1
|
Dai C, Cui X, Wang J, Dong B, Gao H, Cheng M, Jiang F. CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating KIF1B expression. Exp Ther Med 2024; 27:107. [PMID: 38356673 PMCID: PMC10865453 DOI: 10.3892/etm.2024.12395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
The selective RNA polymerase I inhibitor CX-5461 has been shown to be effective in treating some types of leukemic disorders. Emerging evidence suggests that combined treatments with CX-5461 and other chemotherapeutic agents may achieve enhanced effectiveness as compared with monotherapies. Currently, pharmacodynamic properties of the combination of CX-5461 with tyrosine kinase inhibitors remain to be explored. The present study tested whether CX-5461 could potentiate the effect of imatinib in the human chronic myeloid leukemia cell line K562, which is p53-deficient. It was demonstrated that CX-5461 at 100 nM, which was non-cytotoxic in K562 cells, potentiated the pro-apoptotic effect of imatinib. Mechanistically, the present study identified that the upregulated expression of kinesin family member 1B (KIF1B) gene might be involved in mediating the pro-apoptotic effect of imatinib/CX-5461 combination. Under the present experimental settings, however, neither CX-5461 nor imatinib alone exhibited a significant effect on KIF1B expression. Moreover, using other leukemic cell lines, it was demonstrated that regulation of KIF1B expression by imatinib/CX-5461 was not a ubiquitous phenomenon in leukemic cells and should be studied in a cell type-specific manner. In conclusion, the results suggested that the synergistic interaction between CX-5461 and imatinib may be of potential clinical value for the treatment of tyrosine kinase inhibitor-resistant chronic myeloid leukemia.
Collapse
Affiliation(s)
- Chaochao Dai
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Wang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
2
|
Dabbaghipour R, Khaze Shahgoli V, Safaei S, Amini M, Tabei S, Shanehbandi D, Rahbar Farzam O, Baradaran B, Entezam M. siRNA-mediated downregulation of BATF3 diminished proliferation and induced apoptosis through downregulating c-Myc expression in chronic myelogenous leukemia cells. Mol Biol Rep 2024; 51:100. [PMID: 38217769 DOI: 10.1007/s11033-023-09059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Despite considerable improvement in therapeutic approaches to chronic myeloid leukemia (CML) treatment, this malignancy is considered incurable due to resistance. However, investigating the molecular mechanism of CML may give rise to the development of extremely efficient targeted therapies that improve the prognosis of patients. Basic leucine zipper transcription factor ATF-like3 (BATF3), as transcription factor, is considered a key regulator of cellular activities and its function has been evaluated in tumor development and growth in several cancer types. This study aimed to evaluate the potential of the cellular impact of siRNA-mediated downregulation of BATF3 on CML cancer cells through cell proliferation, induction of apoptosis, and cell cycle distribution. MATERIALS AND METHODS The transfection of BATF3 siRNA to K562 CML cells was performed by electroporation device. To measure cellular viability and apoptosis, MTT assay and Annexin V/PI staining were carried out, respectively. Also, cell cycle assay and flow cytometry instrument were applied to assess cell cycle distribution of K562 cells. For more validation, mRNA expression of correlated genes was relatively evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The data indicated that siRNA-mediated BATF3 inactivating severely promoted the cell apoptosis. Also, the targeted therapy led to high expression of Caspase-3 gene and Bax/Bcl-2 ratio. Silenced BATF3 also induced cell cycle arrest in phase sub-G1 compared to control. Finally, a noticeable decrement was obtained in c-Myc gene expression through suppression of BATF3 in CML cells. CONCLUSION The findings of this research illustrated the suppression of BATF3 as an effective targeted therapy strategy for CML.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Smb Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR, Iran.
| |
Collapse
|
3
|
Yin SS, Chen C, Liu Z, Liu SL, Guo JH, Zhang C, Zhang QW, Gao FH. Isoalantolactone mediates the degradation of BCR-ABL protein in imatinib-resistant CML cells by down-regulating survivin. Cell Cycle 2023; 22:1407-1420. [PMID: 37202916 PMCID: PMC10281474 DOI: 10.1080/15384101.2023.2209963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 05/20/2023] Open
Abstract
Isoalantolactone (Iso) is a bioactive lactone isolated from the root of Inula helenium L, which has been reported to have many pharmacological effects. To investigate the role and mechanism of isoalantolactone in chronic myeloid leukemia (CML), we first investigated isoalantolactone's anti-proliferative effects on imatinib-sensitive and imatinib-resistant CML cells by CCK8. Flow cytometry was used to detect isoalantolactone-induced cell apoptosis. Survivin was overexpressed in KBM5 and KBM5T315I cells using the lentivirus vector pSIN-3×flag-PURO. In KBM5 and KBM5T315I cells, shRNA was used to knockdown survivin. Cellular Thermal Shift Assay (CETSA) was used to detect the interaction between isoalantolactone and survivin. The ubiquitin of survivin induced by isoalantolactone was detected through immunoprecipitation. Quantitative polymerase-chain reaction (Q-PCR) and western blotting were used to detect the levels of mRNA and protein. Isoalantolactone inhibits the proliferation and promotes apoptosis of imatinib-resistant CML cells. Although isoalantolactone inhibits the proteins of BCR-ABL and survivin, it cannot inhibit survivin and BCR-ABL mRNA levels. Simultaneously, it was shown that isoalantolactone can degrade survivin protein by increasing ubiquitination. It was demonstrated that isoalantolactone-induced survivin mediated downregulation of BCR-ABL protein. It was also revealed that isoalantolactone triggered BCR-ABL protein degradation via caspase-3. Altogether, isoalantolactone inhibits survivin through the ubiquitin proteasome pathway, and mediates BCR-ABL downregulation in a caspase-3 dependent manner. These data suggest that isoalantolactone is a natural compound, which can be used as a potential drug to treat TKI-resistant CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Survivin
- Caspase 3
- Drug Resistance, Neoplasm
- Cell Proliferation
- Fusion Proteins, bcr-abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Apoptosis
- RNA, Messenger
- Ubiquitins/pharmacology
- Ubiquitins/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Shan-Shan Yin
- Department of Oncology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Wangfujing, Dongcheng District, Beijing, China
| | - Zhen Liu
- Department of Oncology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-Ling Liu
- Department of Clinical Laboratory, The First Hospital of Changsha City, Changsha, China
| | - Jia-Hui Guo
- Department of Oncology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Geriatrics, Shanghai ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan-Wu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhang JM, Wang CF, Wei MY, Dong H, Gu YC, Mo XM, Shao CL, Liu M. Brefeldin A Induces Apoptosis, Inhibits BCR-ABL Activation, and Triggers BCR-ABL Degradation in Chronic Myeloid Leukemia K562 Cells. Anticancer Agents Med Chem 2021; 22:1091-1101. [PMID: 34102989 DOI: 10.2174/1871520621666210608110435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by BCR-ABL oncoprotein. Tyrosine kinase inhibitors have been developed to inhibit the activity of BCR-ABL; however, drug resistance and side effect occur in clinic application. Therefore, it is urgent to find novel drugs for CML treatment. Under the guidance of cytotoxic activity, crude extracts of 55 fungal strains from the medicinal mangrove Acanthus ilicifolius were evaluated, and one potent cytotoxic natural compound, brefeldin A (BFA), was discovered from Penicillium sp. (HS-N-29). OBJECTIVE This study was aimed to determine the cytotoxic activity of BFA and the effect on the activation and expression of BCR-ABL in K562 cells. METHOD We evaluated cytotoxic activity by MTT assay and soft agar clone assay and apoptosis and cell cycle distribution by Muse cell analyzer. The protein level of BCR-ABL and signaling molecules were detected by western blotting, and the mRNA level of BCR-ABL was determined by RT-PCR. RESULTS BFA inhibited cell proliferation, induced G2/M cell cycle arrest, and stimulated cell apoptosis in K562 cells. Importantly, for the first time, we revealed that BFA inhibited the activation of BCR-ABL and consequently inhibited the activation of its downstream signaling molecules in K562 cells. Moreover, we found that BFA degraded BCR-ABL without affecting its transcription in K562 cells, and BFA-induced BCR-ABL degradation was related to caspase activation while not to autophagy or ubiquitinated proteasome degradation pathway. CONCLUSION Our present results indicate that BFA acts as a dual functional inhibitor and degrader of BCR-ABL, and BFA is a potential compound for chemotherapeutics to overcome CML.
Collapse
Affiliation(s)
- Jin-Man Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Cui-Fang Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hui Dong
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY. United Kingdom
| | - Xiao-Mei Mo
- Qingdao Women and Children's Hospital (QWCH), Qingdao, 266000, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, Giacomelli AO, Wong W, Kim J, Chao S, Kurppa KJ, Yang X, Milenkowic K, Piccioni F, Root DE, Rücker FG, Flamand Y, Neuberg D, Lindsley RC, Jänne PA, Hahn WC, Jacks T, Döhner H, Armstrong SA, Ebert BL. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 2020; 365:599-604. [PMID: 31395785 DOI: 10.1126/science.aax3649] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single-amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies.
Collapse
Affiliation(s)
- Steffen Boettcher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter G Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohan Sharma
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marie McConkey
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Leventhal
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrei V Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Waihay Wong
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesi Kim
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Chao
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Biomedical Informatics, Harvard University, Boston, MA 02115, USA
| | - Kari J Kurppa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaoping Yang
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Kirsten Milenkowic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Federica Piccioni
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Frank G Rücker
- Department of Internal Medicine III, University of Ulm, 89081 Ulm, Germany
| | - Yael Flamand
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, 89081 Ulm, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
6
|
Zhu HQ, Gao FH. Regulatory Molecules and Corresponding Processes of BCR-ABL Protein Degradation. J Cancer 2019; 10:2488-2500. [PMID: 31258755 PMCID: PMC6584333 DOI: 10.7150/jca.29528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
The BCR-ABL fusion protein with strong tyrosine kinase activity is one of the molecular biological bases of leukemia. Imatinib (Gleevec), a specific targeted drug for the treatment of chronic myeloid leukemia (CML), was developed for inhibiting the kinase activity of the BCR-ABL fusion protein. Despite the positive clinical efficacy of imatinib, the proportion of imatinib resistance has gradually increased. The main reason for the resistance is a decrease in sensitivity to imatinib caused by mutation or amplification of the BCR-ABL gene. In response to this phenomenon, the new generation of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL fusion protein was developed to solve the problem. However this strategy only selectively inhibits the tyrosine kinase activity of the BCR-ABL protein without eliminating the BCR-ABL protein, it does not fundamentally cure the BCR-ABL-positive leukemia patients. With the accumulation of the knowledge of cellular molecular biology, it has become possible to specifically eliminate certain proteins by cellular proteases in a specific way. Therefore, the therapeutic strategy to induce the degradation of the BCR-ABL fusion protein is superior to the strategy of inhibiting its activity. The protein degradation strategy is also a solution to the TKI resistance caused by different BCR-ABL gene point mutations. In order to provide possible exploration directions and clues for eliminating the BCR-ABL fusion protein in tumor cells, we summarize the significant molecules involved in the degradation pathway of the BCR-ABL protein, as well as the reported potent compounds that can target the BCR-ABL protein for degradation.
Collapse
Affiliation(s)
- Han-Qing Zhu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
7
|
Sweidan K, Zalloum H, Sabbah DA, Idris G, Abudosh K, Mubarak MS. Synthesis, characterization, and anticancer evaluation of some new N1-(anthraquinon-2-yl) amidrazone derivatives. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new series of novel N1-anthraquinon-2-yl amidrazones incorporating N-piperazines and related congeners were synthesized via reaction of the hydrazonoyl chloride derived from 2-qaminoanthraquinone with the appropriate piperazine (secondary amine). Structures of the new compounds were confirmed by a panel of spectroscopic methods including IR, NMR, and MS and by elemental analysis. The antitumor activity of the newly prepared compounds was evaluated in vitro against MCF-7 breast cancer, K562 chronic myelogenous leukemia, and dermal fibroblasts cell lines by means of a cell viability assay using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Results revealed that compounds 13a and 13d exhibit the highest inhibitory activity against K562 and MCF-7 cell lines. These two compounds could be considered as promising as potential anticancer drugs.
Collapse
Affiliation(s)
- Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Hiba Zalloum
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Ghada Idris
- Department of Chemistry, Al-Isra University, Amman, Jordan
| | - Khadija Abudosh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
8
|
Bono S, Lulli M, D'Agostino VG, Di Gesualdo F, Loffredo R, Cipolleschi MG, Provenzani A, Rovida E, Dello Sbarba P. Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction. Oncotarget 2018; 7:84810-84825. [PMID: 27852045 PMCID: PMC5356700 DOI: 10.18632/oncotarget.13319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
BCR/Abl protein drives the onset and progression of Chronic Myeloid Leukemia (CML). We previously showed that BCR/Abl protein is suppressed in low oxygen, where viable cells retain stem cell potential. This study addressed the regulation of BCR/Abl protein expression under oxygen or glucose shortage, characteristic of the in vivo environment where cells resistant to tyrosine kinase inhibitors (TKi) persist. We investigated, at transcriptional, translational and post-translational level, the mechanisms involved in BCR/Abl suppression in K562 and KCL22 CML cells. BCR/abl mRNA steady-state analysis and ChIP-qPCR on BCR promoter revealed that BCR/abl transcriptional activity is reduced in K562 cells under oxygen shortage. The SUnSET assay showed an overall reduction of protein synthesis under oxygen/glucose shortage in both cell lines. However, only low oxygen decreased polysome-associated BCR/abl mRNA significantly in KCL22 cells, suggesting a decreased BCR/Abl translation. The proteasome inhibitor MG132 or the pan-caspase inhibitor z-VAD-fmk extended BCR/Abl expression under oxygen/glucose shortage in K562 cells. Glucose shortage induced autophagy-dependent BCR/Abl protein degradation in KCL22 cells. Overall, our results showed that energy restriction induces different cell-specific BCR/Abl protein suppression patterns, which represent a converging route to TKi-resistance of CML cells. Thus, the interference with BCR/Abl expression in environment-adapted CML cells may become a useful implement to current therapy.
Collapse
Affiliation(s)
- Silvia Bono
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | | | - Federico Di Gesualdo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Rosa Loffredo
- Centre For Integrative Biology (CIBIO), Università degli Studi di Trento, Trento, Italy
| | - Maria Grazia Cipolleschi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Alessandro Provenzani
- Centre For Integrative Biology (CIBIO), Università degli Studi di Trento, Trento, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
9
|
Mittenberg AG, Moiseeva TN, Kuzyk VO, Barlev NA. Regulation of Endoribonuclease Activity of Alpha-Type Proteasome Subunits in Proerythroleukemia K562 Upon Hemin-Induced Differentiation. Protein J 2016; 35:17-23. [PMID: 26661102 DOI: 10.1007/s10930-015-9642-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits.
Collapse
Affiliation(s)
- Alexey G Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Tatyana N Moiseeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Valeria O Kuzyk
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Nickolai A Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia, 194064.
| |
Collapse
|
10
|
Chen X, Shi X, Zhao C, Li X, Lan X, Liu S, Huang H, Liu N, Liao S, Zang D, Song W, Liu Q, Carter BZ, Dou QP, Wang X, Liu J. Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget 2015; 5:9118-32. [PMID: 25193854 PMCID: PMC4253423 DOI: 10.18632/oncotarget.2361] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Resistance to Imatinib mesylate (IM) is an emerging problem for patients with chronic myelogenous leukemia (CML). T315I mutation in the Bcr-Abl is the predominant mechanism of the acquired resistance to IM and second generation tyrosine kinase inhibitors (TKI). Therefore it is urgent to search for new measures to overcome TKI-resistance. Auranofin (AF), clinically used to treat rheumatic arthritis, was recently approved by US Food and Drug Administration for Phase II clinical trial to treat cancer. In contrast to the reports that AF induces apoptosis by increasing intracellular reactive oxygen species (ROS) levels via inhibiting thioredoxin reductase, our recent study revealed that AF-induced apoptosis depends on inhibition of proteasomal deubiquitinases (UCHL5 and USP14). Here we report that (i) AF induces apoptosis in both Bcr-Abl wild-type cells and Bcr-Abl-T315I mutation cells and inhibits the growth of IM-resistant Bcr-Abl-T315I xenografts in vivo; (ii) AF inhibits Bcr-Abl through both downregulation of Bcr-Abl gene expression and Bcr-Abl cleavage mediated by proteasome inhibition-induced caspase activation; (iii) proteasome inhibition but not ROS is required for AF-induced caspase activation and apoptosis. These findings support that AF overcomes IM resistance through both Bcr/Abl-dependent and -independent mechanisms, providing great clinical significance for cancer treatment.
Collapse
Affiliation(s)
- Xin Chen
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; These Authors contributed equally to this work
| | - Xianping Shi
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; These Authors contributed equally to this work
| | - Chong Zhao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; These Authors contributed equally to this work
| | - Xiaofen Li
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Xiaoying Lan
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Shouting Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Hongbiao Huang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Ningning Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; Guangzhou Research Institute of Cardiovascular Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, People's Republic of China
| | - Siyan Liao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Dan Zang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Wenbin Song
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Q Ping Dou
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201-2013, USA
| | - Xuejun Wang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Jinbao Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| |
Collapse
|
11
|
Shi X, Chen X, Li X, Lan X, Zhao C, Liu S, Huang H, Liu N, Liao S, Song W, Zhou P, Wang S, Xu L, Wang X, Dou QP, Liu J. Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin Cancer Res 2013; 20:151-63. [PMID: 24334603 DOI: 10.1158/1078-0432.ccr-13-1063] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl-T315I is the predominant mutation that causes resistance to imatinib, cytotoxic drugs, and the second-generation tyrosine kinase inhibitors. The emergence of imatinib resistance in patients with CML leads to searching for novel approaches to the treatment of CML. Gambogic acid, a small molecule derived from Chinese herb gamboges, has been approved for phase II clinical trial for cancer therapy by the Chinese Food and Drug Administration (FDA). In this study, we investigated the effect of gambogic acid on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. EXPERIMENTAL DESIGN CML cell lines (KBM5, KBM5-T315I, and K562), primary cells from patients with CML with clinical resistance to imatinib, and normal monocytes from healthy volunteers were treated with gambogic acid, imatinib, or their combination, followed by measuring the effects on cell growth, apoptosis, and signal pathways. The in vivo antitumor activity of gambogic acid and its combination with imatinib was also assessed with nude xenografts. RESULTS Gambogic acid induced apoptosis and cell proliferation inhibition in CML cells and inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Our data suggest that GA-induced proteasome inhibition is required for caspase activation in both imatinib-resistant and -sensitive CML cells, and caspase activation is required for gambogic acid-induced Bcr-Abl downregulation and apoptotic cell death. CONCLUSIONS These findings suggest an alternative strategy to overcome imatinib resistance by enhancing Bcr-Abl downregulation with the medicinal compound gambogic acid, which may have great clinical significance in imatinib-resistant cancer therapy.
Collapse
Affiliation(s)
- Xianping Shi
- Authors' Affiliations: Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong; Department of Hematology, The People's Hospital of Guangxi Autonomous Region, Nanning, Guangxi, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota; and The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Caspases, a family of aspartate-specific cysteine proteases, play a major role in apoptosis and a variety of physiological and pathological processes. Fourteen mammalian caspases have been identified and can be divided into two groups: inflammatory caspases and apoptotic caspases. Based on the structure and function, the apoptotic caspases are further grouped into initiator/apical caspases (caspase-2, -8, -9, and -10) and effector/executioner caspases (caspase-3, -6, and -7). In this paper, we discuss what we have learned about the role of individual effector caspase in mediating both apoptotic and nonapoptotic events, with special emphasis on leukemia-specific oncoproteins in relation to effector caspases.
Collapse
|
13
|
Hu Z, Pan XF, Wu FQ, Ma LY, Liu DP, Liu Y, Feng TT, Meng FY, Liu XL, Jiang QL, Chen XQ, Liu JL, Liu P, Chen Z, Chen SJ, Zhou GB. Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia. PLoS One 2009; 4:e6257. [PMID: 19606213 PMCID: PMC2705802 DOI: 10.1371/journal.pone.0006257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Resistance developed by leukemic cells, unsatisfactory efficacy on patients with chronic myeloid leukemia (CML) at accelerated and blastic phases, and potential cardiotoxity, have been limitations for imatinib mesylate (IM) in treating CML. Whether low dose IM in combination with agents of distinct but related mechanisms could be one of the strategies to overcome these concerns warrants careful investigation. Methods and Findings We tested the therapeutic efficacies as well as adverse effects of low dose IM in combination with proteasome inhibitor, Bortezomib (BOR) or proteasome inhibitor I (PSI), in two CML murine models, and investigated possible mechanisms of action on CML cells. Our results demonstrated that low dose IM in combination with BOR exerted satisfactory efficacy in prolongation of life span and inhibition of tumor growth in mice, and did not cause cardiotoxicity or body weight loss. Consistently, BOR and PSI enhanced IM-induced inhibition of long-term clonogenic activity and short-term cell growth of CML stem/progenitor cells, and potentiated IM-caused inhibition of proliferation and induction of apoptosis of BCR-ABL+ cells. IM/BOR and IM/PSI inhibited Bcl-2, increased cytoplasmic cytochrome C, and activated caspases. While exerting suppressive effects on BCR-ABL, E2F1, and β-catenin, IM/BOR and IM/PSI inhibited proteasomal degradation of protein phosphatase 2A (PP2A), leading to a re-activation of this important negative regulator of BCR-ABL. In addition, both combination therapties inhibited Bruton's tyrosine kinase via suppression of NFκB. Conclusion These data suggest that combined use of tyrosine kinase inhibitor and proteasome inhibitor might be helpful for optimizing CML treatment.
Collapse
Affiliation(s)
- Zheng Hu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Fen Pan
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fu-Qun Wu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li-Yuan Ma
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da-Peng Liu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Liu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Ting-Ting Feng
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Fan-Yi Meng
- Department of Hematology, Nanfang Hospital Affiliated to Nanfang Medical University, Guangzhou, China
| | - Xiao-Li Liu
- Department of Hematology, Nanfang Hospital Affiliated to Nanfang Medical University, Guangzhou, China
| | - Qian-Li Jiang
- Department of Hematology, Nanfang Hospital Affiliated to Nanfang Medical University, Guangzhou, China
| | - Xiao-Qin Chen
- Department of Hematology, the Cancer Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Lei Liu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (SJC); (GBZ)
| | - Guang-Biao Zhou
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SJC); (GBZ)
| |
Collapse
|
14
|
Zhang H, Trachootham D, Lu W, Carew J, Giles FJ, Keating MJ, Arlinghaus RB, Huang P. Effective killing of Gleevec-resistant CML cells with T315I mutation by a natural compound PEITC through redox-mediated mechanism. Leukemia 2008; 22:1191-9. [PMID: 18385754 PMCID: PMC2585768 DOI: 10.1038/leu.2008.74] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/13/2008] [Accepted: 02/25/2008] [Indexed: 12/11/2022]
Abstract
Mutation of Bcr-Abl is an important mechanism by which chronic myelogenous leukemia (CML) cells become resistant to Gleevec. The T315I mutation is clinically significant since CML cells harboring this mutation are insensitive to Gleevec and other Bcr-Abl-targeted drugs. Identification of new agents capable of effectively killing CML cells with T315I mutation would have important therapeutic implications in Gleevec-resistant CML. Here, we showed that beta-phenylethyl isothiocyanate (PEITC), a natural compound found in vegetables, is effective in killing CML cells expressing T315I BCR-ABL. Treatment of leukemia cell lines harboring wild-type or mutant Bcr-Abl with 10 microM PEITC resulted in an elevated ROS stress and a redox-mediated degradation of the BCR-ABL protein, leading to massive death of the leukemia cells. Antioxidant NAC attenuated the PEITC-induced oxidative stress in CML cells and prevented the degradation of BCR-ABL, caspase-3 activation and cell death. We further showed that the ROS-induced degradation of BCR-ABL was mediated partially by caspase-3 and the proteasome pathway. The ability of PEITC to effectively kill T315I-positive CML cells was further confirmed using primary leukemia cells isolated from CML patients. Our results suggest that PEITC is a promising compound capable of killing Gleevec-resistant CML cells through a ROS-mediated mechanism and warrants further investigations.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/antagonists & inhibitors
- Animals
- Anticarcinogenic Agents/pharmacology
- Antineoplastic Agents/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Benzamides
- Caspase 3/metabolism
- Cells, Cultured
- Drug Resistance, Neoplasm
- Enzyme Activation/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Glutathione/metabolism
- Humans
- Imatinib Mesylate
- Immunoblotting
- Isothiocyanates/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mutation/genetics
- Oxidation-Reduction
- Piperazines/pharmacology
- Precursor Cells, B-Lymphoid/drug effects
- Precursor Cells, B-Lymphoid/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/pharmacology
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- H Zhang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - D Trachootham
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
- Faculty of Dentistry, Thammasat University (Rangsit Campus), Pathum-thani, Thailand
| | - W Lu
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - J Carew
- Institute for Drug Development, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - FJ Giles
- Institute for Drug Development, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - MJ Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - RB Arlinghaus
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - P Huang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
15
|
Moosavi MA, Yazdanparast R, Lotfi A. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5'-triphosphate-mediated terminal erythroid differentiation of K562 cells. Int J Biochem Cell Biol 2007; 39:1685-97. [PMID: 17543571 DOI: 10.1016/j.biocel.2007.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/15/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, it was recently shown that guanosine 5'-triphosphate (GTP) induced the differentiation of K562 cells, suggesting its possible efficiency in treatment of chronic myelogenous leukemia (CML). However, further investigations are required to verify this possibility. Here, the effects of GTP on activation of mitogen-activated protein kinases (MAPKs) and caspases in K562 cells were examined. Exposure of K562 cells to 100muM GTP markedly inhibited growth (4-70%) and increased percent glycophorin A positive cells after 1-6 days. GTP-induced terminal erythroid differentiation of K562 cells was accompanied with activation of three key caspases, i.e., caspase-3, -6 and -9. More detailed studies revealed that mitochondrial pathway is activated along with down-regulation of Bcl-xL and releasing of cytochrome c into cytosol. Among MAPKs, ERK1/2and p38 were modulated after GTP treatment. Western blot analyses showed that sustained phosphorylation of p38 MAPK was accompanied by a decrease in ERK1/2 activation. These modulatory effects of GTP were observed at early exposure times before the onset of differentiation (3h), and followed for 24-96h. Interestingly, inhibition of p38 MAPK pathway by SB202190 impeded GTP-mediated caspases activation and differentiation in K562 cells, suggesting that p38 MAPK may act upstream of caspases in our system. These results point to a pivotal role for p38 MAPK pathway during GTP-mediated erythroid differentiation of K562 cells and will hopefully have important impact on pharmaceutical evaluation of GTP for CML treatment in differentiation therapy approaches.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|
16
|
Patel H, Marley SB, Gordon MY. Detection in primary chronic myeloid leukaemia cells of p210BCR-ABL1 in complexes with adaptor proteins CBL, CRKL, and GRB2. Genes Chromosomes Cancer 2006; 45:1121-9. [PMID: 16955467 DOI: 10.1002/gcc.20377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic myeloid leukemia (CML) arises as a consequence of the expression of a chimeric fusion protein, p210BCR-ABL1, which is localized to the cytoplasm and has constitutive protein tyrosine kinase activity. Extensive publications report that p210BCR-ABL1 complexed with multiple cytoplasmic proteins can modulate several cell signaling pathways. However, while altered signaling states can be demonstrated in primary CML material, most of the reported analytical work on complexed proteins has been done in cell lines expressing p210BCR-ABL1. This has been necessary because primary hemopoietic cell lysates contain a degradative activity which rapidly and permanently destroys p210BCR-ABL1, precluding accurate p210BCR-ABL1 quantification by Western blotting or investigation of coimmunoprecipitating proteins in primary cells. This degradative activity has proven intractable to inhibition by conventional protease inhibitors. We show here that the degradative activity in primary cells is associated with cell lysosomes and is most likely to be an acid-dependent hydrolase. By lysing primary hemopoietic cells at high pH, we have demonstrated substantial inhibition of the p210BCR-ABL1-degradative activity and now report, to the best of our knowledge, the first published demonstration by coimmunoprecipitation of the association between p210BCR-ABL1 and cytoplasmic effector proteins in primary CML material.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Caspases/metabolism
- Cell Line, Tumor
- Chloroquine/pharmacology
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein/metabolism
- Humans
- Hydrogen-Ion Concentration
- Immunoprecipitation/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/metabolism
- Lysosomes/enzymology
- Nuclear Proteins/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-cbl/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hetal Patel
- Department of Haematology, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
17
|
Polek TC, Talpaz M, Spivak-Kroizman TR. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis. Biochem Biophys Res Commun 2006; 349:1016-24. [PMID: 16950202 DOI: 10.1016/j.bbrc.2006.08.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 11/18/2022]
Abstract
Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects.
Collapse
Affiliation(s)
- Tara C Polek
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Brusa G, Mancini M, Campanini F, Calabrò A, Zuffa E, Barbieri E, Santucci MA. Tyrosine kinase inhibitor STI571 (Imatinib) cooperates with wild-type p53 on K562 cell line to enhance its proapoptotic effects. Acta Haematol 2005; 114:150-4. [PMID: 16227678 DOI: 10.1159/000087889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/05/2005] [Indexed: 11/19/2022]
Abstract
In order to ascertain whether p53 has a role in chronic myeloid leukemia hematopoietic progenitor response to the innovative tyrosine kinase inhibitor STI571 (Imatinib), we overexpressed a wild type (wt) p53 construct in the K562 cell line, generated from a human blast crisis and lacking endogenous p53. Wt p53 overexpression was associated with a significant reduction of bcr-abl expression levels resulting, at least in part, from post-transcriptional events affecting the stability of p210 bcr-abl fusion protein. Moreover, we demonstrated that p53 overexpression enhances the commitment to the apoptotic death fate of K562 following its in vitro exposure to 1 microM STI571. Multiple mechanisms are involved in p53 impact on K562 survival: Most importantly, we found that a greater reduction of bcr-abl transcription by STI571 was associated with the overexpression of wt p53. Further studies are required to elucidate the mechanisms involved in the transcriptional repression of bcr-abl by STI571 and p53 and in their synergic effects on the clonal hematopoiesis of chronic myeloid leukemia.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/physiology
- Benzamides
- Gene Expression
- Genes, abl
- Genes, p53
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Gianluca Brusa
- Istituto di Ematologia e Oncologia Medica Lorenzo e Ariosto Seràgnoli, University of Bologna, Medical School, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Drexler HCA, Euler M. Synergistic apoptosis induction by proteasome and histone deacetylase inhibitors is dependent on protein synthesis. Apoptosis 2005; 10:743-58. [PMID: 16133866 DOI: 10.1007/s10495-005-2942-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proteasome inhibitors are able to efficiently induce apoptosis in many tumor cells while leaving quiescent, untransformed cells largely unharmed. Here we investigated the further enhancement of proteasome inhibitor-mediated apoptosis induction in Bcr-Abl positive K562 CML cells by simultaneous treatment with different histone deacetylase inhibitors (HDIs). Combining proteasome and HDIs resulted in rapid hyperacetylation of histone H3 and accumulation of polyubiquitinated proteins and the synergistic induction of apoptosis. Apoptosis induction was associated with caspase 8, 3 and 9 activation, Bid processing, destruction of the mitochondrial membrane potential, cleavage of PARP and lamin B and extensive DNA fragmentation. The pan-caspase inhibitor Z-VAD-FMK and the caspase-8 inhibitor Z-IETD-FMK could inhibit K562 cell apoptosis. Apoptosis was also delayed by overexpression of Bcl-xL, as well as by crmA, a known inhibitor of caspases 1 and 8. Caspase 8 activity could still be detected in the presence of ectopic Bcl-xL, but not in crmA transfected cells. The most striking anti-apoptotic effect though was obtained by the translational inhibitor cycloheximide, which abolished caspase 8 processing, blocked Bid cleavage and maintained the mitochondrial transmembrane potential. Apoptosis by the combination treatment occurred independently from CD95/Fas receptor stimulation. These results demonstrated that transcriptional activation by HDIs combined with proteasome inhibitor mediated posttranslational stabilization of protein(s) results in significantly enhanced CML apoptosis which was striktly dependent on uninterrupted protein synthesis.
Collapse
Affiliation(s)
- H C A Drexler
- Max Planck Institut für physiologische und klinische Forschung, Abt. Molekulare Zellbiologie, Benekestr. 2, 61231 Bad Nauheim, Germany.
| | | |
Collapse
|
20
|
Huang HF, Chen YZ, Wu Y. ZnPcS2P2-based photodynamic therapy induces mitochondria-dependent apoptosis in K562 cells. Acta Biochim Biophys Sin (Shanghai) 2005; 37:488-94. [PMID: 15999210 DOI: 10.1111/j.1745-7270.2005.00067.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondria play a key role in the regulation of apoptosis induced by numerous antitumor chemotherapeutic and other toxic agents. Photodynamic therapy (PDT) exerts significant cellular killing efficacy through either an apoptotic or necrotic cell death pathway. This study investigated the mechanism underlying the killing effects of a novel amphipathic photosensitizer [di-sulfonated di-phthalimidomethyl phthalocyanine zinc (ZnPcS2P2)]-mediated photodynamic therapy (ZnPcS2P2-PDT) on K562 cells. Apoptosis was evident in the post-PDT cells through the TdT-mediated dUTP nick end labeling (TUNEL) method and DNA fragmentation assay. After ZnPcS2P2-PDT, K562 cells underwent mitochondria-dependent apoptosis as evidenced by the release of cytochrome c from mitochondria into cytosol, accompanied by mitochondrial membrane potential (deltapsim) reduction, indicating the opening of the mitochondrial permeability transition pore (PTP). The activities of protease from the caspase family and caspase-3 were also significantly elevated. Furthermore, ZnPcS2P2-PDT down-regulated the expression of chimaeric Bcr-Abl oncoprotein, which is the molecular hallmark of chronic myelogenous leukemia (CML).
Collapse
Affiliation(s)
- Hui-Fang Huang
- Fujian Institute of Hematology, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | | | | |
Collapse
|
21
|
Heinzelmann-Schwarz V, Fedier A, Hornung R, Walt H, Haller U, Fink D. Role of p53 and ATM in photodynamic therapy-induced apoptosis. Lasers Surg Med 2004; 33:182-9. [PMID: 12949948 DOI: 10.1002/lsm.10213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) induces cell death through a laser light-activated photosensitizer and is a treatment option for tumors resistant to radio- and chemo-therapy. STUDY DESIGN/MATERIALS AND METHODS We investigated whether m-THPC-PDT induces cell death by necrosis and/or apoptosis, and whether these responses are modulated by p53 and/or ATM, two cancer-associated genes. Sensitivity of atm(+/+)p53(+/+), atm(+/+)p53(-/-), and atm(-/-)p53(-/-) mouse embryonic fibroblasts to m-THPC-PDT performed at a wavelength of 652 nm was determined by the MTT assay, trypan blue-exclusion, and the TUNEL and caspase3-cleavage apoptosis assays. c-Abl protein level was determined by immunoblotting. RESULTS m-THPC-PDT rapidly induced cell death in a substantial fraction of cells by p53- and Ataxia telangiectasia mutated (ATM)-independent non-apoptotic processes. However, in the subset of apoptotic cells, apoptosis was reduced by loss of p53 and was even more reduced by the additional loss of ATM. Apoptosis correlated inversely with c-Abl level. CONCLUSIONS p53 and ATM are not required for necrosis, but may be required for PDT-mediated apoptosis.
Collapse
Affiliation(s)
- Viola Heinzelmann-Schwarz
- Department of Obstetrics and Gynecology, Division of Gynecology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Constantinou C, Bushell M, Jeffrey IW, Tilleray V, West M, Frost V, Hensold J, Clemens MJ. p53-induced inhibition of protein synthesis is independent of apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3122-32. [PMID: 12869187 DOI: 10.1046/j.1432-1033.2003.03687.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity. Moreover, exposure of the cells to a combination of the caspase inhibitor z-VAD.FMK and the survival factor erythropoietin prevents p53-induced cell death but does not reverse the inhibition of protein synthesis. We conclude that the p53-regulated cleavages of eIF4GI and eIF4B, as well as the overall inhibition of protein synthesis, are caspase-independent events that can be dissociated from the induction of apoptosis per se.
Collapse
Affiliation(s)
- Constantina Constantinou
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Drexler HCA, Pebler S. Inducible p27(Kip1) expression inhibits proliferation of K562 cells and protects against apoptosis induction by proteasome inhibitors. Cell Death Differ 2003; 10:290-301. [PMID: 12700629 DOI: 10.1038/sj.cdd.4401159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.
Collapse
Affiliation(s)
- H C A Drexler
- Max Planck Institute for Physiological and Clinical Research, Department of Molecular Cell Biology, Bad Nauheim, Germany.
| | | |
Collapse
|
24
|
Fischer U, Jänicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10:76-100. [PMID: 12655297 PMCID: PMC7091709 DOI: 10.1038/sj.cdd.4401160] [Citation(s) in RCA: 768] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apoptotic cell death is executed by the caspase-mediated cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial for our understanding of cell death and other biological processes. Many caspase substrates are just cleaved as bystanders, because they happen to contain a caspase cleavage site in their sequence. Several targets, however, have a discrete function in propagation of the cell death process. Many structural and regulatory proteins are inactivated by caspases, while other substrates can be activated. In most cases, the consequences of this gain-of-function are poorly understood. Caspase substrates can regulate the key morphological changes in apoptosis. Several caspase substrates also act as transducers and amplifiers that determine the apoptotic threshold and cell fate. This review summarizes the known caspase substrates comprising a bewildering list of more than 280 different proteins. We highlight some recent aspects inferred by the cleavage of certain proteins in apoptosis. We also discuss emerging themes of caspase cleavage in other forms of cell death and, in particular, in apparently unrelated processes, such as cell cycle regulation and cellular differentiation.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | - R U Jänicke
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | | |
Collapse
|
25
|
Ussat S, Werner U, Adam-Klages S. Species-specific differences in the usage of several caspase substrates. Biochem Biophys Res Commun 2002; 297:1186-90. [PMID: 12372412 DOI: 10.1016/s0006-291x(02)02358-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of caspases cleaving a plethora of specific substrates is pivotal for initiation as well as execution of apoptosis. The recognition motif for caspases is a tetrapeptide sequence containing an essential aspartic acid residue at the fourth position (often DXXD). Here, we report that the caspase cleavage sites of most identified substrates show a high degree of conservation between different species. However, we have identified differences in the cleavage sites of five substrates between murine and human proteins leading to either select processing in only one species or to different cleavage patterns. Finally, we provide evidence that murine c-Abl but not its human homolog serves as efficient substrate during apoptosis.
Collapse
Affiliation(s)
- Sandra Ussat
- Institut für Immunologie, Christian-Albrechts-Universität Kiel, 24105, Kiel, Germany
| | | | | |
Collapse
|