1
|
Long B, McCurdy A, Koyfman A, Rosenberg H. An emergency medicine review: Multiple myeloma and its complications. Am J Emerg Med 2025; 88:172-179. [PMID: 39643958 DOI: 10.1016/j.ajem.2024.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Multiple myeloma (MM) and its complications carry a high rate of morbidity and mortality. OBJECTIVE This review evaluates MM and its complications, including presentation, diagnosis, and management in the emergency department (ED) based on current evidence. DISCUSSION MM is the second most common hematologic cancer and associated with monoclonal plasma cell proliferation. The presentation of MM varies, ranging from few symptoms to end organ injury and failure. The most common presenting findings include anemia, bone pain, renal injury, fatigue, hypercalcemia, and weight loss. While clinical outcomes have improved with known therapies, a variety of complications may occur. Anemia is the most common hematologic complication, though hyperviscosity syndrome, bleeding, and coagulopathy may occur. Renal injury is common, and hypercalcemia is the result of bone demineralization. Infection is a major cause of morbidity and mortality. Osteolytic bone disease is a significant feature of MM, present in 70 % of patients, which may result in pathologic and insufficiency fractures. The most serious neurologic complication includes spinal cord compression, and other neurologic complications include peripheral neuropathy and intracranial involvement. Cardiac toxicity may occur with MM therapies, and there is also increased risk of venous thromboembolism. Endocrine complications may also occur, including adrenal insufficiency and thyroid dysfunction. CONCLUSIONS An understanding of the complications of MM can assist emergency clinicians in diagnosing and managing this potentially deadly disease.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - Arleigh McCurdy
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada.
| | - Alex Koyfman
- Department of Emergency Medicine, UT Southwestern, Dallas, TX, USA
| | - Hans Rosenberg
- Department of Emergency Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
2
|
Melaccio A, Reale A, Saltarella I, Desantis V, Lamanuzzi A, Cicco S, Frassanito MA, Vacca A, Ria R. Pathways of Angiogenic and Inflammatory Cytokines in Multiple Myeloma: Role in Plasma Cell Clonal Expansion and Drug Resistance. J Clin Med 2022; 11:jcm11216491. [PMID: 36362718 PMCID: PMC9658666 DOI: 10.3390/jcm11216491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, and despite the introduction of innovative therapies, remains an incurable disease. Identifying early and minimally or non-invasive biomarkers for predicting clinical outcomes and therapeutic responses is an active field of investigation. Malignant plasma cells (PCs) reside in the bone marrow (BM) microenvironment (BMME) which comprises cells (e.g., tumour, immune, stromal cells), components of the extracellular matrix (ECM) and vesicular and non-vesicular (soluble) molecules, all factors that support PCs’ survival and proliferation. The interaction between PCs and BM stromal cells (BMSCs), a hallmark of MM progression, is based not only on intercellular interactions but also on autocrine and paracrine circuits mediated by soluble or vesicular components. In fact, PCs and BMSCs secrete various cytokines, including angiogenic cytokines, essential for the formation of specialized niches called “osteoblastic and vascular niches”, thus supporting neovascularization and bone disease, vital processes that modulate the pathophysiological PCs–BMME interactions, and ultimately promoting disease progression. Here, we aim to discuss the roles of cytokines and growth factors in pathogenetic pathways in MM and as prognostic and predictive biomarkers. We also discuss the potential of targeted drugs that simultaneously block PCs’ proliferation and survival, PCs–BMSCs interactions and BMSCs activity, which may represent the future goal of MM therapy.
Collapse
Affiliation(s)
- Assunta Melaccio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| | - Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne 3004, Australia
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Maria Antonia Frassanito
- General Pathology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| |
Collapse
|
3
|
Hervás-Salcedo R, Martín-Antonio B. A Journey through the Inter-Cellular Interactions in the Bone Marrow in Multiple Myeloma: Implications for the Next Generation of Treatments. Cancers (Basel) 2022; 14:3796. [PMID: 35954459 PMCID: PMC9367481 DOI: 10.3390/cancers14153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Tumors are composed of a plethora of extracellular matrix, tumor and non-tumor cells that form a tumor microenvironment (TME) that nurtures the tumor cells and creates a favorable environment where tumor cells grow and proliferate. In multiple myeloma (MM), the TME is the bone marrow (BM). Non-tumor cells can belong either to the non-hematological compartment that secretes soluble mediators to create a favorable environment for MM cells to grow, or to the immune cell compartment that perform an anti-MM activity in healthy conditions. Indeed, marrow-infiltrating lymphocytes (MILs) are associated with a good prognosis in MM patients and have served as the basis for developing different immunotherapy strategies. However, MM cells and other cells in the BM can polarize their phenotype and activity, creating an immunosuppressive environment where immune cells do not perform their cytotoxic activity properly, promoting tumor progression. Understanding cell-cell interactions in the BM and their impact on MM proliferation and the performance of tumor surveillance will help in designing efficient anti-MM therapies. Here, we take a journey through the BM, describing the interactions of MM cells with cells of the non-hematological and hematological compartment to highlight their impact on MM progression and the development of novel MM treatments.
Collapse
Affiliation(s)
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz (IIS-FJD), University Autonomous of Madrid (UAM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Kim SI, Jung SH, Yhim HY, Jo JC, Song GY, Kim M, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Real-world evidence of levofloxacin prophylaxis in elderly patients with newly diagnosed multiple myeloma who received bortezomib, melphalan, and prednisone regimen. Blood Res 2022; 57:51-58. [PMID: 35197371 PMCID: PMC8958375 DOI: 10.5045/br.2021.2021176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background Although survival outcomes of multiple myeloma (MM) have improved with the development of new and effective agents, infection remains the major cause of morbidity and mortality. Here, we evaluated the efficacy of levofloxacin prophylaxis (in a real-world setting) during bortezomib, melphalan, and prednisone (VMP) therapy in elderly patients with newly diagnosed MM. Methods This study retrospectively analyzed the records of patients with newly diagnosed MM treated with the VMP regimen between February 2011 and September 2020 at three institutes of the Republic of Korea. Results Of a total of 258 patients, 204 (79.1%) received levofloxacin prophylaxis during VMP therapy. The median number of levofloxacin prophylaxis cycles was 4 (range, 1‒9), but 10 patients did not complete the planned prophylaxis because of side effects. Sixty-six patients (25.5%) experienced severe infections during VMP therapy, most of which (74.7%) occurred within the first four cycles of VMP therapy regardless of levofloxacin prophylaxis status. Early severe infection was significantly associated with poor survival. In multivariate analysis, levofloxacin prophylaxis was significantly associated with a lower risk in early severe infection. Conclusion Our findings suggest that levofloxacin prophylaxis should be considered at least during the first four cycles of VMP therapy in elderly patients with newly diagnosed MM.
Collapse
Affiliation(s)
- Su-In Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Ho-Young Yhim
- Jeonbuk National University Hospital, Jeonbuk National university Medical School, Jeonju, Korea
| | - Jae-Cheol Jo
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
5
|
Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol 2022; 15:17. [PMID: 35172851 PMCID: PMC8848665 DOI: 10.1186/s13045-022-01234-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is an incurable cancer characterized by the uncontrolled growth of malignant plasma cells nurtured within a permissive bone marrow microenvironment. While patients mount numerous adaptive immune responses directed against their disease, emerging data demonstrate that tumor intrinsic and extrinsic mechanisms allow myeloma cells to subvert host immunosurveillance and resist current therapeutic strategies. Myeloma downregulates antigens recognized by cellular immunity and modulates the bone marrow microenvironment to promote uncontrolled tumor proliferation, apoptotic resistance, and further hamper anti-tumor immunity. Additional resistance often develops after an initial clinical response to small molecules, immune-targeting antibodies, immune checkpoint blockade or cellular immunotherapy. Profound quantitative and qualitative dysfunction of numerous immune effector cell types that confer anti-myeloma immunity further supports myelomagenesis, disease progression and the emergence of drug resistance. Identification of tumor intrinsic and extrinsic resistance mechanisms may direct the design of rationally-designed drug combinations that prevent or overcome drug resistance to improve patient survival. Here, we summarize various mechanisms of immune escape as a means to inform novel strategies that may restore and improve host anti-myeloma immunity.
Collapse
Affiliation(s)
| | - Elena V Murphy
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - Ehsan Malek
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - James J Driscoll
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA.
| |
Collapse
|
6
|
Jadoon Y, Siddiqui MA. Immunotherapy in multiple myeloma. Cancer Treat Res Commun 2021; 29:100468. [PMID: 34653747 DOI: 10.1016/j.ctarc.2021.100468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023]
Abstract
Despite available therapies, Multiple Myeloma (MM) remains an incurable hematologic malignancy. Over the past three decades, there have been tremendous developments in therapeutic options for MM. In regards to immunotherapy, Daratumumab was the first monoclonal antibody to receive FDA approval for multiple myeloma. Since then, other monoclonal antibodies such as elotuzumab and isatuximab have received FDA approval. Many clinical trials are underway investigating the efficacy of newer immunotherapies. This review summarizes recently presented and/or published data regarding this growing field, specifically regarding monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, and trispecific antibodies.
Collapse
Affiliation(s)
- Yamna Jadoon
- Division of Hematology, Mayo Clinic, Rochester MN, United States of America
| | - Mustaqeem A Siddiqui
- Division of Hematology, Mayo Clinic, Rochester MN, United States of America; Division of Oncology and Hematology, Sheikh Shakhbout Medical City, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Bellesso M, Bruniera FR, Trunkel AT, Nicodemo IP. Second COVID-19 infection in a patient with multiple myeloma in Brazil - reinfection or reactivation? Hematol Transfus Cell Ther 2020; 43:109-111. [PMID: 33423984 PMCID: PMC7837121 DOI: 10.1016/j.htct.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
|
8
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
9
|
Akhtar S, Ali TA, Faiyaz A, Khan OS, Raza SS, Kulinski M, Omri HE, Bhat AA, Uddin S. Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:5002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host's immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Ammara Faiyaz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Omar S. Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Halima El Omri
- National Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Ajaz A. Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
- Dermatology Institute, Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
10
|
Allegra A, Innao V, Allegra AG, Pugliese M, Di Salvo E, Ventura-Spagnolo E, Musolino C, Gangemi S. Lymphocyte Subsets and Inflammatory Cytokines of Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Int J Mol Sci 2019; 20:ijms20112822. [PMID: 31185596 PMCID: PMC6600674 DOI: 10.3390/ijms20112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023] Open
Abstract
Almost all multiple myeloma (MM) cases have been demonstrated to be linked to earlier monoclonal gammopathy of undetermined significance (MGUS). Nevertheless, there are no identified characteristics in the diagnosis of MGUS that have been helpful in differentiating subjects whose cancer may progress to a malignant situation. Regarding malignancy, the role of lymphocyte subsets and cytokines at the beginning of neoplastic diseases is now incontestable. In this review, we have concentrated our attention on the equilibrium between the diverse lymphocyte subsets and the cytokine system and summarized the current state of knowledge, providing an overview of the condition of the entire system in MGUS and MM. In an age where the therapy of neoplastic monoclonal gammopathies largely relies on drugs capable of acting on the immune system (immunomodulants, immunological checkpoint inhibitors, CAR-T), detailed knowledge of the the differences existing in benign and neoplastic forms of gammopathy is the main foundation for the adequate and optimal use of new drugs.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Marta Pugliese
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Elvira Ventura-Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, 90127 Palermo, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| |
Collapse
|
11
|
Renaud L, Schraen S, Fouquet G, Guidez S, Demarquette H, Nudel M, Cayssials E, Bories C, Herbaux C, Systchenko T, Faucompré JL, Machet A, Sabirou F, Levy A, Bobin A, Richez V, Moya N, Gruchet C, Desmier D, van de Wyngaert Z, Carpentier B, Manier S, Facon T, Harding S, Leleu X. Response to pneumococcal vaccination in multiple myeloma. Cancer Med 2019; 8:3822-3830. [PMID: 31145552 PMCID: PMC6639194 DOI: 10.1002/cam4.2253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Background Streptococcus pneumoniae infection causes morbidity and mortality in multiple myeloma patients. Pneumococcal vaccination is commonly given to immunocompromised myeloma patients; however response data are sparse. Here, we present longitudinal response data to pneumococcal vaccination in multiple myeloma patients. Method Twenty‐eight multiple myeloma patients were included, 25 of whom were newly diagnosed. All the patients received two vaccines Prevnar13® and Pneumo23®. Serotype‐specific IgG was measured by ELISA for all 23 vaccine serotypes at baseline, and then sequentially at different time points postvaccination until treatment ended. Response to vaccination is available for 20 patients. The primary endpoint was the incidence rate of patients who obtained an isotype response serum concentration after vaccination. Secondary endpoints included detailed isotype increase, time to first increase, further assessment of a decreased anti‐pneumococcal serum concentrations following treatment including autologous stem cell transplantation (ASCT), rate of infection with a special attention to pneumococcal infection. Results The median age was 66 years and the male to female ratio was 0.6. Anti‐pneumococcal capsular polysaccharide (anti‐PCP23) IgG, IgG2, IgA, and IgM responses were detected within 1 week postvaccination. Response to at least one subtype of antibody was obtained in 85% (n = 17) of patients, for at least two subtypes in 65% (n = 13), for at least three subtypes in 55% (n = 11), and 2 patients responded to all four subtypes. The median increase in the concentration of anti‐PCP23 isotypes was threefold following vaccination, with the highest increase observed when Pneumo23® was given more than 30 days after Prevnar13®. The anti‐pneumococcal geometric mean concentration decreased significantly for all subtypes over time independently of treatment approaches. Conclusion Myeloma has the ability to demonstrate a response to pneumococcal vaccine, independently of preexisting hypogammaglobulinemia and possibly of treatment‐induced immunodepression. We also observed a drop in the serum response overtime and following autologous transplantation. Further studies in larger sample are needed to understand the benefit of vaccination strategies in these patients.
Collapse
Affiliation(s)
- Loïc Renaud
- Department of Hematology, CHU Lille, Lille, France
| | | | | | - Stephanie Guidez
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | | | | | | | | | | | - Thomas Systchenko
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | | | - Antoine Machet
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | - Florence Sabirou
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | - Antony Levy
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | - Arthur Bobin
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | | | - Niels Moya
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | - Cécile Gruchet
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | - Deborah Desmier
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| | | | | | | | | | | | - Xavier Leleu
- Faculté de médecine, Hôpital de la Milétrie, and Inserm CIC 1402, CHU, Poitiers, France
| |
Collapse
|
12
|
Vuckovic S, Minnie SA, Smith D, Gartlan KH, Watkins TS, Markey KA, Mukhopadhyay P, Guillerey C, Kuns RD, Locke KR, Pritchard AL, Johansson PA, Varelias A, Zhang P, Huntington ND, Waddell N, Chesi M, Miles JJ, Smyth MJ, Hill GR. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest 2018; 129:106-121. [PMID: 30300141 DOI: 10.1172/jci98888] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.
Collapse
Affiliation(s)
- Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Division of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Genetics and Immunology, University of the Highlands and Islands, Inverness, United Kingdom
| | | | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology and.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Haematology, The Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Noginskiy I, Samra A, Nielsen K, Kalavar MR. A Case of Multiple Myeloma Presenting as Streptococcus pneumoniae Meningitis with Candida auris Fungemia. Case Rep Oncol 2018; 11:705-710. [PMID: 30483102 PMCID: PMC6243956 DOI: 10.1159/000493852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), a plasma cell neoplasm, has a typical presenting pattern consisting of bone pain, renal failure, anemia, and/or hypercalcemia. Even though MM is a cancer that impairs the immune system, rarely is a systemic infection the first sign of disease. In this case report, our patient presented with altered mental status due to meningitis and was later diagnosed with MM. Furthermore, we display a case of a rare but emerging and serious fungus, Candida auris, that the patient developed during his inpatient stay. This is the first such record of C. auris in an MM patient.
Collapse
Affiliation(s)
- Ilya Noginskiy
- American University of Antigua School of Medicine, Coolidge, Antigua and Barbuda, and Kingsbrook Jewish Medical Center, Undergraduate Medical Education, Brooklyn, New York, USA
| | - Abraham Samra
- Kingsbrook Jewish Medical Center, Department of Medicine, Brooklyn, New York, USA
| | - Kendra Nielsen
- Kingsbrook Jewish Medical Center, Department of Pharmacy, Brooklyn, New York, USA
| | - Madhumati R Kalavar
- Kingsbrook Jewish Medical Center, Department of Medicine and New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, New York, USA
| |
Collapse
|
14
|
Sonmez M, Sonmez B, Eren N, Yilmaz M, Karti SS, Ovali E. Effects of Interferon-α-2a on Th3 Cytokine Response in Multiple Myeloma Patients. TUMORI JOURNAL 2018; 90:387-9. [PMID: 15510980 DOI: 10.1177/030089160409000404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background Multiple myeloma cells increase Th3 cytokine response by secreting TGF-β, which causes defective Th1 and Th2 cytokine responses. Therefore, a significant suppression of the immune system is seen in multiple myeloma. Interferon-α (IFN-α) is used in the treatment of multiple myeloma due to its immunomodulatory and anti-tumoral effects. We attempted to define the characteristics of immune cytokine responses and the effects of IFN-α-2a on the immune response in multiple myeloma. Methods Fifteen patients with multiple myeloma and 15 healthy controls were enrolled. IFN-α-2a, 3 million units/day x 3 times/week, was administered subcutaneously to the patients for 2 weeks. Cytokines (TGF-β, IL-1, IL-2, IL-4, IL-10, IFN-γ) were assessed by the ELISA method in sera of the patients in pretreatment and posttreatment periods and in the sera of the controls. Results IL-2 and IL-4 levels in patients, before IFN-α-2a, were lower than the controls, whereas TGF-β levels were higher than the controls. In other words, Th3 cytokine response was increased and Th1 and Th2 cytokine responses were decreased in patients. A short course of IFN-α-2a increased IL-2 levels. Conclusions These findings suggest IFN-α-2a may enhance nonTh3 cytokine responses in multiple myeloma patients.
Collapse
Affiliation(s)
- Mehmet Sonmez
- Division of Hematology, Karadeniz Technical University, School of Medicine, Trabzon, Turkey
| | | | | | | | | | | |
Collapse
|
15
|
Role of Galectins in Multiple Myeloma. Int J Mol Sci 2017; 18:ijms18122740. [PMID: 29258207 PMCID: PMC5751341 DOI: 10.3390/ijms18122740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Galectins are a family of lectins that bind β-galactose-containing glycoconjugates and are characterized by carbohydrate-recognition domains (CRDs). Galectins exploit several biological functions, including angiogenesis, regulation of immune cell activities and cell adhesion, in both physiological and pathological processes, as tumor progression. Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by the tight adhesion between tumoral PCs and bone marrow (BM) microenvironment, leading to the increase of PC survival and drug resistance, MM-induced neo-angiogenesis, immunosuppression and osteolytic bone lesions. In this review, we explore the expression profiles and the roles of galectin-1, galectin-3, galectin-8 and galectin-9 in the pathophysiology of MM. We focus on the role of these lectins in the interplay between MM and BM microenvironment cells showing their involvement in MM progression mainly through the regulation of PC survival and MM-induced angiogenesis and osteoclastogenesis. The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of LGALS1 and LGALS8, genes encoding for galectin-1 and galectin-8 respectively, correlate to MM patients’ survival.
Collapse
|
16
|
Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma 2017; 59:2056-2067. [PMID: 29105517 DOI: 10.1080/10428194.2017.1393668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While recent progress has been made in the management of multiple myeloma, it remains a highly fatal malignancy especially among patients with relapsed-refractory disease. Immunotherapy with adoptive T cells targeting myeloma-associated antigens are at various stages of development and have brought about a new hope for cure. This is a review on the emerging field of adoptively transferred engineered T cell based approaches, with an in-depth focus on chimeric antigen receptors (CAR) targeting multiple myeloma. The recent results from CAR T cells targeting B cell maturation antigen are encouraging but eventual resistance to the CAR T cell therapies remain problematic. With newer approaches in therapies for multiple myeloma, the role of transplantation is evolved to form a platform for T cell therapies.
Collapse
Affiliation(s)
- Arnab Ghosh
- a Hematology/Oncology/BMT Fellowship Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sham Mailankody
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sergio A Giralt
- c Adult BMT Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - C Ola Landgren
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Eric L Smith
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Renier J Brentjens
- d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,e Leukemia Service, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The treatment landscape of multiple myeloma is rapidly changing; however, despite improvement in patients' survival, it still remains a largely incurable disease. One hallmark of myeloma is substantial immune dysfunction leading to an increased infection rate and the inability of immune surveillance to detect neoplastic cells. Here, we critically analyze clinical approaches to harness the immune system to overcome this defect with a focus on antibody based and adoptive cellular therapies. RECENT FINDINGS Clinical trials exploring these immunotherapies to treat myeloma are now well underway and show promising results. In relapsed myeloma, monoclonal antibodies directed against plasma cell antigens and immune checkpoints have already shown substantial efficacy. In parallel, trials of adoptive cellular therapy have exciting promise in myeloma, having induced dramatic responses in a handful of early study participants. Taken together, immunotherapeutic approaches hold enormous potential in the field of multiple myeloma and in the near future can be combined with or even replace the current standard of care.
Collapse
Affiliation(s)
- Mattia D'Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Eric L Smith
- Myeloma Service, Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol 2016; 14:203-220. [PMID: 27805626 DOI: 10.1038/nrclinonc.2016.168] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells can escape T-cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) immune checkpoint. Indeed, therapeutic antibodies that block the PD-1-PD-L1 axis induce durable clinical responses against a growing list of solid tumours. B-cell lymphomas also leverage this checkpoint to escape immune recognition, although the outcomes of PD-1-PD-L1 blockade, and the correlations between PD-L1 expression and treatment responses, are less-well elucidated in these diseases than in solid cancers. Nevertheless, in patients with Hodgkin lymphoma, amplification of the gene encoding PD-L1 is commonly associated with increased expression of this protein on Reed-Sternberg cells. Correspondingly, PD-1 blockade with nivolumab has been demonstrated to result in response rates as high as 87% in unselected patients with relapsed and/or refractory Hodgkin lymphoma, leading to the FDA approval of nivolumab for this indication in May 2016. The PD-1/PD-L1 axis is probably also important for immune evasion of B-cell lymphomas with a viral aetiology, including those associated with human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV). This Review is focused on the role of PD-1-PD-L1 blockade in unleashing host antitumour immune responses against various B-cell lymphomas, and summarizes the clinical studies of this approach performed to date.
Collapse
Affiliation(s)
- Aaron Goodman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California 92093, USA
| | - Sandip P Patel
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California 92093, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Schmitt M, Hückelhoven AG, Hundemer M, Schmitt A, Lipp S, Emde M, Salwender H, Hänel M, Weisel K, Bertsch U, Dürig J, Ho AD, Blau IW, Goldschmidt H, Seckinger A, Hose D. Frequency of expression and generation of T-cell responses against antigens on multiple myeloma cells in patients included in the GMMG-MM5 trial. Oncotarget 2016; 8:84847-84862. [PMID: 29156688 PMCID: PMC5689578 DOI: 10.18632/oncotarget.11215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
Background Raising T-cell response against antigens either expressed on normal and malignant plasma cells (e.g. HM1.24) or aberrantly on myeloma cells only (e.g. cancer testis antigens, CTA) by vaccination is a potential treatment approach for multiple myeloma. Results Expression by GEP is found for HM1.24 in all, HMMR in 318/458 (69.4%), MAGE-A3 in 209/458 (45.6%), NY-ESO-1/2 in 40/458 (8.7%), and WT-1 in 4/458 (0.8%) of samples with the pattern being confirmed by RNA-sequencing. T-cell-activation is found in 9/26 (34.6%) of patient samples, i.e. against HM1.24 (4/24), RHAMM-R3 (3/26), RHAMM1-8 (2/14), WT-1 (1/11), NY-ESO-1/2 (1/9), and MAGE-A3 (2/8). In 7/19 T-cell activation responses, myeloma cells lack respective antigen-expression. Expression of MAGE-A3, HMMR and NY-ESO-1/2 is associated with adverse survival. Experimental design We assessed expression of HM1.24 and the CTAs MAGE-A3, NY-ESO-1/2, WT-1 and HMMR in CD138-purified myeloma cell samples of previously untreated myeloma patients in the GMMG-MM5 multicenter-trial by gene expression profiling (GEP; n = 458) and RNA-sequencing (n = 152) as potential population regarding vaccination trials. We then validated the feasibility to generate T-cell responses (n = 72) against these antigens by IFN-γ EliSpot-assay (n = 26) related to antigen expression (n = 22). Lastly, we assessed survival impact of antigen expression in an independent cohort of 247 patients treated by high-dose therapy and autologous stem cell transplantation. Conclusions As T-cell responses can only be raised in a subfraction of patients despite antigen expression, and the number of responses increases with more antigens used, vaccination strategies should assess patients’ antigen expression and use a “cocktail” of peptide vaccines.
Collapse
Affiliation(s)
- Michael Schmitt
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | | | - Michael Hundemer
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Anita Schmitt
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Susanne Lipp
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Martina Emde
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Hans Salwender
- Department of Internal Medicine II, Asklepios Klinik Altona, Hamburg, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Klinikum Chemnitz GmbH, Chemnitz, Germany
| | - Katja Weisel
- Department of Hematology, Oncology and Immunology, University of Tübingen, Tübingen, Germany
| | - Uta Bertsch
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Anthony D Ho
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Igor Wolfgang Blau
- Medical Clinic III Hematology and Oncology, Charité University Medicine Berlin, Berlin, Germany
| | - Hartmut Goldschmidt
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Anja Seckinger
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| | - Dirk Hose
- Universitätsklinikum Heidelberg, Medizinische Klinik V, Heidelberg, Germany
| |
Collapse
|
20
|
Guillerey C, Nakamura K, Vuckovic S, Hill GR, Smyth MJ. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell Mol Life Sci 2016; 73:1569-89. [PMID: 26801219 PMCID: PMC11108512 DOI: 10.1007/s00018-016-2135-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia
| | - Kyohei Nakamura
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Slavica Vuckovic
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia.
| |
Collapse
|
21
|
Wang M, Chen P, Jia Y, He N, Li D, Ji C, Ma D. Elevated Th22 as well as Th17 cells associated with therapeutic outcome and clinical stage are potential targets in patients with multiple myeloma. Oncotarget 2015; 6:17958-67. [PMID: 26255628 PMCID: PMC4627228 DOI: 10.18632/oncotarget.4641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
T helper (Th) cell imbalance plays important roles in tumor development and their effects in Multiple myeloma (MM) remain unclear. In the present study, we investigated the levels and clinical significance of Th22, Th17 and Th1 cells in patients with MM. Th subsets were examined by flow cytometry. Plasma IL-22, IL-17A and IFN-γ concentrations were measured by ELISA. AHR and RORC mRNA expression was examined by RT-PCR. Here, we found that the frequency of Th22 cells was significantly elevated in peripheral blood (PB) and bone marrow (BM) of newly-diagnosed MM patients, and recovered in complete remission patients after chemotherapy. The circulating Th17 cells accompanied by IL-17A levels were also up-regulated in MM patients and decreased after remission. We also found that there was a significantly positive correlation between Th22 and Th17 cells in MM patients. Moreover, the frequencies of Th22 and Th17 cells were higher in stage III than in stage I+II of MM. Our data demonstrated that Th22 and Th17 cells might be important therapeutic targets in multiple myeloma and could facilitate the effect of antitumor immunotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD4 Lymphocyte Count
- Case-Control Studies
- China
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Interferon-gamma/blood
- Interleukin-17/blood
- Interleukins/blood
- Male
- Middle Aged
- Multiple Myeloma/blood
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Neoplasm Staging
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Remission Induction
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Treatment Outcome
- Interleukin-22
Collapse
Affiliation(s)
- Min Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Department of Hematology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, China
| | - Ping Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Department of Hematology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, China
| | - Yan Jia
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na He
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daqi Li
- Department of Hematology, Jinan Central Hospital, Affiliated to Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
22
|
Frassanito MA, Ruggieri S, Desantis V, Di Marzo L, Leone P, Racanelli V, Fumarulo R, Dammacco F, Vacca A. Myeloma cells act as tolerogenic antigen-presenting cells and induce regulatory T cells in vitro. Eur J Haematol 2015; 95:65-74. [PMID: 25409753 DOI: 10.1111/ejh.12481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2014] [Indexed: 01/10/2023]
Abstract
Regulatory T cells (Tregs) are essential for maintenance of self-tolerance; however, tumor cells can exploit the tolerance to escape the immune system. We investigated the Tregs frequency in patients with multiple myeloma (MM) and in those with monoclonal gammopathy of undetermined significance (MGUS), and found that CD4(+) FoxP3(+) and CD8(+) FoxP3(+) Tregs were significantly increased in patients with MM and correlated with the active phase. Both Tregs subsets were expanded in cocultures of CD3(+) lymphocytes and fresh CD138(+) MM plasma cells or RPMI8226 and U266 cell lines and functioned as natural (n) and inducible (i) Tregs insofar as they inhibited the proliferation of stimulated CD3 lymphocytes via contact-dependent and contact-independent pathways. Induction of Tregs by MM plasma cells required a contact-dependent pathway, implying antigen recognition by T cells. MM plasma cells acted as immature and tolerogenic antigen-presenting cells (APCs), in that they displayed low CD80/CD86 expression associated with a phagocytic activity. By acting as immature APCs, MM plasma cells plausibly expand (n)Tregs and (i)Tregs both through conversion of CD3(+) FoxP3(-) into CD3(+) FoxP3(+) T cells and proliferation of CD3(+) FoxP3(+) T cells, which may suppress the anti-MM immune response.
Collapse
Affiliation(s)
- Maria Antonia Frassanito
- General Pathology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Simona Ruggieri
- Department of Human Anatomy, Histology and Embryology, University of Bari Medical School, Bari, Italy
| | - Vanessa Desantis
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Lucia Di Marzo
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Patrizia Leone
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Ruggiero Fumarulo
- General Pathology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Franco Dammacco
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
23
|
Fichtner S, Hose D, Engelhardt M, Meißner T, Neuber B, Krasniqi F, Raab M, Schönland S, Ho AD, Goldschmidt H, Hundemer M. Association of Antigen-Specific T-cell Responses with Antigen Expression and Immunoparalysis in Multiple Myeloma. Clin Cancer Res 2015; 21:1712-21. [DOI: 10.1158/1078-0432.ccr-14-1618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022]
|
24
|
Role of toll-like receptors in multiple myeloma and recent advances. Exp Hematol 2014; 43:158-67. [PMID: 25462020 DOI: 10.1016/j.exphem.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/02/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized as an abnormal proliferation and invasion of plasma cells into the bone marrow. Toll-like receptors (ТLRs) connect the innate and adaptive immune responses and represent a significant and potentially linking element between inflammation and cancer. When TLRs bind to their ligands, they trigger two major signaling pathways such that both share overlapping downstream signals: one is a myeloid differentiation primary response 88 (MyD88)-dependent production and activation of nuclear factor-κB, whereas the other is a MyD88-independent production of type-I interferon. Whereas the MyD88 pathway results in proinflammatory cytokine production, the other pathway stimulates cell proliferation. Dysregulations of these pathways may eventually lead to abnormal cell proliferation and MM. Despite recent biomedical advances, MM continues to be an incurable disease. There are an increasing number of TLR-based therapeutic approaches currently being tested in a number of preclinical and clinical studies. We here attempt to outline in detail the currently available information on TLRs in various types of cancer.
Collapse
|
25
|
Tete SM, Bijl M, Sahota SS, Bos NA. Immune defects in the risk of infection and response to vaccination in monoclonal gammopathy of undetermined significance and multiple myeloma. Front Immunol 2014; 5:257. [PMID: 24917865 PMCID: PMC4042361 DOI: 10.3389/fimmu.2014.00257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022] Open
Abstract
The plasma cell proliferative disorders monoclonal gammopathy of undetermined significance (MGUS) and malignant multiple myeloma (MM) are characterized by an accumulation of transformed clonal plasma cells in the bone marrow and production of monoclonal immunoglobulin. They typically affect an older population, with median age of diagnosis of approximately 70 years. In both disorders, there is an increased risk of infection due to the immunosuppressive effects of disease and conjointly of therapy in MM, and response to vaccination to counter infection is compromised. The underlying factors in a weakened immune response in MGUS and MM are as yet not fully understood. A confounding factor is the onset of normal aging, which quantitatively and qualitatively hampers humoral immunity to affect response to infection and vaccination. In this review, we examine the status of immune alterations in MGUS and MM and set these against normal aging immune responses. We focus primarily on quantitative and functional aspects of B-cell immunity. Furthermore, we review the current knowledge relating to susceptibility to infectious disease in MGUS and MM, and how efficacy of conventional vaccination is affected by proliferative disease-related and therapy-related factors.
Collapse
Affiliation(s)
- Sarah M Tete
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands ; Cancer Sciences Unit, Faculty of Medicine, University of Southampton , Southampton , UK
| | - Marc Bijl
- Department of Internal Medicine and Rheumatology, Martini Hospital , Groningen , Netherlands
| | - Surinder S Sahota
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton , Southampton , UK
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| |
Collapse
|
26
|
CD38 ligation in peripheral blood mononuclear cells of myeloma patients induces release of protumorigenic IL-6 and impaired secretion of IFNγ cytokines and proliferation. Mediators Inflamm 2013; 2013:564687. [PMID: 24489445 PMCID: PMC3892939 DOI: 10.1155/2013/564687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
CD38, a surface receptor that controls signals in immunocompetent cells, is densely expressed by cells of multiple myeloma (MM). The immune system of MM patients appears as functionally impaired, with qualitative and quantitative defects in T cell immune responses. This work answers the issue whether CD38 plays a role in the impairment of T lymphocyte response. To this aim, we analyzed the signals implemented by monoclonal antibodies (mAb) ligation in peripheral blood mononuclear cells (PBMC) obtained from MM patients and compared to benign monoclonal gammopathy of undetermined significance (MGUS). PBMC from MM both failed to proliferate and secrete IFNγ induced by CD38 ligation while it retained the ability to respond to TCR/CD3. The impaired CD38-dependent proliferative response likely reflects an arrest in the progression of cell cycle, as indicated by the reduced expression of PCNA. CD38 signaling showed an enhanced ability to induce IL-6 secretion. PBMC from MM patients displays a deregulated response possibly due to defects of CD38 activation pathways and CD38 may be functionally involved in the progression of this pathology via the secretion of high levels of IL-6 that protects neoplastic cells from apoptosis.
Collapse
|
27
|
Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood 2013; 121:4493-503. [PMID: 23603913 DOI: 10.1182/blood-2012-05-429415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although functionally competent cytotoxic, T cells are frequently observed in malignant diseases, they possess little ability to react against tumor cells. This phenomenon is particularly apparent in multiple myeloma. We here demonstrate that cytotoxic T cells reacted against myeloma antigens when presented by autologous dendritic cells, but not by myeloma cells. We further show by gene expression profiling and flow cytometry that, similar to many other malignant tumors, freshly isolated myeloma cells expressed several carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) at varying proportions. Binding and crosslinking of CEACAM-6 by cytotoxic T cells inhibited their activation and resulted in T-cell unresponsiveness. Blocking of CEACAM-6 on the surface of myeloma cells by specific monoclonal antibodies or CEACAM-6 gene knock down by short interfering RNA restored T-cell reactivity against malignant plasma cells. These findings suggest that CEACAM-6 plays an important role in the regulation of CD8+ T-cell responses against multiple myeloma; therefore, therapeutic targeting of CEACAM-6 may be a promising strategy to improve myeloma immunotherapy.
Collapse
|
28
|
Zheng MM, Zhang Z, Bemis K, Belch AR, Pilarski LM, Shively JE, Kirshner J. The systemic cytokine environment is permanently altered in multiple myeloma. PLoS One 2013; 8:e58504. [PMID: 23544044 PMCID: PMC3609759 DOI: 10.1371/journal.pone.0058504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 02/03/2023] Open
Abstract
Multiple myeloma (MM) is an incurable bone marrow malignancy of the B cell lineage. Utilizing multiplex Luminex technology we measured levels of 25 cytokines in the plasma of normal donors (n = 177), those with monoclonal gammopathy of undetermined significance (n = 8), and MM patients (n = 55) with either active disease, on treatment, or in remission. The cytokine levels were compared between normal donors and MM patients as well as between various phases of MM, and discriminant analysis was used to create a predictive classification model based on the differentially expressed cytokines. Evaluating age- and gender-dependence of cytokine expression, we determined that with age there is a shift toward a pro-inflammatory environment. Moreover, we observed a strong gender bias in cytokine expression. However, the profile of differentially expressed cytokines was heavily skewed toward an anti-inflammatory, pro-tumorigenic response in patients with MM. Significantly, our predictive model placed all patients in remission in the same category as those with active disease. Thus, our study demonstrates that the homeostasis of systemic cytokines is not restored when MM patients enter remission, suggesting that once an individual has cancer, the microenvironment is permanently altered and the system is primed for a relapse.
Collapse
Affiliation(s)
- Mary M. Zheng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Zhifang Zhang
- Division of Immunology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Kyle Bemis
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew R. Belch
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Linda M. Pilarski
- Department of Medical Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - John E. Shively
- Division of Immunology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Julia Kirshner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene 2013; 32:4191-202. [PMID: 23318436 DOI: 10.1038/onc.2012.599] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 11/08/2022]
|
30
|
Saga K, Tamai K, Yamazaki T, Kaneda Y. Systemic administration of a novel immune-stimulatory pseudovirion suppresses lung metastatic melanoma by regionally enhancing IFN-γ production. Clin Cancer Res 2012; 19:668-79. [PMID: 23251005 DOI: 10.1158/1078-0432.ccr-12-1947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer immunotherapy has encountered many difficulties in the face of the expectation to eradicate cancer, and new breakthroughs are required. We have previously shown that UV-inactivated Sendai virus particles (hemagglutinating virus of Japan envelope; HVJ-E) induce immunity against multiple tumor types. In this study, a novel pseudovirion that stimulates more robust antitumor immunity was designed for cancer treatment. EXPERIMENTAL DESIGN First, we found that culturing murine splenocytes with HVJ-E in combination with interleukin (IL)-12 resulted in a remarkable increase in IFN-γ production compared with that observed in splenocytes cultured with IL-12 alone. The synergistic effects of HVJ-E and IL-12 on IFN-γ production were caused by viral F proteins independently of HVJ-E fusion activity and not by hemagglutination from hemagglutinin-neuraminidase (HN) proteins. We next constructed HN-depleted HVJ-E expressing the Fc region of immunoglobulin G (IgG) on the envelope and single-chain IL-12 containing the ZZ domain of protein A to produce an IL-12-conjugated HVJ-E particle without hemagglutinating activity. RESULTS IL-12-conjugated HVJ-E dramatically enhanced the amount of IFN-γ produced by immune cells. Intratumoral injection of IL-12-conjugated HVJ-E eradicated murine melanomas more effectively than injection of wild-type HVJ-E through increased production of melanoma-specific CTLs. IL-12-conjugated HVJ-E preferentially accumulated in the lungs after systemic administration. When small metastatic melanoma foci were formed in the lungs, systemic administration of IL-12-conjugated HVJ-E significantly reduced the number of metastatic foci by inducing local production of IFN-γ in the lungs and generating large numbers of melanoma-specific CTLs. CONCLUSION IL-12-conjugated HVJ-E is a promising tool for the treatment of cancers, including lung metastasis.
Collapse
Affiliation(s)
- Kotaro Saga
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
31
|
Hinge M, Ingels HA, Slotved HC, Mølle I. Serologic response to a 23-valent pneumococcal vaccine administered prior to autologous stem cell transplantation in patients with multiple myeloma. APMIS 2012; 120:935-40. [DOI: 10.1111/j.1600-0463.2012.02922.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/17/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Maja Hinge
- Department of Hematology; Aarhus University Hospital; Aarhus C
| | - Helene A.S. Ingels
- Department of Microbiological Surveillance and Research; Statens Serum Institut; Copenhagen; Denmark
| | - Hans-Christian Slotved
- Department of Microbiological Surveillance and Research; Statens Serum Institut; Copenhagen; Denmark
| | - Ingolf Mølle
- Department of Hematology; Aarhus University Hospital; Aarhus C
| |
Collapse
|
32
|
Novel strategies for immunotherapy in multiple myeloma: previous experience and future directions. Clin Dev Immunol 2012; 2012:753407. [PMID: 22649466 PMCID: PMC3357929 DOI: 10.1155/2012/753407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a life-threatening haematological malignancy for which standard therapy is inadequate. Autologous stem cell transplantation is a relatively effective treatment, but residual malignant sites may cause relapse. Allogeneic transplantation may result in durable responses due to antitumour immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM.
Cellular immunotherapy using specific antigen-presenting cells (APCs), to overcome aspects of immune incompetence in MM patients, has received great attention, and numerous clinical trials have evaluated the potential for dendritic cell (DC) vaccines as a novel immunotherapeutic approach. This paper will summarize the data investigating aspects of immunity concerning MM, immunotherapy for patients with MM, and strategies, on the way, to target the plasma cell more selectively. We also include the MM antigens and their specific antibodies that are of potential use for MM humoral immunotherapy, because they have demonstrated the most promising preclinical results.
Collapse
|
33
|
Van Valckenborgh E, Schouppe E, Movahedi K, De Bruyne E, Menu E, De Baetselier P, Vanderkerken K, Van Ginderachter JA. Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 2012; 26:2424-8. [PMID: 22522789 DOI: 10.1038/leu.2012.113] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Abstract
The incidence of second malignancies was shown to be increased in patients with multiple myeloma. Although a shared genetic predisposition or common environmental carcinogens may account for the occurrence of both myeloma and additional cancers, multiple immune defects encountered in myeloma might play an important role in this regard. This review explores the impairments in both cellular and humoral mediated immunity in multiple myeloma, linking them with increased susceptibility to infections and additional cancers. In addition, the recent therapeutic advances transformed myeloma into a chronic entity, with multiple relapses and salvage therapies, which may result in cumulative immunosuppression. Although recent reports have suggested an increased rate of second cancers in myeloma patients treated with lenalidomide, the true impact of this agent and other novel anti-myeloma therapies on the incidence of additional malignancies remains to be clarified.
Collapse
Affiliation(s)
- Constantin A Dasanu
- Department of Hematology-Oncology, St. Francis Hospital and Medical Center, Hartford, CT, USA.
| |
Collapse
|
35
|
Variations in suppressor molecule ctla-4 gene are related to susceptibility to multiple myeloma in a polish population. Pathol Oncol Res 2011; 18:219-26. [PMID: 21744007 PMCID: PMC3313022 DOI: 10.1007/s12253-011-9431-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 06/22/2011] [Indexed: 01/02/2023]
Abstract
Various phenotype and functional T-cell abnormalities are observed in multiple myeloma (MM) patients. The aim of this study was to investigate the association between polymorphisms in the gene encoding cytotoxic T-lymphocyte antigen-4 (CTLA-4), a negative regulator of the T-lymphocyte immune response and susceptibility to multiple myeloma in a Polish population. Two hundred MM patients and 380 healthy subjects were genotyped for the following polymorphisms: CTLA-4c.49A>G, CTLA-4g.319C>T, CTLA-4g.*642AT(8_33), CT60 (CTLA-4g.*6230G>A), Jo31 (CTLA-4g.*10223G>T). Our study is the largest and most comprehensive evaluation to date of the association between genetic polymorphisms in the CTLA-4 molecule and multiple myeloma. It was found that CTLA-4c.49A>G[G], CT60[G], and Jo31[G] alleles were more frequently observed in MM patients than in controls (0.50 vs. 0.44, p = 0.03, 0.65 vs. 0.58, p = 0.04, and 0.63 vs. 0.57, p = 0.03, respectively). Moreover, the haplotype CTLA-4c.49A>G[G], CTLA-4g.319C>T[C], CTLA-4g.*642AT(8_33) [8], CT60[G], Jo31[G] including all susceptibility alleles increases the risk of MM about fourfold (OR: 3.79, 95%CI: 2.08–6.89, p = 0.00001). These findings indicate that genetic variations in the CTLA-4 gene play role in susceptibility to multiple myeloma and warrant further investigation through replication studies.
Collapse
|
36
|
Immune recovery after cyclophosphamide treatment in multiple myeloma: implication for maintenance immunotherapy. BONE MARROW RESEARCH 2011; 2011:269519. [PMID: 22046558 PMCID: PMC3195280 DOI: 10.1155/2011/269519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/07/2011] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a progressive B-lineage neoplasia characterized by clonal proliferation of malignant plasma cells. Increased numbers of regulatory T cells (Tregs) were determined in mouse models and in patients with MM, which correlated with disease burden. Thus, it became rational to target Tregs for treating MM. The effects of common chemotherapeutic drugs on Tregs are reviewed with a focus on cyclophosphamide (CYC). Studies indicated that selective depletion of Tregs may be accomplished following the administration of a low-dose CYC. We report that continuous nonfrequent administrations of CYC at low doses block the renewal of Tregs in MM-affected mice and enable the restoration of an efficient immune response against the tumor cells, thereby leading to prolonged survival and prevention of disease recurrence. Hence, distinctive time-schedule injections of low-dose CYC are beneficial for breaking immune tolerance against MM tumor cells.
Collapse
|
37
|
Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL. Blood 2011; 117:3836-46. [PMID: 21270444 DOI: 10.1182/blood-2010-07-299321] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic data show that the immune system may control or promote the emergence and growth of neoplastic lymphomatous clones. Conversely, systemic lymphomas, especially myeloma and chronic lymphocytic leukemia (CLL), are associated with clinical immunodeficiency. This prospective controlled study demonstrates substantially reduced circulating T helper cells, predominantly naive CD4(+) cells, in patients with nonleukemic follicular lymphoma and extranodal marginal zone lymphoma, but not in monoclonal gammopathy and early CLL. These changes were correlated with a preactivated phenotype, hyperreactivity in vitro, pre-senescence, and a T helper 2 shift of peripheral T helper cells. No prominent alterations existed in the regulatory T-cell compartment. Gene expression profiling of in vitro-stimulated CD4(+) cells revealed an independent second alteration of T helper cell physiology, which was most pronounced in early CLL but also detectable in follicular lymphoma/extranodal marginal zone lymphoma. This pattern consisted of down-regulation of T-cell receptor signaling cascades and globally reduced cytokine secretion. Both types of T-cell dysfunction may contribute to significant immunodeficiency in nonleukemic indolent B-cell lymphomas as demonstrated by unresponsiveness to hepatitis B vaccination. The precise definition of systemic T-cell dysfunction serves as the basis to study its prognostic impact, its relationship to the established influence of the lymphoma microenvironment, and its therapeutic manipulation.
Collapse
|
38
|
Ritchie DS, Quach H, Fielding K, Neeson P. Drug-mediated and cellular immunotherapy in multiple myeloma. Immunotherapy 2010; 2:243-55. [PMID: 20635931 DOI: 10.2217/imt.10.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma is an immunologically relevant disease, which subverts and suppresses immunity, but that may also be amenable to immunological control. Novel drug and cell-based therapies provide an opportunity for the design of antimyeloma immunotherapy. Reversing the immunosuppression associated myeloma remains a substantial challenge. The minimal residual disease setting achieved by autologous stem cell transplant or highly efficacious induction therapy may reverse this immunoparesis and provide a setting for induction of antimyeloma T-cell responses. Adoptive cytotoxic T-lymphocyte/NK therapy and comprehensive treatment with immunomodulatory drug therapy represent means by which antimyeloma immune responses may be promoted. In addition, apoptosis-inducing therapies may prime endogenous antigen presentation via immunogenic cell death, which again may be enhanced by the addition of immunomodulatory drug therapy.
Collapse
Affiliation(s)
- David S Ritchie
- Department of Haematology & Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
39
|
Sharma A, Khan R, Joshi S, Kumar L, Sharma M. Dysregulation in T helper 1/T helper 2 cytokine ratios in patients with multiple myeloma. Leuk Lymphoma 2010; 51:920-7. [PMID: 20367137 DOI: 10.3109/10428191003699563] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have assessed alterations of Th1 and Th2 derived cytokines in the progression of multiple myeloma (MM) by determining their circulatory concentrations in patients with MM and healthy controls and correlated observations with grade and severity of the disease. The study group consisted of 112 subjects: 62 patients with MM and 50 healthy controls. Regarding serum levels of Th1 cytokines, IFN-gamma was significantly lower and IL-2 was non-significantly increased, while regarding levels of Th2 cytokines, IL-4 and IL-10 were significantly elevated. Results of our study indicate that a marked polarization exists toward Th2 cytokines in MM while Th1 cytokines remain suppressed.
Collapse
Affiliation(s)
- Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | | | | | | | | |
Collapse
|
40
|
Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy. Adv Cancer Res 2010; 107:1-37. [PMID: 20399959 DOI: 10.1016/s0065-230x(10)07001-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A unique mouse model of multiple myeloma (MM), namely 5T2MM-bearing mouse, was useful for elucidating the pathophysiological mechanisms underlying the disease. Increased accumulation of suppressive CD4(+)CD25(High)Foxp3(+) regulatory T cells (Tregs) was observed in the thymus and lymphoid peripheral organs during disease progression. Adoptive transfer of Tregs, but not other thymocytes, from 5T2MM-bearing mice led to increased progression of disease manifestations in young syngeneic mice. Depletion of Tregs, a proposed strategy in cancer immunotherapy, was tested using cyclophosphamide (CYC), an alkylating agent with selective cytotoxicity. Both low- and high-dose CYC, administered to sick mice with hind limb paralysis, caused the paralysis to disappear, the plasma tumor cells in the bone marrow (BM) cavity to be replaced by normal cell populations, and the survival of the mice to be significantly prolonged. Low-dose CYC, which selectively depletes Tregs, decreased MM incidence, in contrast to high-dose CYC, which was generally cytotoxic, and did not reduce MM incidence. In contrast, low-dose CYC induced Tregs to become susceptible to apoptosis by downregulating Bcl-xL and CTLA-4 in these cells, and by decreasing the production of IL-2 by effector CD4 cells. This treatment consequently triggered the recovery of IFN-gamma-producing natural killer T cells and the maturation of dendritic cells. Transient gradual depletion of Tregs in low-dose CYC-treated 5T2MM mice was maintained beyond 45 days. Thus, less frequent injections of low-dose CYC enabled us to recruit compatible immune-derived cells that would reduce tumor load and delay or prevent tumor recurrence, hence breaking immune tolerance toward MM tumor cells.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
41
|
Bien E, Balcerska A, Adamkiewicz-Drozynska E, Rapala M, Krawczyk M, Stepinski J. Pre-treatment serum levels of interleukin-10, interleukin-12 and their ratio predict response to therapy and probability of event-free and overall survival in childhood soft tissue sarcomas, Hodgkin's lymphomas and acute lymphoblastic leukemias. Clin Biochem 2009; 42:1144-57. [PMID: 19376105 DOI: 10.1016/j.clinbiochem.2009.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/19/2009] [Accepted: 04/02/2009] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Deregulated serum IL-10, IL-12 and their reciprocal balance have been stated in malignancies of adults. In children with cancer the issue has not been investigated so far. DESIGN AND METHODS To determine the diagnostic and prognostic roles of pre-treatment serum levels of IL-10 (Th2 cytokine), IL-12 (Th1) and their ratios (measured by the IL-10 and IL-12p70 ELISA kits; Endogen) in 91 children with soft tissue sarcomas (STS), Hodgkin's lymphomas (HL) and acute lymphoblastic leukemias (ALL). RESULTS Median IL-10 and IL-12 levels were significantly higher in cancer patients than in healthy controls. Increased IL-10 indicated presence of general symptoms in HL and high risk group in ALL. Elevated IL-10 and IL-10/IL-12 ratios and decreased IL-12 correlated with poor-risk histology in STS, poor response to therapy, relapse and death from cancer. Multivariate analysis identified IL-10/IL-12 ratio>0.14 and IL-12<40 pg/mL as significant predictors for shorter EFS and OS, respectively. CONCLUSION Pre-treatment serum levels of IL-10, IL-12 and IL-10/IL-12 balance in children with STS, HL and ALL may be of value as additional prognostic tools to predict the response to therapy and probability of EFS and OS.
Collapse
Affiliation(s)
- Ewa Bien
- Department of Pediatrics, Hematology, Oncology and Endocrinology, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland.
| | | | | | | | | | | |
Collapse
|
42
|
Johnson DC, Corthals S, Ramos C, Hoering A, Cocks K, Dickens NJ, Haessler J, Goldschmidt H, Child JA, Bell SE, Jackson G, Baris D, Rajkumar SV, Davies FE, Durie BGM, Crowley J, Sonneveld P, Van Ness B, Morgan GJ. Genetic associations with thalidomide mediated venous thrombotic events in myeloma identified using targeted genotyping. Blood 2008; 112:4924-34. [PMID: 18805967 PMCID: PMC3601865 DOI: 10.1182/blood-2008-02-140434] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 08/24/2008] [Indexed: 12/31/2022] Open
Abstract
A venous thromboembolism (VTE) with the subsequent risk of pulmonary embolism is a major concern in the treatment of patients with multiple myeloma with thalidomide. The susceptibility to developing a VTE in response to thalidomide therapy is likely to be influenced by both genetic and environmental factors. To test genetic variation associated with treatment related VTE in patient peripheral blood DNA, we used a custom-built molecular inversion probe (MIP)-based single nucleotide polymorphism (SNP) chip containing 3404 SNPs. SNPs on the chip were selected in "functional regions" within 964 genes spanning 67 molecular pathways thought to be involved in the pathogenesis, treatment response, and side effects associated with myeloma therapy. Patients and controls were taken from 3 large clinical trials: Medical Research Council (MRC) Myeloma IX, Hovon-50, and Eastern Cooperative Oncology Group (ECOG) EA100, which compared conventional treatments with thalidomide in patients with myeloma. Our analysis showed that the set of SNPs associated with thalidomide-related VTE were enriched in genes and pathways important in drug transport/metabolism, DNA repair, and cytokine balance. The effects of the SNPs associated with thalidomide-related VTE may be functional at the level of the tumor cell, the tumor-related microenvironment, and the endothelium. The clinical trials described in this paper have been registered as follows: MRC Myeloma IX: ISRCTN68454111; Hovon-50: NCT00028886; and ECOG EA100: NCT00033332.
Collapse
Affiliation(s)
- David C Johnson
- Section of Haemato-Oncology, Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Quantification of Dendritic Cells and Osteoclasts in the Bone Marrow of Patients with Monoclonal Gammopathy. Pathol Oncol Res 2008; 15:65-72. [DOI: 10.1007/s12253-008-9092-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
44
|
Constitutive expression of IL-12R beta 2 on human multiple myeloma cells delineates a novel therapeutic target. Blood 2008; 112:750-9. [PMID: 18474725 DOI: 10.1182/blood-2008-02-139378] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The interleukin-12 (IL-12) receptor (R) B2 gene acts as tumor suppressor in human acute and chronic B-cell leukemias/lymphomas and IL-12rb2-deficient mice develop spontaneously localized plasmacytomas. With this background, we investigated the role of IL-12R beta 2 in multiple myeloma (MM) pathogenesis. Here we show the following: (1) IL-12R beta 2 was expressed in primary MM cells but down-regulated compared with normal polyclonal plasmablastic cells and plasma cells (PCs). IL-6 dampened IL-12R beta 2 expression on polyclonal plasmablastic cells and MM cells. (2) IL-12 reduced the proangiogenic activity of primary MM cells in vitro and decreased significantly (P = .001) the tumorigenicity of the NCI-H929 cell line in SCID/NOD mice by inhibiting cell proliferation and angiogenesis. The latter phenomenon was found to depend on abolished expression of a wide panel of proangiogenic genes and up-regulated expression of the antiangiogenic genes IFN-gamma, IFN-alpha, platelet factor-4, and TIMP-2. Inhibition of the angiogenic potential of primary MM cells was related to down-regulated expression of the proangiogenic genes CCL11, vascular endothelial-cadherin, CD13, and AKT and to up-regulation of an IFN-gamma-related antiangiogenic pathway. Thus, IL-12R beta 2 directly restrains MM cell growth, and targeting of IL-12 to tumor cells holds promise as new therapeutic strategy.
Collapse
|
45
|
Martín-Ayuso M, Almeida J, Pérez-Andrés M, Cuello R, Galende J, González-Fraile MI, Martín-Nuñez G, Ortega F, Rodríguez MJ, San Miguel JF, Orfao A. Peripheral blood dendritic cell subsets from patients with monoclonal gammopathies show an abnormal distribution and are functionally impaired. Oncologist 2008; 13:82-92. [PMID: 18245015 DOI: 10.1634/theoncologist.2007-0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives. The information currently available about dendritic cells (DCs) in patients with different types of monoclonal gammopathy (MG) is limited and frequently controversial. In the present study, we analyzed the ex vivo distribution as well as the phenotypic and functional characteristics of peripheral blood (PB) DCs from different types of MG. Methods. For this purpose, 61 untreated patients in total with MG were analyzed-MG of undetermined significance (MGUS), 29 cases; multiple myeloma (MM), 28 cases; and plasma cell leukemia (PCL), 4 cases-in comparison with a group of 10 healthy controls. Results. Our results show an absolute overall higher number of all subsets of PB DCs in PCL, together with lower numbers of myeloid DCs in MM patients. From a phenotypic point of view, PB DC subsets from all types of MG expressed significantly higher levels of HLA molecules and altered patterns of expression of the CD2, CD11c, CD16, CD22, CD62L, and CD86 molecules, in association with altered patterns of secretion of inflammatory cytokines. Conclusion. In summary, we show the existence of significant abnormalities in the distribution, phenotype, and pattern of secretion of inflammatory cytokines by different subsets of PB DCs from patients with MGs, which could reflect a potentially altered homing of DCs, together with a greater in vivo activation and lower responsiveness of PB DCs, which are already detectable in MGUS patients.
Collapse
Affiliation(s)
- Marta Martín-Ayuso
- Servicio de Citometría & Departamento de Medicina, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Matta GME, Battaglio S, Dibello C, Napoli P, Baldi C, Ciccone G, Coscia M, Boccadoro M, Massaia M. Polyclonal immunoglobulin E levels are correlated with hemoglobin values and overall survival in patients with multiple myeloma. Clin Cancer Res 2007; 13:5348-54. [PMID: 17875762 DOI: 10.1158/1078-0432.ccr-06-2819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Polyclonal IgG, IgA, and IgM immunoglobulins are often decreased in sera of patients with multiple myeloma (MM), whereas very few data are available on polyclonal IgE levels. We have determined IgE levels in a large series of MM patients at diagnosis and subjects with monoclonal gammopathy of undetermined significance (MGUS) and correlated IgE levels with survival and prognostic factors in MM. EXPERIMENTAL DESIGN IgE were determined with a commercially available ELISA kit in 201 MM patients at diagnosis, 144 subjects with MGUS, and 77 age-matched controls. RESULTS IgE levels progressively decreased from controls to MGUS and from MGUS to MM (P = 0.001). MM patients with IgE levels of >11.5 IU/mL (median) had a better survival than patients with IgE of <11.5 IU/mL (P = 0.048). The difference was even more significant when MM patients were divided according to clinical cutoff values. Patients with elevated IgE levels (>100 IU/mL) had from 2 to 3 years longer survival than those with low (<10 IU/mL) or intermediate values (10-100 IU/mL; P < 0.01). IgE levels were positively and negatively correlated with hemoglobin (P = 0.006) and beta2-microglobulin levels (P = 0.007), respectively. Univariate and multivariate analyses confirmed that high IgE levels are positive predictors of overall survival (P = 0.03 and 0.08, respectively) and strongly correlated with hemoglobin values. CONCLUSIONS Because IgE levels are dependent on Th(2) responses, these data open new perspectives in the interpretation of antitumor immune responses and pathogenesis of anemia in MM.
Collapse
|
47
|
Abstract
Multiple myeloma is a malignant tumour of plasma cells that remains incurable for the vast majority of patients, with a median survival of 2-3 years. It is characterized by the patchy accumulation of tumour cells within bone marrow leading to variable anaemia, bone destruction, hypercalcaemia, renal failure and infections. Immune dysfunction is an important feature of the disease and leads to infections that are both a major cause of morbidity and mortality and may promote tumour growth and resistance to chemotherapy. Numerous defects of the immune system have been described in multiple myeloma although the relative clinical importance of these remains elusive. There has been considerable interest in the identification of an autologous response against myeloma. Although T cells and humoral responses directed against myeloma-associated antigens have been described, it is uncertain if the immune system plays a role in preventing or controlling myeloma cell growth. There is increasing interest in the potential role of immunotherapy but the success of these interventions is likely to be modified by the immunologically hostile environment associated with multiple myeloma. This review attempts to summarize the current knowledge relating to the immune defects found in multiple myeloma.
Collapse
Affiliation(s)
- Guy Pratt
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
48
|
Abdalla AO, Hansson L, Eriksson I, Näsman-Glaser B, Mellstedt H, Osterborg A. Long-term effects of idiotype vaccination on the specific T-cell response in peripheral blood and bone marrow of multiple myeloma patients. Eur J Haematol 2007; 79:371-81. [PMID: 17916084 DOI: 10.1111/j.1600-0609.2007.00962.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To elucidate long-term effects of idiotype (Id) vaccination on Id-specific T cells of multiple myeloma (MM) patients and compare Id-specific T-cell responses of peripheral blood with those of bone marrow (BM). MATERIALS AND METHODS Id-specific T-cell responses of peripheral blood mononuclear cells (PBMC) were compared with those of BM mononuclear cells (BMMC) in 10 MM patients vaccinated with the Id protein at a median time of 41 months since the last immunization. The PBMC responses at late follow-up were also compared with those during active immunization. The responses were assessed by a proliferation assay, enzyme-linked immunospot (ELISPOT) (gamma-interferon), cytometric bead array (CBA) for secreted cytokines and quantitative real-time polymerase chain reaction (QRT-PCR) for cytokine gene expression. RESULTS At the late testing time, an Id-specific response was detected in PBMC of five patients (ELISPOT, CBA, QRT-PCR) and in BMMC of four patients (CBA, QRT-PCR). A response in both compartments was noted only in three patients. The cytokines gene profile was consistent with a predominance of Th(2) cells [interleukin (IL)-4, IL-5, IL-10]. Comparison of the Id-specific responses of PBMC during active immunization with those at the late follow-up showed that the frequency and magnitude of the responses had decreased significantly by time (proliferation/ELISPOT) (P < 0.02) and shifted at the gene level from a Th(1) to a Th(2) profile (P < 0.05). CONCLUSION Id-specific T-cells may decline overtime and shift toward a Th(2) response and may be found at a similar frequency of patients in blood and BM.
Collapse
Affiliation(s)
- Amir Osman Abdalla
- Immune and Gene Therapy Laboratory, CCK, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110:296-304. [PMID: 17363736 DOI: 10.1182/blood-2006-10-051482] [Citation(s) in RCA: 500] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) cells inhibit certain T-cell functions. We examined the expression of B7-H1 (PD-L1), a B7-related protein that inhibits T-cell responses, in CD138-purified plasma cells isolated from MM patients, monoclonal gammopathy of undetermined significance patients, and healthy donors. We observed that B7-H1 was expressed in most MM plasma cells, but not cells isolated from monoclonal gammopathy of undetermined significance or healthy donors. This expression was increased or induced by IFN-γ and Toll-like receptor (TLR) ligands in isolated MM plasma cells. Blocking the MEK/ERK pathway inhibited IFN-γ–mediated and TLR-mediated expression of B7-H1. Inhibition of the MyD88 and TRAF6 adaptor proteins of the TLR pathway blocked not only B7-H1 expression induced by TLR ligands but also that mediated by IFN-γ. IFN-γ–induced STAT1 activation, via MEK/ERK and MyD88/TRAF6, and inhibition of STAT1 reduced B7-H1 expression. MM plasma cells stimulated with IFN-γ or TLR ligands inhibited cytotoxic T lymphocytes (CTLs) generation and this immunosuppressive effect was inhibited by preincubation with an anti-B7-H1 antibody, the UO126 MEK inhibitor, or by transfection of a dominant-negative mutant of MyD88. Thus, B7-H1 expression by MM cells represents a possible immune escape mechanism that could be targeted therapeutically through inhibition of MyD88/TRAF6 and MEK/ERK/STAT1.
Collapse
Affiliation(s)
- Jizhong Liu
- Institut National de la Santé et de la Recherche Médicale, Unité 837, Institut de Recherche sur le Cancer de Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL. In vivo peripheral expansion of naive CD4+CD25highFoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006; 107:3940-9. [PMID: 16410445 DOI: 10.1182/blood-2005-09-3671] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In solid tumors, leukemias, and lymphomas, increased frequencies of functional CD4+CD25high regulatory T cells (Treg cells) have been previously demonstrated. In healthy individuals, Treg cells consist not only of memory but also of naive T cells, which can undergo peripheral expansion and are characterized by a relative enrichment for autoreactive T-cell receptors. Here, we demonstrate in patients with premalignant monoclonal gammopathy of undetermined significance and patients with multiple myeloma that functional FoxP3+ Treg cells of naive, central, and effector memory phenotype as determined by CCR7 and CD45RA expression are significantly expanded. Low frequencies of T-cell receptor excision circles in naive Treg cells in both healthy controls and multiple myeloma patients point to peripheral expansion as the prominent mechanism of increased frequencies of naive Treg cells in these cancer patients. These findings strongly suggest that the increase of functional Treg cells in cancer patients is a response to the process of malignant transformation.
Collapse
MESH Headings
- Antigens, CD/blood
- Antigens, CD/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Flow Cytometry
- Forkhead Transcription Factors/blood
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Humans
- Leukocyte Common Antigens/blood
- Leukocyte Common Antigens/genetics
- Multiple Myeloma/blood
- Multiple Myeloma/immunology
- Receptors, Antigen, T-Cell/blood
- Receptors, Antigen, T-Cell/immunology
- Receptors, CCR7
- Receptors, Chemokine/blood
- Receptors, Chemokine/genetics
- Receptors, Interleukin-2/blood
Collapse
Affiliation(s)
- Marc Beyer
- Molecular Tumor Biology and Tumor Immunology, Clinic I for Internal Medicine, University of Cologne, Joseph-Stelzmann Strasse 9/Haus 16, 50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|