1
|
Mariani ME, Fidelio GD. Secretory Phospholipases A 2 in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:861. [PMID: 31354755 PMCID: PMC6635587 DOI: 10.3389/fpls.2019.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/17/2023]
Abstract
Secreted phospholipases (sPLA2s) in plants are a growing group of enzymes that catalyze the hydrolysis of sn-2 glycerophospholipids to lysophospholipids and free fatty acids. Until today, around only 20 sPLA2s were reported from plants. This review discusses the newly acquired information on plant sPLA2s including molecular, biochemical, catalytic, and functional aspects. The comparative analysis also includes phylogenetic, evolutionary, and tridimensional structure. The observations with emphasis in Glycine max sPLA2 are compared with the available data reported for all plants sPLA2s and with those described for animals (mainly from pancreatic juice and venoms sources).
Collapse
Affiliation(s)
- María Elisa Mariani
- Departamento de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Fundamentación Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gerardo Daniel Fidelio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Lee NR, Lee HJ, Yoon NY, Kim D, Jung M, Choi EH. Application of Topical Acids Improves Atopic Dermatitis in Murine Model by Enhancement of Skin Barrier Functions Regardless of the Origin of Acids. Ann Dermatol 2016; 28:690-696. [PMID: 27904267 PMCID: PMC5125949 DOI: 10.5021/ad.2016.28.6.690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The acidic pH of the stratum corneum (SC) is important for epidermal permeability barrier homeostasis. Acidification of the skin surface has been suggested as a therapeutic strategy for skin disorders such as atopic dermatitis (AD). OBJECTIVE We performed an animal study to evaluate the usefulness of acidification of SC for inhibition of AD lesions and to find out if the therapeutic effect of vinegar is attributable to its herbal contents, rather than its acidity. METHODS Five groups of six oxazolone-treated (Ox)-AD mice were treated for three weeks with creams of different acidity: vehicle cream alone (pH 5.5), neutralized vinegar cream (pH 7.4), pH 5.0 vinegar cream, pH 3.5 vinegar cream, and pH 3.5 hydrogen chloride (HCl) cream. Also, we have compared two groups of Ox-AD mice treated with pH 5.5 vehicle cream or pH 5.5 vinegar cream. RESULTS Ox-AD mice treated with acidic creams exhibited fewer AD-like lesions, had significantly lower eczema scores, decreased basal by transepidermal water loss (TEWL), and increased SC hydration compared to the groups given only vehicle and neutral cream. There was no significant difference between the acidic vinegar and HCl groups. Between the groups treated with vehicle and pH 5.5 vinegar cream, there was no difference in eczema score, basal TEWL and SC hydration. CONCLUSION Application of topical acids, regardless of their source materials, inhibits the development of AD lesions by maintenance of skin surface pH and skin barrier function in murine model.
Collapse
Affiliation(s)
- Noo Ri Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hae-Jin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Na Young Yoon
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Donghye Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Minyoung Jung
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
3
|
Dan P, Rosenblat G, Yedgar S. Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol 2012; 691:1-8. [DOI: 10.1016/j.ejphar.2012.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 01/22/2023]
|
4
|
Chan A, Mauro T. Acidification in the epidermis and the role of secretory phospholipases. DERMATO-ENDOCRINOLOGY 2011; 3:84-90. [PMID: 21695017 PMCID: PMC3117007 DOI: 10.4161/derm.3.2.15140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 12/19/2022]
Abstract
The function of the epidermis is to form an effective barrier between the dry, external environment and the interior of the body. The barrier specifically resides in the extracellular lipid membranes of the stratum corneum (SC) and an acidic pH is necessary to maintain its competency against various insults. The purpose of this review is to explore the mechanisms which are postulated to contribute to the acidification of the stratum corneum, including both exogenous and endogenous sources. However, recent research as pointed to several endogenous mechanisms as the major source of acidification, including a sodium/proton pump (NHE1) and free fatty acid conversion from phospholipids by secretory phospholipase A2 (sPLA2). sPLA2 has been shown to play a central role in the formation of the SC “acid mantle” in the early maturation of the epidermis postnatally. Many aspects of this enzyme family are complex and still being elucidated in research and the most recent findings on the localization and functions of sPL A2-IB, -IIA, -IIC, -IID, -IIE, -IIF, -III, -V, -X and -XII in the epidermis are presented here. Given their role in inflammatory dermatoses, such as psoriasis and atopic dermatitis, understanding this complex enzyme family can lead to novel, life-changing therapies.
Collapse
Affiliation(s)
- Aegean Chan
- Dermatology Department; University of California, San Francisco; and San Francisco Veterans Affairs Medical Center; San Francisco, CA USA
| | | |
Collapse
|
5
|
Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. J Invest Dermatol 2008; 129:365-74. [PMID: 18704104 DOI: 10.1038/jid.2008.218] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that pH declines from between 6 and 7 at birth to adult levels (pH 5.0-5.5) over 5-6 days in neonatal rat stratum corneum (SC). As a result, at birth, neonatal epidermis displays decreased permeability barrier homeostasis and SC integrity, improving days 5-6. We determined here whether peroxisome proliferator-activated receptor (PPAR) activators accelerate postnatal SC acidification. Topical treatment with two different PPARalpha activators, clofibrate and WY14643, accelerated the postnatal decline in SC surface pH, whereas treatment with PPARgamma activators did not and a PPARbeta/delta activator had only a modest effect. Treatment with clofibrate significantly accelerated normalization of barrier function. The morphological basis for the improvement in barrier function in PPARalpha-treated animals includes accelerated secretion of lamellar bodies and enhanced, postsecretory processing of secreted lamellar body contents into mature lamellar membranes. Activity of beta-glucocerebrosidase increased after PPARalpha-activator treatment. PPARalpha activator also improved SC integrity, which correlated with an increase in corneodesmosome density and increased desmoglein-1 content, with a decline in serine protease activity. Topical treatment of newborn animals with a PPARalpha activator increased secretory phospholipase A2 activity, which likely accounts for accelerated SC acidification. Thus, PPARalpha activators accelerate neonatal SC acidification, in parallel with improved permeability homeostasis and SC integrity/cohesion. Hence, PPARalpha activators might be useful to prevent or treat certain common neonatal dermatoses.
Collapse
|
6
|
Choi EH, Man MQ, Xu P, Xin S, Liu Z, Crumrine DA, Jiang YJ, Fluhr JW, Feingold KR, Elias PM, Mauro TM. Stratum Corneum Acidification Is Impaired in Moderately Aged Human and Murine Skin. J Invest Dermatol 2007; 127:2847-56. [PMID: 17554364 DOI: 10.1038/sj.jid.5700913] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that could be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. This defect is linked to reduced epidermal lipid synthesis in humans and in mice of advanced age (i.e., >75 years in human or >18-24 months in mice). We now report that barrier defects in moderately aged humans (50-80 years) or analogously aged mice (12-15 months) are linked instead to defective stratum corneum (SC) acidity. In moderately aged mouse epidermis, we find that abnormal acidification, in turn, is linked to decreased Na+/H+ antiporter (NHE1) expression. Decreased NHE1 levels lead to increased SC pH, which results in defective lipid processing and delayed maturation of lamellar membranes, due to suboptimal activation of the pH-sensitive essential, lipid-processing enzyme, beta-glucocerebrosidase. Conversely, impaired SC integrity in moderately aged mice is due to increased pH-dependent activation of serine proteases, leading to premature degradation of corneodesmosomes. These abnormalities were normalized by exogenously acidifying the SC, suggesting a basis for the well-known acidification therapies that are widely used to treat the pathologic xerosis/eczema seen in moderately aged humans.
Collapse
Affiliation(s)
- Eung-Ho Choi
- Department of Dermatology, University of California San Francisco and Dermatology Service, Veteran's Administration Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fluhr JW, Crumrine D, Mao-Qiang M, Moskowitz DG, Elias PM, Feingold KR. Topical Liver X Receptor Activators Accelerate Postnatal Acidification of Stratum Corneum and Improve Function in the Neonate. J Invest Dermatol 2005; 125:1206-14. [PMID: 16354191 DOI: 10.1111/j.0022-202x.2005.23964.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In neonatal rat stratum corneum (SC), pH declines from pH 6.8 at birth to adult levels (pH 5.0-5.5) over 5-6 d. Liver X receptor (LXR) activators stimulate keratinocyte differentiation, improve permeability barrier homeostasis, and accelerate the in utero development of the SC. In this manuscript we determined the effect of LXR activators on SC acidification in the neonatal period and whether these activators correct the functional abnormalities in permeability barrier homeostasis and SC integrity/cohesion. Formation of the acid SC-buffer system was accelerated by topically applying the LXR activator, 22(R)-hydroxycholesterol, and non-oxysterol activators of LXR, TO-901317, and GW-3965. A sterol which does not activate LXR had no effect. LXR activation increased secretory phospholipase A(2) (sPLA(2)) activity and conversely, inhibition of sPLA(2) activity prevented the LXR induced increase in SC acidification, suggesting that increasing sPLA(2) accounts in part, for the LXR stimulation of acidification. LXR activation resulted in an improvement in permeability barrier homeostasis, associated with an increased maturation of lamellar membranes attributable to an increased beta-glucocerebrosidase activity. SC integrity cohesion also normalized in LXR-activator-treated animals and was associated with an increase in corneodesmosomes and in desmoglein 1 expression. These results demonstrate that LXR activators stimulate the formation of an acidic SC and improve both permeability barrier homeostasis and SC integrity/cohesion.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Dermatology and Medical Service, Veterans Affairs Medical Center, San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Mazereeuw-Hautier J, Gres S, Fanguin M, Cariven C, Fauvel J, Perret B, Chap H, Salles JP, Saulnier-Blache JS. Production of lysophosphatidic acid in blister fluid: involvement of a lysophospholipase D activity. J Invest Dermatol 2005; 125:421-7. [PMID: 16117781 PMCID: PMC1885457 DOI: 10.1111/j.0022-202x.2005.23855.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysophosphatidic acid (LPA) is present in abundance in serum resulting from platelet activation and is also found in other biological fluids. LPA controls numerous cellular responses and plays a role in specific functions such as wound healing, especially in the skin. Nevertheless, its presence in the skin has never been investigated. Since re-epithelialization occurs after blister rupture, we tested the presence of endogenous LPA in blister fluid and investigated a possible mechanism for its biosynthesis and biological functions. Using a radioenzymatic assay, LPA was detected in 33 blister fluids originating from 24 bullous dermatoses, and at higher concentrations than in plasma. In parallel, blister fluids contained a lysophospholipase D (LPLD) activity but no detectable phospholipase A2 activity. The expressions of the LPLD autotaxin (ATX) and of LPA1-receptor (LPA1-R) were greatly increased in blister skin when compared with normal skin. Finally, LPA was found to have a positive effect on the migration of cultured keratinocytes. These results show that LPA is present in blister fluid synthesized by the LPLD ATX. Due to its ability to enhance keratinocyte migration, LPA in blister fluid could, via the LPA1-R, play an important role in re-epithelialization occurring after blister rupture.
Collapse
|
9
|
Abstract
Most epidermal functions can be considered as protective, or more specifically, as defensive in nature. Yet, the term "barrier function" is often used synonymously with only one such defensive function, though arguably its most important, i.e., permeability barrier homeostasis. Regardless of their relative importance, these protective cutaneous functions largely reside in the stratum corneum (SC). In this review, I first explore the ways in which the multiple defensive functions of the SC are linked and interrelated, either by their shared localization or by common biochemical processes; how they are co-regulated in response to specific stressors; and how alterations in one defensive function impact other protective functions. Then, the structural and biochemical basis for these defensive functions is reviewed, including metabolic responses and signaling mechanisms of barrier homeostasis. Finally, the clinical consequences and therapeutic implications of this integrated perspective are provided.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA.
| |
Collapse
|
10
|
Haas U, Podda M, Behne M, Gurrieri S, Alonso A, Fürstenberger G, Pfeilschifter J, Lambeau G, Gelb MH, Kaszkin M. Characterization and differentiation-dependent regulation of secreted phospholipases A in human keratinocytes and in healthy and psoriatic human skin. J Invest Dermatol 2005; 124:204-11. [PMID: 15654975 DOI: 10.1111/j.0022-202x.2004.23513.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Secreted phospholipases A2 (sPLA2) expressed in the skin are thought to be involved in epidermal barrier homeostasis as well as in inflammation. We investigated the expression of the novel sPLA2 subtypes in human skin at mRNA and protein levels in the epidermis and primary keratinocytes from healthy human skin, and in skin sections from patients with psoriasis, where the integrity of the epidermis is drastically affected. Immunofluorescence studies using specific antibodies for the different sPLA2 enzymes show that sPLA2-IB, -IIF, and -X are predominantly expressed in suprabasal layers, whereas sPLA2-V and -IID are detected in the basal and spinous layers. sPLA2-IIA is weakly expressed, and sPLA2-IIE and XIIA are not detectable. Accordingly, in differentiated human primary keratinocyte cultures, the expression of sPLA2-IB, -IIF and -X was increased, whereas that of sPLA2-V and -IID was markedly decreased. In psoriatic skin, sPLA2-X was dramatically downregulated in the epidermis, whereas increased amounts of this enzyme together with sPLA2-IIA, -IID, and -IB appeared in the dermis. An enhanced release of these enzymes with the exception of sPLA2-IID was also observed after treatment of HaCaT keratinocytes with tumor necrosis factor-alpha/interferon-gamma. Treatment of HaCaT cells with sPLA2-X and -IB resulted in an increase in prostaglandin E2 formation, suggesting a proinflammatory role of these enzymes during psoriasis. sPLA2-V completely disappeared. The differential locations of the sPLA2 enzymes propose distinct roles of individual enzymes in skin.
Collapse
Affiliation(s)
- Ulrike Haas
- pharmazentrum frankfurt, University Hospital, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fluhr JW, Behne MJ, Brown BE, Moskowitz DG, Selden C, Mao-Qiang M, Mauro TM, Elias PM, Feingold KR. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol 2004; 122:320-9. [PMID: 15009712 DOI: 10.1046/j.0022-202x.2003.00204.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At birth, human stratum corneum (SC) displays a near-neutral surface pH, which declines over several days to weeks to months to an acidic pH, comparable to that of adults. Recent studies suggest that an acidic pH is required for normal permeability barrier homeostasis and SC integrity/cohesion. We assessed here the basis for postnatal acidification in the neonatal rat, where SC pH, as measured with a flat surface electrode, declines progressively from near-neutral levels (pH 6.63) on postnatal days 0 to 1 to adult levels (pH 5.9) or even below over the subsequent 7 to 8 d. The postnatal decline in SC pH was paralleled by a progressive activation of a pH-dependent hydrolytic enzyme, beta-glucocerebrosidase. Because SC acidification could not be linked to commonly implicated exogenous factors, such as bacterial colonization, or the deposition of sebaceous gland products. We next assessed whether changes in one or more of three endogenous mechanisms demonstrate postnatal activity changes that contribute to the progressive development of an acidic SC pH. Although the histidine-to-urocanic acid pathway has been implicated in acidification of the adult SC, surface pH is completely normal in histidase-deficient (his/his, Peruvian) mice, ruling out a requirement for this mechanism. In contrast, when sodium/hydrogen antiporter-1 (NHE1), which predominantly acidifies membrane domains at the stratum granulosum-SC interface, is inhibited, postnatal acidification of the SC is partially blocked. Likewise, SC secretory phospholipase A2 (sPLA2) activity, measured with a fluorometric assay, is low at birth, but increases progressively (by 66%) over the first 5 d after birth, and inhibition of sPLA2 between days 0 to 1 and days 5 to 6 delays postnatal SC acidification. Together, these results describe a neonatal model, in which the development of an acidic surface pH can be ascribed, in part, to progressive SC acidification by two endogenous mechanisms, namely, sPLA2 and NHE1, which are known to be important for acidification of adult rodent SC. Conversely, the impaired acidification of neonatal SC, which has important functional and clinical consequences, can be explained by the relatively low activities of one or both of these mechanisms at birth.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Dermatology and Medical Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, 94121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Svane-Knudsen V, Rasmussen G, Ottosen PD. The distribution of free calcium ions in the cholesteatoma epithelium. Eur Arch Otorhinolaryngol 2004; 262:77-80. [PMID: 14963721 DOI: 10.1007/s00405-004-0737-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside in an environment containing relatively low concentrations of calcium ions, whereas the outer stratum granulosum contained abundant calcium. The concentration declined precipitously in the stratum corneum. In contrast, in cholesteatomas, the gradient was perturbed in some areas of the nucleated layers and areas appeared where oblong accumulations of free calcium ions were found basally in the stratum. These findings provide evidence that fluctuations in epidermal calcium in cholesteatoma epithelium may underlie the abnormal desquamation, may contribute to the formation of an abnormal permeability barrier and may regulate terminal events in epidermal differentiation.
Collapse
Affiliation(s)
- Viggo Svane-Knudsen
- Department of Otorhinolaryngology, University Hospital of Odense, 5000, Odense, Denmark.
| | | | | |
Collapse
|
13
|
Gurrieri S, Fürstenberger G, Schadow A, Haas U, Singer AG, Ghomashchi F, Pfeilschifter J, Lambeau G, Gelb MH, Kaszkin M. Differentiation-dependent regulation of secreted phospholipases A2 in murine epidermis. J Invest Dermatol 2003; 121:156-64. [PMID: 12839576 DOI: 10.1046/j.1523-1747.2003.12315.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The action of secreted phospholipases A2 in skin is thought to be essential for epidermal barrier homeostasis. The incomplete knowledge of presence and functions of the novel secreted phospholipase A2 subtypes in skin prompted us to explore their expression in epidermis and primary keratinocytes from murine neonatal skin. We detected secreted phospholipases A2-IB, -IIA, -IIC, -IID, -IIE, -IIF, -V, -X, and -XII. To study secreted phospholipase A2 expression during epidermal differentiation, primary keratinocytes from the basal, suprabasal, and upper differentiated layers of neonatal mouse epidermis were obtained by density gradient centrifugation. mRNA for secreted phospholipases A2-IB, -IIE, -IIF, -V, and -XII-1 are mainly expressed in the upper differentiated layers, whereas the most prominent enzymes in the basal and suprabasal layers are secreted phospholipases A2-IIA, -IID, and -X. The mRNA for secreted phospholipase A2-IIC was found in all fractions. Immunohistochemical analysis in mouse skin sections reflected the mRNA distribution patterns in the different epidermal cell fractions. After in vitro induction of keratinocyte differentiation by increasing the calcium concentration of the medium, secreted phospholipases A2-IB, -IIE, -IIF, -V, and -XII-1 were upregulated, whereas secreted phospholipases A2-IIA, -IIC, -IID, and -X were mainly expressed in proliferating keratinocytes. The specific secreted phospholipase A2 expression profile in the skin suggests a distinct function for each enzyme in the epidermis.
Collapse
Affiliation(s)
- Silvia Gurrieri
- Pharmazentrum Frankfurt, University Hospital, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zolese G, Wozniak M, Mariani P, Saturni L, Bertoli E, Ambrosini A. Different modulation of phospholipase A2 activity by saturated and monounsaturated N-acylethanolamines. J Lipid Res 2003; 44:742-53. [PMID: 12562826 DOI: 10.1194/jlr.m200395-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological functions of N-acylethanolamines (NAEs) are poorly understood, although many functions were suggested for these naturally occurring membrane components of plants and animals. The binding with cannabinoid receptors CB1 and CB2 was demonstrated for some NAEs, such as anandamide. However, the chemical nature of these molecules suggests that some of their biological effects on biomembranes could be related, at least partially, to physical interactions with the lipid bilayer. The present work studies the effect of saturated and monounsaturated NAEs on phospholipase A2 (PLA2) activity, which is dependent on lipid bilayer features. The present study, performed by 2-dimethylamino-(6-lauroyl)-naphthalene (Laurdan) fluorescence, demonstrates that the acyl chain length and the presence of a single double bond are crucial for the enzymatic activity modulation by NAEs. In fact, saturated NAEs with 10 carbon atoms don't affect the PLA2 activity, while NAEs with 12 and 16 carbon atoms largely activate the enzyme. On the other hand, an acyl chain length of 18 carbon atoms, with or without the presence of a double bond, only slightly affects the enzymatic activity. A structural model for NAE-lipid interactions is proposed in order to explain the differences in PLA2 activity modulation by these fatty acid derivatives.
Collapse
|
15
|
Rys-Sikora KE, Pentland AP, Konger RL. Pertussis toxin-sensitive secretory phospholipase A2 expression and motility in activated primary human keratinocytes. J Invest Dermatol 2003; 120:86-95. [PMID: 12535202 DOI: 10.1046/j.1523-1747.2003.12001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Secretory phospholipase A2 and cycloxygenase-2 are coexpressed in activated primary keratinocytes. These proteins are known to be functionally linked, mediating proliferation of human keratinocytes during epidermal wound repair. Primary human keratinocytes grown at low densities (15-30%; nonconfluent) produce high levels of prostaglandin E2 important for proliferation and are a good model for studying activated keratinocytes after injury. In this study, we used this model to assess the role of secretory phospholipase A2 and cycloxygenase-2 in keratinocyte motility. Initial work showed 24 h pretreatment with 20 ng pertussis toxin per ml, an inhibitor of the inhibitory G-protein, decreased prostaglandin E2 production and both secretory phospholipase A2 and cycloxygenase-2 protein expression. This suggested that inhibitory G-protein may be involved in mediating expression of these proteins. Pertussis toxin also caused changes in cell morphology, actin organization, and keratinocyte motility. Pretreatment with 5 microm 12-epi-scalaradial, a secretory phospholipase A2 inhibitor, caused similar changes in cell motility and actin organization; however, the specific cycloxygenase-2 inhibitor, SC-58236 (20 nm) was much less effective. These results suggested that secretory phospholipase A2 plays a part in keratinocyte motility that is independent of its functional linkage to cycloxygenase-2 and prostaglandin E2 biosynthesis.
Collapse
Affiliation(s)
- Krystyna E Rys-Sikora
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
16
|
Robinson DA, Bogdanffy MS, Reed CJ. Histochemical localisation of carboxylesterase activity in rat and mouse oral cavity mucosa. Toxicology 2002; 180:209-20. [PMID: 12393291 DOI: 10.1016/s0300-483x(02)00375-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vinyl acetate (VA) is widely used within the chemical industry, in the manufacture of polyvinyl alcohol, and as polyvinyl acetate emulsions in latex paints, adhesives, paper and paper board coatings. Chronic oral exposure of rodents to high concentrations of VA induces tumours within the oral cavity. Carboxylesterase-dependent hydrolysis of VA is thought to be critical in the development of nasal tumours following inhalation exposure of animals to VA. Therefore, carboxylesterase activity was determined histochemically in the oral cavities of male F344 rats and BDF mice in order to explore the potential role of carboxylesterase-dependent hydrolysis of VA in the development of oral tumours. Following fixation in 10% neutral buffered formalin heads were decalcified in neutral saturated EDTA, embedded in resin, sectioned at six levels (three each for the upper and lower jaws), and carboxylesterase activity revealed in the tissue using alpha-naphthyl butyrate as substrate. The localisation of carboxylesterase activity in freshly dissected rat oral tissue was compared to that of the resin sections and found to be identical, thus validating the decalcification process. A similar pattern of carboxylesterase activity was observed for the two species. Staining was low in areas surrounding the teeth, and medium/high in the buccal mucosa, the central/posterior upper palate and those regions of the lower jaw not proximal to the teeth. In general the intensity of staining was greater in sections from the rat compared to those from the mouse. By comparison, carboxylesterase activity was considerably higher in mouse nasal olfactory epithelium than in any of the oral tissues. Thus the mucosa of the oral cavity has the potential to hydrolyse VA to its metabolites, acetic acid and acetaldehyde, and the presence of carboxylesterases at this site is consistent with, and may be an important determining factor in, the development of oral cavity tumours following exposure to VA.
Collapse
Affiliation(s)
- Darren A Robinson
- School of Biomolecular Sciences, John Moores University, Byrom Street, L3 3AF, Liverpool, UK
| | | | | |
Collapse
|
17
|
Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 2001; 117:44-51. [PMID: 11442748 DOI: 10.1046/j.0022-202x.2001.01399.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is evidence that the "acid mantle" of the stratum corneum is important for both permeability barrier formation and cutaneous antimicrobial defense. The origin of the acidic pH of the stratum corneum remains conjectural, however. Both passive (e.g., eccrine/sebaceous secretions, proteolytic) and active (e.g., proton pumps) mechanisms have been proposed. We assessed here whether the free fatty acid pool, which is derived from phospholipase-mediated hydrolysis of phospholipids during cornification, contributes to stratum corneum acidification and function. Topical applications of two chemically unrelated secretory phospholipase sPLA2 inhibitors, bromphenacylbromide and 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol, for 3 d produced an increase in the pH of murine skin surface that was paralleled not only by a permeability barrier abnormality but also altered stratum corneum integrity (number of strippings required to break the barrier) and decreased stratum corneum cohesion (protein weight removed per stripping). Not only stratum corneum pH but also all of the functional abnormalities normalized when either palmitic, stearic, or linoleic acids were coapplied with the inhibitors. Moreover, exposure of intact murine stratum corneum to a neutral pH for as little as 3 h produced comparable abnormalities in stratum corneum integrity and cohesion, and further amplified the inhibitor-induced functional alterations. Furthermore, short-term applications of an acidic pH buffer to inhibitor-treated skin also reversed the abnormalities in stratum corneum integrity and cohesion, despite the ongoing decrease in free fatty acid levels. Finally, the secretory-phospholipase-inhibitor-induced alterations in integrity/cohesion were in accordance with premature dissolution of desmosomes, demonstrated both by electron microscopy and by reduced desmoglein 1 levels in the stratum corneum (shown by immunofluorescence staining and visualized by confocal microscopy). Together, these results demonstrate: (i) the importance of phospholipid-to-free-fatty-acid processing for normal stratum corneum acidification; and (ii) the potentially important role of this pathway not only for barrier homeostasis but also for the dual functions of stratum corneum integrity and cohesion.
Collapse
Affiliation(s)
- J W Fluhr
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
18
|
Schadow A, Scholz-Pedretti K, Lambeau G, Gelb MH, Fürstenberger G, Pfeilschifter J, Kaszkin M. Characterization of group X phospholipase A(2) as the major enzyme secreted by human keratinocytes and its regulation by the phorbol ester TPA. J Invest Dermatol 2001; 116:31-9. [PMID: 11168795 DOI: 10.1046/j.1523-1747.2001.00179.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HaCaT as well as human primary keratinocytes constitutively expressed mRNA of the human secreted phospholipase A(2) subtype groups X, V, IIA, and IID. A similar expression pattern was also found in human skin biopsies. Protein analysis showed that under serum-free conditions only group X secreted phospholipase A(2) is secreted into cell culture supernatants of HaCaT as well as human primary keratinocytes, whereas the other secreted phospholipases A(2) were not detectable at protein level. HaCaT keratinocytes constitutively released secreted phospholipase A(2) activity into the cell culture supernatant, being reflected by a constant release of fatty acids. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate, which is a potent inducer of inflammation in skin, drastically reduced the mRNA level of group X secreted phospholipase A(2) and other secreted phospholipase A(2) subtypes as well as secreted phospholipase A(2) activity in cell culture supernatants. This suggests that inhibition of secreted phospholipase A(2) expression and activity as well as of fatty acid release by 12-O-tetradecanoylphorbol-13-acetate treatment might be a critical step impairing the integrity of the epidermis during phorbol-ester-induced pathologic processes in skin. The results show that group X secreted phospholipase A(2) represents the major secreted phospholipase A(2) subtype in human keratinocytes and thus may indicate a physiologic role for this enzyme in epidermis in vivo.
Collapse
Affiliation(s)
- A Schadow
- Pharmazentrum Frankfurt, University Hospital, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Maury E, Prévost MC, Simon MF, Redoules D, Ceruti I, Tarroux R, Charveron M, Chap H. Identification of two secreted phospholipases A2 in human epidermis. J Invest Dermatol 2000; 114:960-6. [PMID: 10771478 DOI: 10.1046/j.1523-1747.2000.00965.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipases A2 are enzymes that catalyze the release of fatty acids from the sn-2 position of phospholipids. Fatty acids have been suggested to play a key role in the barrier function of the epidermis. The aim of this study was to identify and characterize the type of secretory phospholipase A2 expressed in human epidermis. We report the molecular cloning of two secretory phospholipase A2 in the human epidermis. The first enzyme is identical to human pancreatic type IB phospholipase A2. Western blots revealed a 14 kDa protein localized in the soluble fraction. The second phospholipase A2 is identical to human synovial type IIA enzyme and is localized in the membrane fraction. By semiquantitative reverse transcription-polymerase chain reaction performed on horizontal sections of the epidermis, we found that the mRNAs of both phospholipases A2 were expressed mainly in the basal layers of the epidermis. Our data thus provide evidence for the expression of two secretory phospholipases A2 in human epidermis. The different localization of these two secretory proteins strongly suggests that each enzyme might have a specific role in skin physiology and probably in the barrier function. Taken together, these data validate the reverse transcription-polymerase chain reaction technique performed on thin sections as a first approach to detect gene expression in different layers of the epidermis.
Collapse
Affiliation(s)
- E Maury
- Institut Fédératif de Recherche en Immunologie Cellulaire et Moléculaire, Hôpital Purpan, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|