1
|
Rastija V, Vrandečić K, Ćosić J, Kanižai Šarić G, Majić I, Agić D, Šubarić D, Karnaš M, Bešlo D, Brahmbhatt H, Komar M. Antifungal Activities of Fluorinated Pyrazole Aldehydes on Phytopathogenic Fungi, and Their Effect on Entomopathogenic Nematodes, and Soil-Beneficial Bacteria. Int J Mol Sci 2023; 24:ijms24119335. [PMID: 37298285 DOI: 10.3390/ijms24119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fluoro-substituted pyrazoles have a wide range of biological activities, such as antibacterial, antiviral, and antifungal activities. The aim of this study was to evaluate the antifungal activities of fluorinated 4,5-dihydro-1H-pyrazole derivatives on four phytopathogenic fungi: Sclerotinia sclerotiorum, Macrophomina phaseolina, Fusarium oxysporum f. sp. lycopersici, and F. culmorum. Moreover, they were tested on two soil beneficial bacteria-Bacillus mycoides and Bradyrhizobium japonicum-as well as two entomopathogenic nematodes (EPNs)-Heterorhabditis bacteriophora and Steinernema feltiae. The molecular docking was performed on the three enzymes responsible for fungal growth, the three plant cell wall-degrading enzymes, and acetylcholinesterase (AChE). The most active compounds against fungi S. sclerotiorum were 2-chlorophenyl derivative (H9) (43.07% of inhibition) and 2,5-dimethoxyphenyl derivative (H7) (42.23% of inhibition), as well as H9 against F. culmorum (46.75% of inhibition). Compounds were shown to be safe for beneficial soil bacteria and nematodes, except for compound H9 on EPN H. bacteriophora (18.75% mortality), which also showed the strongest inhibition against AChE (79.50% of inhibition). The molecular docking study revealed that antifungal activity is possible through the inhibition of proteinase K, and nematicidal activity is possible through the inhibition of AChE. The fluorinated pyrazole aldehydes are promising components of future plant protection products that could be environmentally and toxicologically acceptable.
Collapse
Affiliation(s)
- Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Ivana Majić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Harshad Brahmbhatt
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Burchacka E, Pięta P, Łupicka-Słowik A. Recent advances in fungal serine protease inhibitors. Biomed Pharmacother 2021; 146:112523. [PMID: 34902742 DOI: 10.1016/j.biopha.2021.112523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Four types of antifungal drugs are available that include inhibitors of ergosterol synthesis, of fungal RNA biosynthesis, and of cell wall biosynthesis as well as physiochemical regulators of fungal membrane sterols. Increasing resistance to antifungal drugs can severely limit treatment options of fungal nail infections, vaginal candidiasis, ringworm, blastomycosis, histoplasmosis, and Candida infections of the mouth, throat, and esophagus, among other infections. Development of strategies focused on new fungicides can effectively help tackle troublesome fungal diseases. The virulence and optimal growth of fungi depend on various extracellular secreted factors, among which proteases, such as serine proteases, are of particular interest. A specific extracellular proteolytic system enables fungi to survive and penetrate the tissues. Given the role of fungal proteases in infection, any molecule capable of selectively and specifically inhibiting their activity can lead to the development of potential drugs. Owing to their specific mode of action, fungal protease inhibitors can avoid fungal resistance observed with currently available treatments. Although fungal secreted proteases have been extensively studied as potential virulence factors, our understanding of the substrate specificity of such proteases remains poor. In this review, we summarize the recent advances in the design and development of specific serine protease inhibitors and provide a brief history of the compounds that inhibit fungal serine protease activity.
Collapse
Affiliation(s)
- E Burchacka
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland.
| | - P Pięta
- Department of Bionic and Medical Experimental Biology, Poznań University of Medical Sciences, Parkowa 2 St, 60-775 Poznań, Poland
| | - A Łupicka-Słowik
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Wheat Fusarium Protease Specificity and Effect on Dough Properties. Foods 2021; 10:foods10071585. [PMID: 34359455 PMCID: PMC8305547 DOI: 10.3390/foods10071585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium infection is a worldwide agricultural problem of billion dollar proportions globally, and it has increasingly threatened entire regional food supplies. In addition to the toxin deoxynivalenol (DON), Fusarium species express digestive enzymes that degrade starch and protein, affecting the quality of infected grains, especially wheat processing performance which depends largely on gluten proteins. In this study, the impact of Fusarium protease on the functionality of Canada Western Red Spring (CWRS) wheat was assessed by adding Fusarium-damaged kernels (FDK) to a FDK-free base wheat sample. Digestion of beta-casein by extracts of flours, milled from sound and FDK-spiked wheat samples, demonstrated elevated cleavage in FDK-spiked flour extracts as follows: N-terminal to lysine (eight-fold), N- and C-terminal to isoleucine (four-fold and three-fold, respectively), N-terminal to tyrosine (three-fold) and C-terminal to arginine at P1' (five-fold). Comparison of abbreviated (45 min) and standard (135 min) extensigraph test results indicated that desirable increases in dough resistance to extension (Rmax) due to gluten re-polymerization after longer resting were partially to completely counteracted in FDK-spiked flours in a dose-dependent manner. Baking tests confirmed that while loaf volume is similar, proofed dough from FDK-spiked samples caused detectable loaf collapse at 3% FDK. Extensigraph Rmax and Fusarium protease levels were inversely related, and effected by both the extent and severity of infection. While the current FDK tolerances for grading Canadian wheat can effectively control protease damage, prevalence of deoxynivalenol (DON) weak- and non-producing Fusarium strains/species (e.g., F. avenaceum) in some growing regions must be considered to protect functionality if grading is solely based on DON content.
Collapse
|
4
|
Geißinger C, Gastl M, Becker T. Enzymes from Cereal and Fusarium Metabolism Involved in the Malting Process – A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1911272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cajetan Geißinger
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Martina Gastl
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
5
|
Mustefa Beyan S, Venkatesa Prabhu S, Mumecha TK, Gemeda MT. Production of Alkaline Proteases using Aspergillus sp. Isolated from Injera: RSM-GA Based Process Optimization and Enzyme Kinetics Aspect. Curr Microbiol 2021; 78:1823-1834. [PMID: 33779778 DOI: 10.1007/s00284-021-02446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Alkaline proteases are well known to be significant industrial enzymes. This study focused on isolating the fungus producing proteases from, a typical Ethiopian food, Injera. Further, the process optimization for protease production using response surface methodology (RSM) and the characterization of the acquired protease were investigated. The 18S rDNA gene sequence homology of the fungus isolate revealed that it was Aspergillus sp. Further, it was deposited in NCBI GenBank with accession number MK4262821. Using the isolate, owing to maximize the protease production, the independent process parameters, temperature, pH, and sucrose concentration were optimized using RSM followed by a genetic algorithm (GA). Based on the statistical approach by RSM-GA optimization, maximum enzyme activity (166.4221 U/ml) was found at 30.5 °C, pH 8.24, and 0.316% sucrose concentration. Also, the crude cocktail of enzymes acquired from optimal condition was partially purified using ammonium which showed that the increased activity by 1.96-fold. Considerably, the partially purified enzyme exhibited stable performance during the temperature range 30-60 °C, pH range 7-10, and NaCl concentration of 0.5-2 mM. Also, the antioxidant activity, degree hydrolysis for the protein, Michaelis-Menten (M-M) kinetic parameters, and activation energy were determined for the obtained enzyme cocktail. It showed that the M-M kinetic parameters, Km (5.54 mg/ml), and Vmax (24.44 mg/ml min) values were observed. Using Arrhenius law, the value of activation energy for the enzyme cocktail was determined as 32.42 kJ/mol.
Collapse
Affiliation(s)
- Surafel Mustefa Beyan
- School of Chemical Engineering, Jimma University, Jimma Institute of Technology, 378, Jimma, Ethiopia.
| | - S Venkatesa Prabhu
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Tsegazeab K Mumecha
- Department of Chemical Engineering, Debre Berhan University, Debre Berhan, Ethiopia
| | - Mesfin T Gemeda
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Walk CL, Juntunen K, Paloheimo M, Ledoux DR. Evaluation of novel protease enzymes on growth performance and nutrient digestibility of poultry: enzyme dose response. Poult Sci 2020; 98:5525-5532. [PMID: 31180123 DOI: 10.3382/ps/pez299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
Two experiments were conducted to evaluate 3 novel proteases in broilers. In experiment 1, 600 male, Cobb 500 broilers were allocated to 1 of 12 experimental diets (5 birds/pen and 10 replicates/diet). A control (C) diet was formulated to be adequate in all nutrients. Proteases 1, 2, or 3 were added to this diet at 3 doses (1x, 3x, or 9x) in a 3 × 3 factorial arrangement of treatments. The factorial was augmented with 2 treatments of phytase at 500 or 1,500 FTU/kg added to the C diet. In experiment 2, 2,050 male Ross 308 broilers were allocated to 1 of 10 experimental diets (25 birds/pen and 9 replicates/diet). A C diet was formulated to be adequate in all nutrients. Protease 1, 2, or 3 was then added to the C diet at 3 doses (1x, 2x, or 4x) in a 3 × 3 factorial arrangement of treatments plus the C. In experiment 1, birds fed phytase gained more (P < 0.05) than birds fed protease, but neither were different than birds fed the C. Supplementation of 9x dose of any protease resulted in a reduction (P < 0.05) in BWG when compared with birds fed 1x dose of protease or phytase at 500 or 1,500 FTU/kg. Feed conversion ratio was improved (P < 0.05) in birds fed phytase compared with birds fed the C diet. Nitrogen digestibility was greater (P < 0.05) in birds fed protease 1 when compared with birds fed protease 2. Birds fed the 1x dose of protease or 500 FTU/kg of phytase had a greater (P < 0.05) N digestibility than birds fed 3x dose of protease. In experiment 2, protease supplementation significantly reduced (P < 0.05) BWG when compared with birds fed the C from hatch to 35 D post-hatch. Protease supplementation did not improve broiler growth performance or N digestibility above that of a nutrient adequate control diet or a diet supplemented with 500 FTU/kg of phytase.
Collapse
Affiliation(s)
- C L Walk
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK
| | | | | | - D R Ledoux
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Koga S, Rieder A, Ballance S, Uhlen AK, Veiseth-Kent E. Gluten-Degrading Proteases in Wheat Infected by Fusarium graminearum-Protease Identification and Effects on Gluten and Dough Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11025-11034. [PMID: 31502841 DOI: 10.1021/acs.jafc.9b03869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, we have observed a relationship between poor breadmaking quality and protease activities related to fungal infection. This study aims to identify potential gluten-degrading proteases secreted by fungi and to analyze effects of these proteases on rheological properties of dough and gluten. Fusarium graminearum-infected grain was used as a model system. Zymography showed that serine-type proteases secreted by F. graminearum degrade gluten proteins. Zymography followed by liquid chromatography-mass spectrometry (MS)/MS analysis predicted one serine carboxypeptidase and seven serine endo-peptidases to be candidate fungal proteases involved in gluten degradation. Effects of fungal proteases on the time-dependent rheological properties of dough and gluten were analyzed by small amplitude oscillatory shear rheology and large deformation extensional rheology. Our results indicate that fungal proteases degrade gluten proteins not only in the grain itself, but also during dough preparation and resting. Our study gives new insights into fungal proteases and their potential role in weakening of gluten.
Collapse
Affiliation(s)
- Shiori Koga
- Nofima AS , P.O. Box 210, NO-1431 Ås , Norway
| | - Anne Rieder
- Nofima AS , P.O. Box 210, NO-1431 Ås , Norway
| | | | - Anne Kjersti Uhlen
- Nofima AS , P.O. Box 210, NO-1431 Ås , Norway
- Department of Plant Sciences, Faculty of Biosciences , Norwegian University of Life Sciences , P.O. Box 5003, NO-1432 Ås , Norway
| | | |
Collapse
|
8
|
A novel thiol-dependent serine protease from Neocosmospora sp. N1. Heliyon 2019; 5:e02246. [PMID: 31440596 PMCID: PMC6699422 DOI: 10.1016/j.heliyon.2019.e02246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/06/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022] Open
Abstract
Alkaline proteases have several industrial applications. In the present study, newly isolated Neocosmospora sp. N1 was screened as hyper producer of serine protease. A multimeric protease of the fungus was purified to homogeneity till 96.78 fold purification with 22.51% recovery. The homogeneity of purified enzyme was checked by native PAGE and its molecular weight was found to be 198.03 kDa by MALDI-TOF. On SDS-PAGE analysis, enzyme was found to be a hetero oligomer of 17.66 kDa and 20.89 kDa subunits. The purified enzyme showed maximum activity with casein as substrate at 60 °C and pH 8.5. The Km and Vmax values were found to be 0.015 mg/ml and 454.45 U/ml, respectively. The enzyme was completely inhibited by PMSF, while the activity was 40% enhanced using β-mercaptoethanol, suggesting that it is a thiol-dependent serine protease. The purified protease was active over an alkaline pH range from 7 to 12 and temperatures from 20 °C to 60 °C. The enzyme exhibited excellent stability, almost 100% towards organic solvents such as toluene, benzene and hexane, surfactants such as Triton X-100, Tween-20, Tween-80 and SDS, as well as commercial detergents. The significant properties of purified enzyme assure that it could be a potential candidate for commercial purposes.
Collapse
|
9
|
Novelli PK, Barros MM, Fleuri LF. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization. Food Chem 2016; 198:119-24. [DOI: 10.1016/j.foodchem.2015.11.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022]
|
10
|
Juntunen K, Mäkinen S, Isoniemi S, Valtakari L, Pelzer A, Jänis J, Paloheimo M. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications. Appl Biochem Biotechnol 2015; 177:407-30. [DOI: 10.1007/s12010-015-1752-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
|
11
|
Enhanced thermostability of a fungal alkaline protease by different additives. Enzyme Res 2014; 2014:109303. [PMID: 25105022 PMCID: PMC4106064 DOI: 10.1155/2014/109303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/17/2022] Open
Abstract
A fungal strain (Conidiobolus brefeldianus MTCC 5184) isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP) revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50%) and sorbitol (50%) at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory.
Collapse
|
12
|
Aissaoui N, Abidi F, Mahat S, Marzouki MN. Purification and biochemical characterization of a novel protease fromPenicillium digitatum- Use in bioactive peptides production. J Basic Microbiol 2014; 54 Suppl 1:S178-89. [DOI: 10.1002/jobm.201400179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/12/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Neyssene Aissaoui
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB); National Institute of Applied Sciences and Technology, University of Carthage; Tunis Cedex Tunisia
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB); National Institute of Applied Sciences and Technology, University of Carthage; Tunis Cedex Tunisia
| | - Safa Mahat
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB); National Institute of Applied Sciences and Technology, University of Carthage; Tunis Cedex Tunisia
| | - M. Nejib Marzouki
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB); National Institute of Applied Sciences and Technology, University of Carthage; Tunis Cedex Tunisia
| |
Collapse
|
13
|
Papagianni M, Sergelidis D. Purification and biochemical characterization of a novel alkaline protease produced by Penicillium nalgiovense. Appl Biochem Biotechnol 2014; 172:3926-38. [PMID: 24585382 DOI: 10.1007/s12010-014-0824-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Abstract
Penicillium nalgiovense PNA9 produces an extracellular protease during fermentation with characteristics of growth-associated product. Enzyme purification involved ammonium sulfate precipitation, dialysis, and ultrafiltration, resulting in 12.1-fold increase of specific activity (19.5 U/mg). The protein was isolated through a series of BN-PAGE and native PAGE runs. ESI-MS analysis confirmed the molecular mass of 45.2 kDa. N-Terminal sequencing (MGFLKLLKGSLATLAVVNAGKLLTANDGDE) revealed 93 % similarity to a Penicillium chrysogenum protease, identified as major allergen. The protease exhibits simple Michaelis-Menten kinetics and K m (1.152 mg/ml), V max (0.827 mg/ml/min), and k cat (3.2 × 10(2)) (1/s) values against azocasein show that it possesses high substrate affinity and catalytic efficiency. The protease is active within 10-45 °C, pH 4.0-10.0, and 0-3 M NaCl, while maximum activity was observed at 35 °C, pH 8.0, and 0.25 M NaCl. It is active against the muscle proteins actin and myosin and inactive against myoglobin. It is highly stable in the presence of non-ionic surfactants, hydrogen peroxide, BTNB, and EDTA. Activity was inhibited by SDS, Mn(2+) and Zn(2+), and by the serine protease inhibitor PMSF, indicating the serine protease nature of the enzyme. These properties make the novel protease a suitable candidate enzyme in meat ripening and other biotechnological applications.
Collapse
Affiliation(s)
- M Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54006, Greece,
| | | |
Collapse
|
14
|
Chandrasekaran M, Sathiyabama M. Production, partial purification and characterization of protease from a phytopathogenic fungiAlternaria solani(Ell. and Mart.) Sorauer. J Basic Microbiol 2013; 54:763-74. [DOI: 10.1002/jobm.201200584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/03/2013] [Indexed: 11/07/2022]
|
15
|
Scherm B, Balmas V, Spanu F, Pani G, Delogu G, Pasquali M, Migheli Q. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. MOLECULAR PLANT PATHOLOGY 2013; 14:323-41. [PMID: 23279114 PMCID: PMC6638779 DOI: 10.1111/mpp.12011] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED Fusarium culmorum is a ubiquitous soil-borne fungus able to cause foot and root rot and Fusarium head blight on different small-grain cereals, in particular wheat and barley. It causes significant yield and quality losses and results in contamination of the grain with mycotoxins. This review summarizes recent research activities related to F. culmorum, including studies into its population diversity, mycotoxin biosynthesis, mechanisms of pathogenesis and resistance, the development of diagnostic tools and preliminary genome sequence surveys. We also propose potential research areas that may expand our basic understanding of the wheat-F. culmorum interaction and assist in the management of the disease caused by this pathogen. TAXONOMY Fusarium culmorum (W.G. Smith) Sacc. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. DISEASE SYMPTOMS Foot and root rot (also known as Fusarium crown rot): seedling blight with death of the plant before or after emergence; brown discoloration on roots and coleoptiles of the infected seedlings; brown discoloration on subcrown internodes and on the first two/three internodes of the main stem; tiller abortion; formation of whiteheads with shrivelled white grains; Fusarium head blight: prematurely bleached spikelets or blighting of the entire head, which remains empty or contains shrunken dark kernels. IDENTIFICATION AND DETECTION: Morphological identification is based on the shape of the macroconidia formed on sporodochia on carnation leaf agar. The conidiophores are branched monophialides, short and wide. The macroconidia are relatively short and stout with an apical cell blunt or slightly papillate; the basal cell is foot-shaped or just notched. Macroconidia are thick-walled and curved, usually 3-5 septate, and mostly measuring 30-50 × 5.0-7.5 μm. Microconidia are absent. Oval to globose chlamydospores are formed, intercalary in the hyphae, solitary, in chains or in clumps; they are also formed from macroconidia. The colony grows very rapidly (1.6-2.2 cm/day) on potato dextrose agar (PDA) at the optimum temperature of 25 °C. The mycelium on PDA is floccose, whitish, light yellow or red. The pigment on the reverse plate on PDA varies from greyish-rose, carmine red or burgundy. A wide array of polymerase chain reaction (PCR) and real-time PCR tools, as well as complementary methods, which are summarised in the first two tables, have been developed for the detection and/or quantification of F. culmorum in culture and in naturally infected plant tissue. HOST RANGE Fusarium culmorum has a wide range of host plants, mainly cereals, such as wheat, barley, oats, rye, corn, sorghum and various grasses. In addition, it has been isolated from sugar beet, flax, carnation, bean, pea, asparagus, red clover, hop, leeks, Norway spruce, strawberry and potato tuber. Fusarium culmorum has also been associated with dermatitis on marram grass planters in the Netherlands, although its role as a causal agent of skin lesions appears questionable. It is also isolated as a symbiont able to confer resistance to abiotic stress, and has been proposed as a potential biocontrol agent to control the aquatic weed Hydrilla spp. USEFUL WEBSITES http://isolate.fusariumdb.org/; http://sppadbase.ipp.cnr.it/; http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html; http://www.fgsc.net/Fusarium/fushome.htm; http://plantpath.psu.edu/facilities/fusarium-research-center; http://www.phi-base.org/; http://www.uniprot.org/; http://www.cabi.org/; http://www.indexfungorum.org/
Collapse
Affiliation(s)
- Barbara Scherm
- Dipartimento di Agraria-Sezione di Patologia Vegetale ed Entomologia and Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna e dell'Area Mediterranea, Università degli Studi di Sassari, Via E. De Nicola 9, I-07100 Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Oliveira PM, Waters DM, Arendt EK. The impact of Fusarium culmorum infection on the protein fractions of raw barley and malted grains. Appl Microbiol Biotechnol 2013; 97:2053-65. [DOI: 10.1007/s00253-013-4696-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
|
17
|
Oliveira PM, Mauch A, Jacob F, Waters DM, Arendt EK. Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt. Int J Food Microbiol 2012; 156:32-43. [DOI: 10.1016/j.ijfoodmicro.2012.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 11/25/2022]
|
18
|
Abidi F, Chobert JM, Haertlé T, Marzouki MN. Purification and biochemical characterization of stable alkaline protease Prot-2 from Botrytis cinerea. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Purification and characterization of a new alkaline serine protease from the thermophilic fungus Myceliophthora sp. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Zanphorlin LM, Facchini FDA, Vasconcelos F, Bonugli-Santos RC, Rodrigues A, Sette LD, Gomes E, Bonilla-Rodriguez GO. Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp. J Microbiol 2010; 48:331-6. [PMID: 20571951 DOI: 10.1007/s12275-010-9269-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
Abstract
Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50 degrees C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.
Collapse
|
21
|
Zhu HY, Tian Y, Hou YH, Wang TH. Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol Biol Rep 2008; 36:2169-74. [PMID: 19116773 DOI: 10.1007/s11033-008-9431-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
An extracellular cold-active alkaline serine protease from Penicillium chrysogenum FS010 has been purified. The purification procedure involved: ammonium sulfate precipitation, DEAE ion-exchange chromatography and sephadex G-100 gel chromatography. SDS-PAGE of the purified enzyme indicated a molecular weight of 41,000 +/- 1,000 Da. The protease is stable in a pH range of 7.0-9.0 and has a maximum activity at pH 9.0. Compared with other industrial proteases, the enzyme shows a high hydrolytic activities at lower temperatures and a high sensitivity at a temperature over 50 degrees C. The isoelectric point of the enzyme is approximate to 6.0. Enzymatic activity is enhanced by the addition of divalent cations such as Mg(2+) and Ca(2+) and inhibited by addition of Cu(2+)and Co(2+). PMSF and DFP are its specific inhibitors. The application of the cold-active alkaline protease is extremely extensive, and widely used in detergents, feed, food, leather and many other industries.
Collapse
Affiliation(s)
- Hui-Yuan Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Kikot GE, Hours RA, Alconada TM. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum
: a review. J Basic Microbiol 2008; 49:231-41. [DOI: 10.1002/jobm.200800231] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Kim JD. Purification and Characterization of a Keratinase from a Feather-Degrading Fungus, Aspergillus flavus Strain K-03. MYCOBIOLOGY 2007; 35:219-225. [PMID: 24015101 PMCID: PMC3763176 DOI: 10.4489/myco.2007.35.4.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Indexed: 05/31/2023]
Abstract
A keratinolytic enzyme secreted by Aspergillus flavus K-03 cultured in feather meal basal medium (FMBM) containing 2% (w/v) chicken feather was purified and characterized. Keratinolytic enzyme secretion was the maximal at day 16 of the incubation period at pH 8 and 28℃. No relationship was detected between enzyme yield and increase of fungal biomass. The fraction obtained at 80% ammonium sulfate saturation showed 2.39-fold purification and was further purified by gel filtration in Sephadex G-100 followed by ion exchange chromatography on DEAE-Sephadex A-50, yielding an active protein peak showing 11.53-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms indicated that the purified keratinase is a monomeric enzyme with 31 kDa molecular weight. The extracellular keratinase of A. flavus was active in a board range of pH (7~10) and temperature (30℃~70℃) profiles with the optimal for keratinase activity at pH 8 and 45℃. The keratinase activity was totally inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid, and ethylenediaminetetraacetate (EDTA) while no reduction of activity by the addition of dithiothreitol (DTT) was observed. N-terminal amino acid sequences were up to 80% homologous with the fungal subtilisins produced by Fusarium culmorum. Therefore, on the basis of these characteristics, the keratinase of A. flavus K-03 is determined to be subtilisins-like.
Collapse
Affiliation(s)
- Jeong-Dong Kim
- Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| |
Collapse
|
24
|
Dunaevsky YE, Matveeva AR, Beliakova GA, Domash VI, Belozersky MA. Extracellular alkaline proteinase of Colletotrichum gloeosporioides. BIOCHEMISTRY (MOSCOW) 2007; 72:345-50. [PMID: 17447890 DOI: 10.1134/s0006297907030145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.
Collapse
Affiliation(s)
- Ya E Dunaevsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | | | |
Collapse
|
25
|
Pekkarinen AI, Longstaff C, Jones BL. Kinetics of the inhibition of fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2736-42. [PMID: 17341093 DOI: 10.1021/jf0631777] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fungal infections of barley and wheat cause devastating losses of these food crops. The endogenous proteinase inhibitors produced by plant seeds probably defend the plants from pathogens by inhibiting the degradation of their proteins by the pathogen proteases. We have studied the interactions of barley grain inhibitors with the subtilisin-like and trypsinlike proteinases of Fusarium culmorum. The inhibition kinetics of three inhibitor proteins, chymotrypsin/subtilisin inhibitor 2 (CI-2), barley alpha-amylase/subtilisin inhibitor (BASI), and Bowman-Birk trypsin inhibitor (BBBI), have been studied in detail for the first time using fungal enzymes. The kinetic studies were performed at physiological pH values to mimic in vivo conditions. Numerical approaches to kinetic analyses were used to calculate the inhibition constants, because the data analyses were complicated by some inhibitor turnover and the instability of enzymes and substrates. All were slow, tight-binding inhibitors that followed either a two-step mechanism (CI-2 and BASI) or a single-step mechanism (BBBI) under the conditions investigated. The overall Ki values derived were approximately 50 pM, 1 nM, and 0.1 nM for CI-2, BASI, and BBBI, respectively. The main difference between the CI-2 and the BASI inhibitions was accounted for by the stabilities of their final complexes and the rate constants for their second dissociation steps (9 x 10(-6)/s and 3 x 10(-4)/s, respectively). Understanding the inhibition mechanisms will be valuable in designing improved strategies for increasing the resistance of the grains to fungal infections.
Collapse
Affiliation(s)
- Anja I Pekkarinen
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
26
|
Ueda M, Kubo T, Miyatake K, Nakamura T. Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl Microbiol Biotechnol 2007; 74:331-8. [PMID: 17221202 DOI: 10.1007/s00253-006-0621-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/03/2006] [Accepted: 08/08/2006] [Indexed: 01/22/2023]
Abstract
Fusarium sp. BLB, which produces a strongly fibrinolytic enzyme, was isolated from plant leaf (Hibiscus). Fibrinolytic alkaline protease was purified from a culture filtrate of Fusarium sp. BLB by precipitation with (NH4)2(SO4) and column chromatography with CM-Toyopearl 650 M and Superdex 75. The purified enzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight was 27,000 by SDS-PAGE. Maximum activity of protease was observed at pH 9.5 and 50 degrees C. Purified protease was active between pH 2.5 and 11.5 and was found to be stable up to 50 degrees C. The enzyme derived from Fusarium sp. BLB is useful for thrombolytic therapy because this enzyme showed pH resistance. The activity was inhibited by diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. The N-terminal amino acid sequence of the enzyme showed a similarity to those of proteases from Fusarium sp., Streptomyces griseus, Bos taurus bovine, Katsuwo pelamis digestive tract, and Lumbricus rubellus.
Collapse
Affiliation(s)
- Mitsuhiro Ueda
- Laboratory of Biocycle Engineering, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | |
Collapse
|
27
|
Tremacoldi CR, Monti R, Selistre-De-Araújo HS, Carmona EC. Purification and properties of an alkaline protease of Aspergillus clavatus. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9211-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Ievleva EV, Revina TA, Kudryavtseva NN, Sof’in AV, Valueva TA. Extracellular proteinases from the phytopathogenic fungus Fusarium culmorum. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s0003683806030148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Jones BL. The endogenous endoprotease inhibitors of barley and malt and their roles in malting and brewing. J Cereal Sci 2005. [DOI: 10.1016/j.jcs.2005.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Santino A, Poltronieri P, Mita G. Advances on plant products with potential to control toxigenic fungi: a review. FOOD ADDITIVES AND CONTAMINANTS 2005; 22:389-395. [PMID: 16019809 DOI: 10.1080/02652030500058429] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, public pressure to reduce the use of synthetic fungicides in agriculture has increased. Concerns have been raised about both the environmental impact and the potential health risk related to the use of these compounds. Therefore, considerable efforts have been made towards the development of alternative crop protectants. The European Commission has been actively encouraging the development and commercial implementation of new compounds known as 'green chemicals'. In this context, an increase in the knowledge of plant defence responses to toxigenic fungi, which is covered in this review, will help to discover new plant products with antifungal activity and to design new strategies to improve plant resistance to these pathogens.
Collapse
Affiliation(s)
- A Santino
- Institute of Sciences of Food Production, National Research Council, Lecce, Italy.
| | | | | |
Collapse
|
31
|
|
32
|
Abstract
The peptides and proteins secreted by fungi are reviewed in this article. They include ribosome inactivating peptides and proteins, antifungal peptides and proteins, lectins, ubiquitin-like peptides and proteins, peptides and proteins with nucleolytic activity, proteases, xylanases, cellulases, sugar oxidoreductases, laccases, invertases, trehalose phosphorylases, and various enzymes with applications in food industry, chemical production and the medical sector.
Collapse
Affiliation(s)
- T B Ng
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
33
|
|
34
|
Pekkarinen AI, Jones BL. Purification and identification of barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of Fusarium culmorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:1710-1717. [PMID: 12617610 DOI: 10.1021/jf026035v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been proposed that microbial proteinase inhibitors, which are present in abundance in cereal grains, protect the seed against plant pathogens. So far, however, very little is known about the interactions of those inhibitors with the proteinases of phytopathogenic microbes. The increased alkaline proteinase activities of Fusarium head blight (FHB) diseased wheat and barley grain imply that the Fusarium fungi synthesize those enzymes during the colonization of the kernel. To study which barley proteins can inhibit Fusarium proteinases, and hence, possibly protect the seed from FHB, the proteins of a grain extract have been separated and tested for their abilities to inhibit two alkaline serine proteinases that we previously isolated from F. culmorum. The proteins were separated by size exclusion, ion exchange, and reversed-phase-HPLC chromatographies. The purified inhibitors were identified by their molecular masses and N-terminal amino acid sequences. The proteins that inhibited the subtilisin-like Fusarium proteinase were the chymotrypsin/subtilisin (CI) inhibitors 1A, 1B, and 2A and the barley alpha-amylase/subtilisin inhibitor (BASI). Only one of the purified proteins inhibited the trypsin-like proteinase, the barley Bowman-Birk inhibitor (BBBI). No novel inhibitors were detected.
Collapse
Affiliation(s)
- Anja I Pekkarinen
- Department of Agronomy, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
35
|
Pekkarinen AI, Jones BL. Trypsin-like proteinase produced by Fusarium culmorum grown on grain proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:3849-3855. [PMID: 12059170 DOI: 10.1021/jf020027x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fungal disease Fusarium head blight occurs on wheat (Triticum spp.) and barley (Hordeum vulgare L.) and is one of the worldwide problems of agriculture. It can be caused by various Fusarium species. We are characterizing the proteinases of F. culmorum to investigate how they may help the fungus to attack the grain. A trypsin-like proteinase has been purified from a gluten-containing culture medium of F. culmorum. The enzyme was maximally active at about pH 9 and 45 degrees C, but was not stable under those conditions. It was stabilized by calcium ions and by the presence of other proteins. The proteinase was most stable at pH 6-7 at ambient temperatures, but was quickly inactivated at 50 degrees C. It was strongly inhibited by p-amidino phenylmethylsulfonyl fluoride (p-APMSF), and soybean trypsin and Bowman-Birk inhibitors, and it preferentially hydrolyzed the peptide bonds of the protein substrate beta-purothionin on the C-terminal side of Arg (mainly) and Lys residues. These characteristics show that it is a trypsin-like proteinase. In addition, its N-terminal amino acid sequence was 88% identical to that of the F. oxysporum trypsin-like enzyme. The proteinase hydrolyzed the D hordein and some of the C hordeins (the barley storage proteins). This enzyme, and a subtilisin-like proteinase that we recently purified from the same organism, possibly play roles in helping the fungus to colonize grains.
Collapse
Affiliation(s)
- Anja I Pekkarinen
- Department of Agronomy, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|