination.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Andrey Khlopkov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
46
|
Davis GA, Kramer DM. Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 10:1778. [PMID: 32082344 PMCID: PMC7003800 DOI: 10.3389/fpls.2019.01778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
The conversion of sunlight into useable cellular energy occurs via the proton-coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), composed of a concentration gradient (ΔpH) and an electric field (Δψ), which drives the synthesis of ATP through the thylakoid FoF1-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane-embedded ion-binding c subunits varies between organisms, ranging from 8 to 17, theoretically altering the H+/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known c-ring stoichiometries, photosynthetic c-rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H+/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger c subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain pmf in a range where ATP synthesis is supported, but avoids excess Δψ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered c-ring size predicts the energy storage of pmf and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H+/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.
Collapse
Affiliation(s)
- Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
47
|
Genetic Improvement of Pinus koraiensis in China: Current Situation and Future Prospects. FORESTS 2020. [DOI: 10.3390/f11020148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pinus koraiensis (Sieb.et Zucc) is an economically and ecologically important tree species, naturally distributed in northeastern China. Conservation efforts and genetic improvement for this species began in the 1960s and 1980s, with the establishment of several primary seed orchards based on range-wide provenance evaluations. The original breeding objective was to improve growth and wood yield, but during the recent decade, it was redefined to include other traits, such as an enhancement of wood properties, seed oil content, cone yield, and the development of elite provenance with families, clones, and varieties with good tolerance to biotic and abiotic stresses. However, improvement processes are slow due to a long breeding cycle, and the number of improved varieties is still low. In this review, we summarize the recent progress in the selective improvement of P. koraiensis varieties, such as elite provenance, family, and clones, using various breeding procedures. We collate information on advances in the improvement of P. koraiensis, based on conventional breeding and molecular marker-assisted breeding methods; identify gaps in our understanding of the tree improvement processes; and propose future research directions, which will provide new insight for subsequent genetic breeding research on P. koraiensis.
Collapse
|
48
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
49
|
Tsai YC, Chen KC, Cheng TS, Lee C, Lin SH, Tung CW. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC PLANT BIOLOGY 2019; 19:403. [PMID: 31519149 PMCID: PMC6743182 DOI: 10.1186/s12870-019-1983-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses. Plants can sense when growing conditions are not favorable and trigger an internal response at an early stage before showing external symptoms. When a high amount of salt enters the plant cell, the membrane system and function of thylakoids in chloroplasts could be destroyed and affect photosynthetic performance if the salt concentration is not regulated to optimal values. Oryza species have salt-tolerant and salt-sensitive genotypes; however, very few studies have investigated the genetic architecture responsible for photosynthetic efficiency under salinity stress in cultivated rice. RESULTS We used an imaging-based chlorophyll fluorometer to monitor eight rice varieties that showed different salt tolerance levels for four consecutive days under control and salt conditions. An analysis of the changes in chlorophyll fluorescence parameters clearly showed the maximum quantum efficiency of PSII in sensitive varieties was significantly reduced after NaCl treatment when compared to tolerant varieties. A panel of 232 diverse rice accessions was then analyzed for chlorophyll fluorescence under salt conditions, the results showed that chlorophyll fluorescence parameters such as F0 and NPQ were higher in Japonica subspecies, ΦPSII of Indica varieties was higher than that in other subgroups, which suggested that the variation in photosynthetic efficiency was extensively regulated under salt treatment in diverse cultivated rice. Two significant regions on chromosome 5 were identified to associate with the fraction of open PSII centers (qL) and the minimum chlorophyll fluorescence (F0). These regions harbored genes related to senescence, chloroplast biogenesis and response to salt stress are of interest for future functional characterization to determine their roles in regulating photosynthesis. CONCLUSIONS Rice plant is very sensitive to salinity stress, especially at young seedling stage. Our work identified the distribution pattern of chlorophyll fluorescence parameters in seedlings leaf and their correlations with salt tolerance level in a diverse gene pool. We also revealed the complexity of the genetic architecture regulating rice seedling photosynthetic performance under salinity stress, the germplasm analyzed in this study and the associated genetic information could be utilized in rice breeding program.
Collapse
Affiliation(s)
- Yu-Chang Tsai
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Kuan-Chuan Chen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Tung-Shan Cheng
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Chuan Lee
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Shih-Hung Lin
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| |
Collapse
|
50
|
Economic feasibility and long-term sustainability criteria on the path to enable a transition from fossil fuels to biofuels. Curr Opin Biotechnol 2019; 57:175-182. [DOI: 10.1016/j.copbio.2019.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
|