1
|
Corral-Ruiz GM, Pérez-Vega MJ, Galán-Salinas A, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Sánchez-Torres LE. Thymic atrophy induced by Plasmodium berghei ANKA and Plasmodium yoelii 17XL infection. Immunol Lett 2023; 264:4-16. [PMID: 37875239 DOI: 10.1016/j.imlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The thymus is the anatomical site where T cells undergo a complex process of differentiation, proliferation, selection, and elimination of autorreactive cells which involves molecular signals in different intrathymic environment. However, the immunological functions of the thymus can be compromised upon exposure to different infections, affecting thymocyte populations. In this work, we investigated the impact of malaria parasites on the thymus by using C57BL/6 mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL; these lethal infection models represent the most severe complications, cerebral malaria, and anemia respectively. Data showed a reduction in the thymic weight and cellularity involving different T cell maturation stages, mainly CD4-CD8- and CD4+CD8+ thymocytes, as well as an increased presence of apoptotic cells, leading to significant thymic cortex reduction. Thymus atrophy showed no association with elevated serum cytokines levels, although increased glucocorticoid levels did. The severity of thymic damage in both models reached the same extend although it occurs at different stages of infection, showing that thymic atrophy does not depend on parasitemia level but on the specific host-parasite interaction.
Collapse
Affiliation(s)
- G M Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
2
|
Galán-Salinas A, Corral-Ruíz G, Pérez-Vega MJ, Fabila-Castillo L, Silva-García R, Marquina-Castillo B, León-Contreras JC, Barrios-Payán J, Francisco-Cruz A, Montecillo-Aguado M, Huerta-Yepez S, Calderón-Amador J, Flores-Romo L, Hernández-Pando R, Sánchez-Torres LE. Monocyte Locomotion Inhibitory Factor confers neuroprotection and prevents the development of murine cerebral malaria. Int Immunopharmacol 2021; 97:107674. [PMID: 34044183 DOI: 10.1016/j.intimp.2021.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Cerebral malaria (CM) is a neurological complication derived from the Plasmodium falciparum infection in humans. The mechanisms involved in the disease progression are still not fully understood, but both the sequestration of infected red blood cells (iRBC) and leukocytes and an exacerbated host inflammatory immune response are significant factors. In this study, we investigated the effect of Monocyte Locomotion Inhibitory Factor (MLIF), an anti-inflammatory peptide, in a well-characterized murine model of CM. Our data showed that the administration of MLIF increased the survival and avoided the neurological signs of CM in Plasmodium berghei ANKA (PbA) infected C57BL/6 mice. MLIF administration down-regulated systemic inflammatory mediators such as IFN-γ, TNF-α, IL-6, CXCL2, and CCL2, as well as the in situ expression of TNF-α in the brain. In the same way, MLIF reduced the expression of CD31, CD36, CD54, and CD106 in the cerebral endothelium of infected animals and prevented the sequestration of iRBC and leucocytes in the brain microvasculature. Furthermore, MLIF inhibited the activation of astrocytes and microglia and preserved the integrity of the blood-brain barrier (BBB). In conclusion, our results demonstrated that the administration of MLIF increased survival and conferred neuroprotection by decreasing neuroinflammation in murine CM.
Collapse
Affiliation(s)
- A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - G Corral-Ruíz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - R Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN-Siglo XXI, IMSS, México City, Mexico
| | - B Marquina-Castillo
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - J C León-Contreras
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - A Francisco-Cruz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Montecillo-Aguado
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - S Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - J Calderón-Amador
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, México City, Mexico
| | - L Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, México City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
3
|
Apte SH, Minigo G, Groves PL, Spargo JC, Plebanski M, Grigg MJ, Kenangalem E, Burel JG, Loughland JR, Flanagan KL, Piera KA, William T, Price RN, Woodberry T, Barber BE, Anstey NM, Doolan DL. A population of CD4 hiCD38 hi T cells correlates with disease severity in patients with acute malaria. Clin Transl Immunology 2020; 9:e1209. [PMID: 33282291 PMCID: PMC7684974 DOI: 10.1002/cti2.1209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE CD4+ T cells are critical mediators of immunity to Plasmodium spp. infection, but their characteristics during malarial episodes and immunopathology in naturally infected adults are poorly defined. Flow cytometric analysis of PBMCs from patients with either P. falciparum or P. knowlesi malaria revealed a pronounced population of CD4+ T cells co-expressing very high levels of CD4 and CD38 we have termed CD4hiCD38hi T cells. We set out to gain insight into the function of these novel cells. METHODS CD4+ T cells from 18 patients with P. falciparum or P. knowlesi malaria were assessed by flow cytometry and sorted into populations of CD4hiCD38hi or CD4norm T cells. Gene expression in the sorted populations was assessed by qPCR and NanoString. RESULTS CD4hiCD38hi T cells expressed high levels of CD4 mRNA and canonical type 1 regulatory T-cell (TR1) genes including IL10, IFNG, LAG3 and HAVCR2 (TIM3), and other genes with relevance to cell migration and immunomodulation. These cells increased in proportion to malaria disease severity and were absent after parasite clearance with antimalarials. CONCLUSION In naturally infected adults with acute malaria, a prominent population of type 1 regulatory T cells arises that can be defined by high co-expression of CD4 and CD38 (CD4hiCD38hi) and that correlates with disease severity in patients with falciparum malaria. This study provides fundamental insights into T-cell biology, including the first evidence that CD4 expression is modulated at the mRNA level. These findings have important implications for understanding the balance between immunity and immunopathology during malaria.
Collapse
Affiliation(s)
- Simon H Apte
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Present address:
Queensland Lung Transplant Service, The Prince Charles HospitalChermsideQLDAustralia
| | - Gabriela Minigo
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Penny L Groves
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Jessie C Spargo
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Magdalena Plebanski
- Department of Immunology and PathologyMonash UniversityPrahranVICAustralia,School of Health and Biomedical SciencesRMIT UniversityBundooraVICAustralia
| | - Mathew J Grigg
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Enny Kenangalem
- Papuan Health and Community Development FoundationTimikaIndonesia
| | - Julie G Burel
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Present address:
La Jolla Institute for ImmunologyLa JollaCAUSA
| | - Jessica R Loughland
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Katie L Flanagan
- Department of Immunology and PathologyMonash UniversityPrahranVICAustralia,School of Health and Biomedical SciencesRMIT UniversityBundooraVICAustralia,School of MedicineUniversity of TasmaniaLauncestonTASAustralia
| | - Kim A Piera
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Timothy William
- School of MedicineUniversity of TasmaniaLauncestonTASAustralia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Nuffield Department of Clinical MedicineCentre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Tonia Woodberry
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Bridget E Barber
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Nicholas M Anstey
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia
| | - Denise L Doolan
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Centre for Molecular TherapeuticsAustralian Institute of Tropical Health & MedicineJames Cook UniversityCairnsQLDAustralia
| |
Collapse
|
4
|
Káňová E, Tkáčová Z, Bhide K, Kulkarni A, Jiménez-Munguía I, Mertinková P, Drážovská M, Tyagi P, Bhide M. Transcriptome analysis of human brain microvascular endothelial cells response to Neisseria meningitidis and its antigen MafA using RNA-seq. Sci Rep 2019; 9:18763. [PMID: 31822804 PMCID: PMC6904618 DOI: 10.1038/s41598-019-55409-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023] Open
Abstract
Interaction of Neisseria meningitidis (NM) with human brain microvascular endothelial cells (hBMECs) initiates of multiple cellular processes, which allow bacterial translocation across the blood-brain barrier (BBB). NM is equipped with several antigens, which interacts with the host cell receptors. Recently we have shown that adhesin MafA (UniProtKB-X5EG71), relatively less studied protein, is one of those surface exposed antigens that adhere to hBMECs. The present study was designed to comprehensively map the undergoing biological processes in hBMECs challenged with NM or MafA using RNA sequencing. 708 and 726 differentially expressed genes (DEGs) were identified in hBMECs exposed to NM and MafA, respectively. Gene ontology analysis of the DEGs revealed that several biological processes, which may alter the permeability of BBB, were activated. Comparative analysis of DEGs revealed that MafA, alike NM, might provoke TLR-dependent pathway and augment cytokine response. Moreover, both MafA and NM were able to induce genes involved in cell surface modifications, endocytosis, extracellular matrix remodulation and anoikis/apoptosis. In conclusion, this study for the first time describes effect of NM on the global gene expression in hBMECs using high-throughput RNA-seq. It also presents ability of MafA to induce gene expression, which might aid NM in breaching the BBB.
Collapse
Affiliation(s)
- Evelína Káňová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Monika Drážovská
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Punit Tyagi
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia. .,Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
5
|
Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS Pathog 2015; 11:e1005210. [PMID: 26562533 PMCID: PMC4643016 DOI: 10.1371/journal.ppat.1005210] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA) and non-inducing (P. berghei NK65) infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome. Cerebral malaria is the most severe complication of Plasmodium falciparum infection. Utilizing the murine experimental model of cerebral malaria (ECM), it has been found that CD8+ T cells are a key immune cell type responsible for development of cerebral pathology during malaria infection. To identify how CD8+ T cells cause cerebral pathology during malaria infection, in this study we have performed detailed in vivo analysis (two photon imaging) of CD8+ T cells within the brains of mice infected with strains of malaria parasites that cause or do not cause ECM. We found that CD8+ T cells appear to accumulate in similar numbers and in comparable locations within the brains of mice infected with parasites that do or do not cause ECM. Importantly, however, brain accumulating CD8+ T cells displayed significantly different movement characteristics during the different infections. CD8+ T cells interacted with myeloid cells within the brain during infection with parasites causing ECM, but this association was not required for development of cerebral complications. Furthermore, our results suggest that CD8+ T cells do not cause ECM through the widespread killing of brain microvessel cells. The results in this study significantly improve our understanding of the ways through which CD8+ T cells can mediate cerebral pathology during malaria infection.
Collapse
|
6
|
Lapke N, Tartz S, Lee KH, Jacobs T. The application of anti-Toso antibody enhances CD8(+) T cell responses in experimental malaria vaccination and disease. Vaccine 2015; 33:6763-70. [PMID: 26597034 DOI: 10.1016/j.vaccine.2015.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Toso is a molecule highly expressed on B cells. It influences their survival and was identified as an IgM binding molecule. B cells and natural antibodies play a role in vaccination-induced CD8(+) T cell responses. We investigated the impact of an anti-Toso antibody on vaccination efficiency in a malaria vaccination model. In this model, CD8(+) T cells exert antiparasitic functions on infected hepatocytes in the liver stage of the disease. In vaccinated anti-Toso treated mice, more antigen-specific CD8(+) T cells were induced than in control mice and after infection with Plasmodium berghei ANKA (PbA) sporozoites, the liver parasite burden was lower. In B cell deficient mice, the anti-Toso antibody did not stimulate the CD8(+) T cell response, indicating that B cells were mediating this effect. Furthermore, we analyzed the influence of anti-Toso treatment on non-vaccinated mice in the PbA infection model, in which CD8(+) T cells cause brain pathology. Anti-Toso treatment increased cerebral pathology and the accumulation of CD8(+) T cells in the brain. Thus, anti-Toso treatment enhanced the CD8(+) T cell response against PbA in a vaccination and in an infection model. Our findings indicate that Toso may be a novel target to boost vaccine-induced CD8(+) T cell responses.
Collapse
Affiliation(s)
- Nina Lapke
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Susanne Tartz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Kyeong-Hee Lee
- Institute for Clinical Chemistry and Inflammation Research, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| |
Collapse
|
7
|
Wheway J, Latham SL, Combes V, Grau GER. Endothelial microparticles interact with and support the proliferation of T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:3378-87. [PMID: 25187656 DOI: 10.4049/jimmunol.1303431] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Endothelial cells closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of endothelial cell microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, such as atherosclerosis, sepsis, multiple sclerosis, and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses, we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for Ag presentation and T cell costimulation, that is, β2-microglobulin, MHC II, CD40, and ICOSL. HBEC were able to take up fluorescently labeled Ags with EMP also containing fluorescent Ags, suggestive of Ag carryover from HBEC to EMP. In cocultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4(+) and CD8(+) subsets, with higher proportions of T cells binding EMP from cytokine-stimulated cells. The increased binding of EMP from cytokinestimulated HBEC to T cells was VCAM-1 and ICAM-1 dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4(+) T cells and that of CD8(+) T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing Ag presentation, thereby pointing toward a novel role for MP in neuroimmunological complications of infectious diseases.
Collapse
Affiliation(s)
- Julie Wheway
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Sharissa L Latham
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Valery Combes
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
8
|
Khaw LT, Ball HJ, Golenser J, Combes V, Grau GE, Wheway J, Mitchell AJ, Hunt NH. Endothelial cells potentiate interferon-γ production in a novel tripartite culture model of human cerebral malaria. PLoS One 2013; 8:e69521. [PMID: 23874969 PMCID: PMC3709908 DOI: 10.1371/journal.pone.0069521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/12/2013] [Indexed: 01/13/2023] Open
Abstract
We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM. There was a shift in the ratio of IL-10:IFN-γ protein from >1 to <1 in the presence of HBEC, associated with the pro-inflammatory process in this model. For this to occur, a direct contact between PBMC and HBEC, but not PBMC and iRBC, was necessary. These results support HBEC playing an active role in the pathogenesis of CM. Thus, if these findings reflect the pathogenesis of CM, inhibition of HBEC and PBMC interactions might reduce the occurrence, or improve the prognosis, of the condition.
Collapse
Affiliation(s)
- Loke Tim Khaw
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Helen J. Ball
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Research of Tropical and Infectious Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valery Combes
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | - Georges E. Grau
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | - Julie Wheway
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | - Andrew J. Mitchell
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | - Nicholas H. Hunt
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
9
|
Wheway J, Obeid S, Couraud PO, Combes V, Grau GER. The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation. PLoS One 2013; 8:e52586. [PMID: 23320074 PMCID: PMC3540051 DOI: 10.1371/journal.pone.0052586] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.
Collapse
Affiliation(s)
- Julie Wheway
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
10
|
Villegas-Mendez A, de Souza JB, Murungi L, Hafalla JCR, Shaw TN, Greig R, Riley EM, Couper KN. Heterogeneous and tissue-specific regulation of effector T cell responses by IFN-gamma during Plasmodium berghei ANKA infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:2885-97. [PMID: 21880980 DOI: 10.4049/jimmunol.1100241] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-γ and T cells are both required for the development of experimental cerebral malaria during Plasmodium berghei ANKA infection. Surprisingly, however, the role of IFN-γ in shaping the effector CD4(+) and CD8(+) T cell response during this infection has not been examined in detail. To address this, we have compared the effector T cell responses in wild-type and IFN-γ(-/-) mice during P. berghei ANKA infection. The expansion of splenic CD4(+) and CD8(+) T cells during P. berghei ANKA infection was unaffected by the absence of IFN-γ, but the contraction phase of the T cell response was significantly attenuated. Splenic T cell activation and effector function were essentially normal in IFN-γ(-/-) mice; however, the migration to, and accumulation of, effector CD4(+) and CD8(+) T cells in the lung, liver, and brain was altered in IFN-γ(-/-) mice. Interestingly, activation and accumulation of T cells in various nonlymphoid organs was differently affected by lack of IFN-γ, suggesting that IFN-γ influences T cell effector function to varying levels in different anatomical locations. Importantly, control of splenic T cell numbers during P. berghei ANKA infection depended on active IFN-γ-dependent environmental signals--leading to T cell apoptosis--rather than upon intrinsic alterations in T cell programming. To our knowledge, this is the first study to fully investigate the role of IFN-γ in modulating T cell function during P. berghei ANKA infection and reveals that IFN-γ is required for efficient contraction of the pool of activated T cells.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bruce-Hickman D. Oxygen therapy for cerebral malaria. Travel Med Infect Dis 2011; 9:223-30. [PMID: 21807563 DOI: 10.1016/j.tmaid.2011.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
Malaria is an important global health issue, killing nearly one million people worldwide each year. There is a disproportionate disease burden, since 89% of cases are of African origin, and 85% of deaths worldwide occur in children under 5 years of age of age.(1) Cerebral malaria (CM) is the most serious complication of infection. Despite prompt anti-malarial treatment, fatalities remain high - mortality rates while undergoing treatment with Artemisinin or quinine-based therapy reach 15% and 22% respectively.(2) There is, therefore, a need to develop an adjunct therapy to preserve neurological function during the treatment period. Recent experimental research has indicated hyperbaric oxygenation (HBO) to be a rational and effective adjunct therapy.(3) This article examines the current understanding of CM, and the possible benefits provided by HBO therapy.
Collapse
Affiliation(s)
- Damian Bruce-Hickman
- UCL Medical School & Department of Neuroscience, Physiology and Pharmacology, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
12
|
Schmidt KE, Schumak B, Specht S, Dubben B, Limmer A, Hoerauf A. Induction of pro-inflammatory mediators in Plasmodium berghei infected BALB/c mice breaks blood-brain-barrier and leads to cerebral malaria in an IL-12 dependent manner. Microbes Infect 2011; 13:828-36. [PMID: 21609776 DOI: 10.1016/j.micinf.2011.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 01/07/2023]
Abstract
A severe complication of Plasmodium infection is cerebral malaria, a condition mainly attributed to overwhelming inflammatory immune reactions of the host. Murine models differing in susceptibility to experimental cerebral malaria (ECM) allow detailed studies of the host response. We show that ECM- resistant BALB/c mice were driven into interferon gamma- and IL-12-dependent ECM and subsequent death if they received CpG-oligonucleotides after Plasmodium berghei ANKA (PbA) infection. CpG application triggered production of pro-inflammatory cytokines systemically as well in spleen and brain and induced neuropathological symptoms, leading to increased mortality. Experiments with genetically deficient mice confirmed the role of IFN-γ and IL-12 during CpG-triggered immunopathology. Furthermore, the application of CpG and downstream production of pro-inflammatory cytokines contributed to the break down of the blood brain barrier visualized by Evan's Blue, comparable to PbA-infected C57BL/6 mice. Taken together, resistance of BALB/c mice towards ECM development could be altered through induction of pro-inflammatory cytokines by CpG. Therefore, approaches discussed earlier to induce pro-inflammatory immune reactions for malaria protection should be considered with caution.
Collapse
Affiliation(s)
- Kim E Schmidt
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, Karupiah G, Smyth MJ, Heath WR, Engwerda CR. Granzyme B Expression by CD8+T Cells Is Required for the Development of Experimental Cerebral Malaria. THE JOURNAL OF IMMUNOLOGY 2011; 186:6148-56. [DOI: 10.4049/jimmunol.1003955] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): a novel target for an additional therapy. Eur J Clin Microbiol Infect Dis 2010; 30:483-98. [PMID: 21140187 DOI: 10.1007/s10096-010-1122-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/13/2010] [Indexed: 12/16/2022]
Abstract
Cerebral malaria (CM) is a global life-threatening complication of Plasmodium infection and represents a major cause of morbidity and mortality among severe forms of malaria. Despite developing knowledge in understanding mechanisms of pathogenesis, the current anti-malarial agents are not sufficient due to drug resistance and various adverse effects. Therefore, there is an urgent need for the novel target and additional therapy. Recently, peroxisome proliferator-activated receptor (PPAR) a nuclear receptors (NR) and agonists of its isoforms (PPARγ, PPARα and PPARβ/δ) have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties, which are driven to a new approach of research on inflammatory diseases. Although many studies on PPARs have confirmed their diverse biological role, there is a lack of knowledge of its therapeutic use in CM. The major objective of this review is to explore the possible experimental studies to link these two areas of research. We focus on the data describing the beneficial effects of this receptor in inflammation, which is observed as a basic pathology in CM. In conclusion, PPARs could be a novel target in treating inflammatory diseases, and continued work with the available and additional agonists screened from various sources may result in a potential new treatment for CM.
Collapse
|
15
|
Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 2009; 137:755-72. [PMID: 20028608 DOI: 10.1017/s0031182009991715] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral malaria is a life-threatening complication of malaria infection. The pathogenesis of cerebral malaria is poorly defined and progress in understanding the condition is severely hampered by the inability to study in detail, ante-mortem, the parasitological and immunological events within the brain that lead to the onset of clinical symptoms. Experimental murine models have been used to investigate the sequence of events that lead to cerebral malaria, but there is significant debate on the merits of these models and whether their study is relevant to human disease. Here we review the current understanding of the parasitological and immunological events leading to human and experimental cerebral malaria, and explain why we believe that studies with experimental models of CM are crucial to define the pathogenesis of the condition.
Collapse
|
16
|
Fletcher AL, Seach N, Reiseger JJ, Lowen TE, Hammett MV, Scott HS, Boyd RL. Reduced thymic Aire expression and abnormal NF-kappa B2 signaling in a model of systemic autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2690-9. [PMID: 19234163 DOI: 10.4049/jimmunol.0801752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The thymic stromal niche normally directs the production and export of a self-tolerant T cell repertoire. Many models of spontaneous autoimmunity, however, develop thymic architectural abnormalities before disease onset. Although this is suspected to affect central tolerance induction, creating an autoimmune predisposition, in-depth analysis of the microenvironment within these thymi is lacking, such that the mechanisms and likely direct effects on the T cell repertoire are unknown or speculative. Here we show that NZB mice, the first described model for systemic autoimmunity, demonstrate a complex thymic phenotype, including a lack of the autoimmune regulator (Aire), early defects in thymic epithelial cell (TEC) expansion, and evidence for altered NF-kappaB2 signaling. Analysis of medullary TEC revealed a numerical loss of the Aire-expressing MHC class II(high) (mTEC-high) subset as well reduced Aire protein and mRNA per cell. RelB expression was also reduced, while chemokines CCL19 and CCL21 were increased. Unexpectedly, the proportion of cortex and medulla in the NZB mice was normal from 36 wk, despite worsening architectural abnormalities. These data show that the NZB defect is more complex than previously appreciated, segregating into early numerical TEC deficiencies that correct with age, late degeneration of the niche architecture that does not affect TEC number, and a persistent reduction in Aire and RelB expression per cell acquired upon mTEC-high differentiation.
Collapse
Affiliation(s)
- Anne L Fletcher
- Immune Regeneration Laboratory, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Predominance of interferon-related responses in the brain during murine malaria, as identified by microarray analysis. Infect Immun 2008; 76:1812-24. [PMID: 18299338 DOI: 10.1128/iai.01650-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. We examined global gene expression patterns during fatal murine CM (FMCM) and noncerebral malaria (NCM) by microarray analysis. There was differential expression of a number of genes, including some not yet characterized in the pathogenesis of FMCM. Some gene induction was observed during Plasmodium berghei infection regardless of the development of CM, and there was a predominance of genes linked to interferon responses, even in NCM. However, upon real-time PCR validation and quantitation, these genes were much more highly expressed in FMCM than in NCM. The observed changes included genes belonging to pathways such as interferon signaling, major histocompatibility complex processing and presentation, apoptosis, and immunomodulatory and antimicrobial processes. We further characterized differentially expressed genes by examining the cellular source of their expression as well as their temporal expression patterns during the course of malaria infection. These data identify a number of novel genes that represent interesting candidates for further investigation in FMCM.
Collapse
|
18
|
Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. THE JOURNAL OF IMMUNOLOGY 2007; 178:5779-88. [PMID: 17442962 DOI: 10.4049/jimmunol.178.9.5779] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are cytotoxic lymphocytes that also secrete regulatory cytokines and can therefore influence adaptive immune responses. NK cell function is largely controlled by genes present in a genomic region named the NK complex. It has been shown that the NK complex is a genetic determinant of murine cerebral malaria pathogenesis mediated by Plasmodium berghei ANKA. In this study, we show that NK cells are required for cerebral malaria disease induction and the control of parasitemia. NK cells were found infiltrating brains of cerebral malaria-affected mice. NK cell depletion resulted in inhibition of T cell recruitment to the brain of P. berghei-infected animals. NK cell-depleted mice displayed down-regulation of CXCR3 expression and a significant reduction of T cells migrating in response to IFN-gamma-inducible protein 10, indicating that this chemokine pathway plays an essential role in leukocyte trafficking leading to cerebral disease and fatalities.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/pathology
- Chemokine CXCL10
- Chemokines, CX3C/metabolism
- Chemokines, CX3C/pharmacology
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Disease Models, Animal
- Down-Regulation
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Malaria, Cerebral/immunology
- Malaria, Cerebral/pathology
- Mice
- Mice, Inbred C57BL
- Plasmodium berghei
- Receptors, CXCR3
- Receptors, Chemokine/analysis
- Receptors, Chemokine/metabolism
- Spleen/immunology
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | |
Collapse
|
19
|
Rénia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC, Snounou G, Grüner AC. Pathogenic T cells in cerebral malaria. Int J Parasitol 2006; 36:547-54. [PMID: 16600241 DOI: 10.1016/j.ijpara.2006.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/01/2006] [Accepted: 02/10/2006] [Indexed: 11/24/2022]
Abstract
Malaria remains a major global health problem and cerebral malaria (CM) is one of the most serious complications of this disease. Recent years have seen important advances in our understanding of the pathogenesis of cerebral malaria. Parasite sequestration, a hallmark of this syndrome, is thought to be solely responsible for the pathological process. However, this phenomenon cannot explain all aspects of the pathogenesis of CM. The use of an animal model, Plasmodium berghei ANKA in mice, has allowed the identification of specific pathological components of CM. Although multiple pathways may lead to CM, an important role for CD8+ T cells has been clarified. Other cells, including platelets, and mediators such as cytokines also have an important role. In this review we have focused on the role of T cells, and discuss what remains to be studied to understand the pathways by which these cells mediate CM.
Collapse
Affiliation(s)
- Laurent Rénia
- Department of Immunology, Institut Cochin, INSERM U567, CNRS UMR 8104, Université René Descartes, Hôpital Cochin, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, Hunt NH. Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 2006; 36:485-96. [PMID: 16500656 DOI: 10.1016/j.ijpara.2005.12.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 12/15/2005] [Accepted: 12/18/2005] [Indexed: 11/26/2022]
Abstract
Cerebral malaria is a serious complication of Plasmodium falciparum infection. We have investigated the role of perforin in the pathogenesis of cerebral malaria in a murine model (Plasmodium berghei ANKA (PbA) infection). C57BL/6 mice demonstrated the typical neuropathological symptoms of experimental cerebral malaria infection from day 5p.i. and became moribund on day 6p.i. This pathology was not seen in PbA-infected, perforin-deficient (pfp-/-) mice. From days 5-6p.i. onwards there was a significant increase in mRNA for granzyme B and CD8, but not CD4, in brain tissue from PbA-infected C57BL/6 and pfp-/- mouse brains. Perforin mRNA was strongly increased in the brains of PbA-infected C57BL/6 mice on day 6p.i. Immunohistochemistry revealed increased perforin staining and elevated numbers of CD8(+) cells within the cerebral microvessels in PbA-infected C57BL/6 at days 5 and 6p.i. compared with uninfected animals. At day 6p.i., there were TUNEL-positive cells and activated caspase-3 positive cells of endothelial morphology in the CNS of PbA-infected C57BL/6 mice. The TUNEL-positive cells were greatly reduced in pfp-/- mice. These results suggest that CD8(+)T lymphocytes induce apoptosis of endothelial cells via a perforin-dependent process, contributing to the fatal pathogenic process in murine cerebral malaria.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Blood-Brain Barrier/parasitology
- Brain/metabolism
- Brain Edema/immunology
- Brain Edema/parasitology
- Brain Edema/pathology
- CD8-Positive T-Lymphocytes/immunology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Female
- Malaria, Cerebral/immunology
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/pathology
- Malaria, Cerebral/physiopathology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Parasitemia/immunology
- Parasitemia/pathology
- Perforin
- Pore Forming Cytotoxic Proteins/metabolism
- Pore Forming Cytotoxic Proteins/physiology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Sarah Potter
- Department of Pathology, Medical Foundation Building (K25), University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Engwerda C, Belnoue E, Grüner AC, Rénia L. ExperimentalModels of Cerebral Malaria. Curr Top Microbiol Immunol 2005. [DOI: 10.1007/3-540-29967-x_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Ohno T, Nishimura M. Detection of a new cerebral malaria susceptibility locus, using CBA mice. Immunogenetics 2004; 56:675-8. [PMID: 15536567 DOI: 10.1007/s00251-004-0739-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 10/17/2004] [Indexed: 10/26/2022]
Abstract
Human cerebral malaria (CM) during acute Plasmodium falciparum infection is a serious neurological complication that leads to coma and death. P. berghei ANKA infection of CBA mice is a useful experimental model of CM. To identify host susceptibility loci, we performed chromosomal mapping in crossbred populations of both CM-susceptible CBA and CM-resistant DBA/2 mice. One significant region for a CM-susceptible locus in CBA mice was mapped to H2 region on Chromosome 17, tentatively designated cmsc. cmsc was mapped to a different chromosomal region from that previously reported in the C57BL/6 mouse model of CM. It is possible that different loci contribute to CM in CBA and C57BL/6 mouse strains. Comparison of the function of CM susceptibility loci between CBA and C57BL/6 mice could have important implications for the study of the complex pathogenesis of CM in humans.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya 466-8550, Japan.
| | | |
Collapse
|
23
|
Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van Rooijen N, Viguier M, Snounou G, Rénia L. On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6369-75. [PMID: 12444144 DOI: 10.4049/jimmunol.169.11.6369] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral malaria (CM) develops in a small proportion of persons infected with Plasmodium falciparum and accounts for a substantial proportion of the mortality due to this parasite. The actual pathogenic mechanisms are still poorly understood, and in humans investigations of experimental CM are unethical. Using an established Plasmodium berghei-mouse CM model, we have investigated the role of host immune cells at the pathological site, the brain. We report in this study the detailed quantification and characterization of cells, which migrated and sequestered to the brain of mice with CM. We demonstrated that CD8(+) alphabeta T cells, which sequester in the brain at the time when neurological symptoms appear, were responsible for CM mortality. These observations suggest a mechanism which unifies disparate observations in humans.
Collapse
MESH Headings
- Animals
- Brain/immunology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Humans
- Lymphocyte Activation
- Lymphocyte Depletion
- Malaria, Cerebral/etiology
- Malaria, Cerebral/immunology
- Malaria, Falciparum/etiology
- Malaria, Falciparum/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium berghei
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Elodie Belnoue
- Département d'Immunologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale Unité 567, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Hôpital Cochin, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lou J, Lucas R, Grau GE. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 2001; 14:810-20, table of contents. [PMID: 11585786 PMCID: PMC89004 DOI: 10.1128/cmr.14.4.810-820.2001] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Malaria still is a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria, remains incompletely understood. Experimental models represent useful tools to better understand the mechanisms of this syndrome. Here, data generated by several models are reviewed both in vivo and in vitro; we propose that some pathogenic mechanisms, drawn from data obtained from experiments in a mouse model, may be instrumental in humans. In particular, tumor necrosis factor (TNF) receptor 2 is involved in this syndrome, implying that the transmembrane form of TNF may be more important than the soluble form of the cytokine. It has also been shown that in addition to differences in immune responsiveness between genetically resistant and susceptible mice, there are marked differences at the level of the target cell of the lesion, namely, the brain endothelial cell. In murine cerebral malaria, a paradoxical role of platelets has been proposed. Indeed, platelets appear to be pathogenic rather than protective in inflammatory conditions because they can potentiate the deleterious effects of TNF. More recently, it has been shown that interactions among platelets, leukocytes, and endothelial cells have phenotypic and functional consequences for the endothelial cells. A better understanding of these complex interactions leading to vascular injury will help improve the outcome of cerebral malaria.
Collapse
Affiliation(s)
- J Lou
- Department of Surgery, CH-1211 Geneva 14, Switzerland
| | | | | |
Collapse
|
25
|
Abstract
Cerebral malaria depends largely on the capacity of Plasmodium falciparum infected red blood cells to adhere to the endothelia of microvessels, leading to their occlusion. The most important players include receptors expressed on the surface of the endothelial cell and known to interact with the parasite, cytokines modulating the expression of these adhesion molecules and nitric oxide (NO). Platelets, monocytes and lymphocytes have the ability to adhere to these endothelial receptors and to one another, leading to a more complex situation and an increase in the degree of vessel occlusion. The polymorphism of all these molecules, implicated either in adhesion, in modulation of this adhesion or activation of the expression of diverse endothelial mediators should be an important field of study. Polymorphism of five of these molecules has been explored so far: ICAM-1, TNF-alpha, IL-1-beta, inducible NOS and complement receptor-1 (CR-1). To these studies can be added those concerning mannose binding protein (MBP), a protein playing a role in innate immunity, and the class-I antigen HLA-B53. To date, the only clear cut result concerns TNF-alpha. With the other polymorphisms, either no association is found (IL-1RA, CR-1, MBP), or the results are geographically heterogeneous (ICAM-1, HLA-B53), or contradictory (iNOS2). Most often, the candidate gene approach has been followed, as part of case control studies. One of the main problems in this approach is the difficulty of establishing the control cohort. This difficulty disappears in family studies, which include their own controls. So far, the only results based on complex segregation analysis have been focused on parasite multiplication and not on cerebral malaria.
Collapse
Affiliation(s)
- D Mazier
- INSERM U 511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, CHU Pitié-Salpêtrière (Université Paris 6), Paris, France
| | | | | |
Collapse
|
26
|
Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun 2000; 68:5364-76. [PMID: 10948166 PMCID: PMC101800 DOI: 10.1128/iai.68.9.5364-5376.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A murine model that closely resembles human cerebral malaria is presented, in which characteristic features of parasite sequestration and inflammation in the brain are clearly demonstrable. "Young" (BALB/c x C57BL/6)F(1) mice infected with Plasmodium berghei (ANKA) developed typical neurological symptoms 7 to 8 days later and then died, although their parasitemias were below 20%. Older animals were less susceptible. Immunohistopathology and ultrastructure demonstrated that neurological symptoms were associated with sequestration of both parasitized erythrocytes and leukocytes and with clogging and rupture of vessels in both cerebral and cerebellar regions. Increases in tumor necrosis factor alpha and CD54 expression were also present. Similar phenomena were absent or substantially reduced in older infected but asymptomatic animals. These findings suggest that this murine model is suitable both for determining precise pathogenetic features of the cerebral form of the disease and for evaluating circumventive interventions.
Collapse
Affiliation(s)
- J Hearn
- Department of Immunology, Royal Free and University College London Medical School, Windeyer Institute of Medical Science, London W1P 6DB, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Kalaria RN. Cerebral endothelial activation and signal transduction mechanisms during inflammation and infectious disease. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1311-4. [PMID: 10329582 PMCID: PMC1866610 DOI: 10.1016/s0002-9440(10)65383-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- R N Kalaria
- Cerebrovascular Disease Group, Department of Psychiatry and the Institute for Health of the Elderly, University of Newcastle-upon-Tyne, United Kingdom.
| |
Collapse
|
28
|
Deckert-Schlüter M, Bluethmann H, Kaefer N, Rang A, Schlüter D. Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1549-61. [PMID: 10329607 PMCID: PMC1866596 DOI: 10.1016/s0002-9440(10)65408-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/1999] [Indexed: 11/22/2022]
Abstract
The regulatory role of interferon-gamma receptor (IFN-gammaR)- and tumor necrosis factor receptor (TNFR)-mediated immune reactions for the activation of cerebral endothelial cells, microglia, and astrocytes was evaluated in a model of murine Toxoplasma encephalitis (TE). Brain endothelial cells of wild-type mice reacted in response to Toxoplasma infection with a strong up-regulation of the vascular cell adhesion molecule, the intercellular adhesion molecule (ICAM)-1, and major histocompatibility complex (MHC) class I and II antigens. A similar response was seen in mice genetically deficient for either TNFR1, TNFR2, or both TNFRs, whereas IFN-gammaR-deficient (IFN-gammaR0/0) mice were found to be defective in the up-regulation of these molecules. However, recruitment of leukocytes to the brain and their intracerebral movement were not impaired in IFN-gammaR0/0 mice. In addition, microglia of Toxoplasma gondii-infected IFN-gammaR0/0 mice failed to induce expression of ICAM-1, leukocyte function-associated antigen (LFA)-1, and MHC class I and II antigens, whereas wild-type and TNFR-deficient mice up-regulated these molecules. Moreover, TNF-alpha mRNA production of F4/80(+) microglia/macrophages was impaired in IFN-gammaR0/0 mice, but not in TNFR-deficient mutants. However, induction of interleukin (IL)-1beta, IL-10, IL-12p40, and IL-15 mRNA was independent of IFN-gammaR and TNFR signaling. In conclusion, IFN-gammaR, but not TNFR signaling, is the major pathway for the activation of endothelial cells and microglia in murine TE. These findings differ from observations in other inflammatory central nervous system disorders, indicating specific regulatory mechanisms in this parasitic cerebral infection.
Collapse
MESH Headings
- Animals
- Brain/blood supply
- Encephalitis/pathology
- Encephalitis/physiopathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Female
- Interferon-gamma
- Mice
- Mice, Mutant Strains
- Microglia/physiology
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction/physiology
- Toxoplasmosis, Animal/pathology
- Toxoplasmosis, Animal/physiopathology
- Toxoplasmosis, Cerebral/pathology
- Toxoplasmosis, Cerebral/physiopathology
- Interferon gamma Receptor
Collapse
|
29
|
Lou J, Gasche Y, Zheng L, Critico B, Monso-Hinard C, Juillard P, Morel P, Buurman WA, Grau GE. Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria. Eur J Immunol 1998; 28:3989-4000. [PMID: 9862335 DOI: 10.1002/(sici)1521-4141(199812)28:12<3989::aid-immu3989>3.0.co;2-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upon infection with Plasmodium berghei ANKA (PbA), various inbred strains of mice exhibit different susceptibility to the development of cerebral malaria (CM). Tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN-gamma) have been shown to be crucial mediators in the pathogenesis of this neurovascular complication. Brain microvascular endothelial cells (MVEC) represent an important target of both cytokines. In the present study, we show that brain MVEC purified from CM-susceptible (CM-S) CBA/J mice and CM-resistant (CM-R) BALB/c mice exhibit a different sensitivity to TNF. CBA/J brain MVEC displayed a higher capacity to produce IL-6 and to up-regulate intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in response to TNF than BALB/c brain MVEC. In contrast, no difference was found in the induction of E-selectin after TNF challenge. CM-S brain MVEC were also significantly more sensitive to TNF-induced lysis. This differential reactivity to TNF was further substantiated by comparing TNF receptor expression on CM-S and CM-R brain MVEC. Although the constitutive expression of TNF receptors was comparable on cells from the two origins, TNF induced an up-regulation of both p55 and p75 TNF receptors in CM-S, but not in CM-R brain MVEC. A similar regulation was found at the level of TNF receptor mRNA, but not for receptor shedding. Although a protein kinase C inhibitor blocked the response to TNF in both the brain MVEC, an inhibitor of protein kinase A selectively abolished the response to TNF in CM-R, but not CM-S brain MVEC, suggesting a differential protein kinase involvement in TNF-induced activation of CM-S and CM-R brain MVEC. These results indicate that brain MVEC purified from CM-S and CM-R mice exhibit distinctive sensitivity to TNF This difference may be partly due to a differential regulation of TNF receptors and via distinct protein kinase pathways.
Collapse
Affiliation(s)
- J Lou
- Department of Anesthesiology, Pharmacology and Surgical Intensive Care, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|