1
|
Anfossi R, Vivar R, Ayala P, González-Herrera F, Espinoza-Pérez C, Osorio JM, Román-Torres M, Bolívar S, Díaz-Araya G. Interferon-β decreases LPS-induced neutrophil recruitment to cardiac fibroblasts. Front Cell Dev Biol 2023; 11:1122408. [PMID: 37799272 PMCID: PMC10547890 DOI: 10.3389/fcell.2023.1122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-β (IFN-β) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-β on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-β. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-β countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-β. Ruxolitinib blocked these IFN-β anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-β boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-β had no significant impact. Pre-treating CF with LPS, IFN-β, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-β pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.
Collapse
Affiliation(s)
- Renatto Anfossi
- Unidad de Farmacia, Hospital Regional del Libertador Bernardo O’Higgins, Rancagua, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Raúl Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Farmacología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro Ayala
- Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago de Chile, Chile
| | | | - Claudio Espinoza-Pérez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - José Miguel Osorio
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Román-Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Samir Bolívar
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Guillermo Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Gerratana L, Basile D, Toffoletto B, Bulfoni M, Zago S, Magini A, Lera M, Pelizzari G, Parisse P, Casalis L, Vitale MG, Fanotto V, Bonotto M, Caponnetto F, Bartoletti M, Lisanti C, Minisini AM, Emiliani C, Di Loreto C, Fasola G, Curcio F, Beltrami AP, Cesselli D, Puglisi F. Biologically driven cut-off definition of lymphocyte ratios in metastatic breast cancer and association with exosomal subpopulations and prognosis. Sci Rep 2020; 10:7010. [PMID: 32332763 PMCID: PMC7181663 DOI: 10.1038/s41598-020-63291-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
High neutrophil to lymphocyte ratio (NLR) and monocyte to lymphocyte ratio (MLR) are respectively associated with systemic inflammation and immune suppression and have been associated with a poor outcome. Plasmatic exosomes are extracellular vesicles involved in the intercellular communication system that can exert an immunosuppressive function. Aim of this study was to investigate the interplay between the immune system and circulating exosomes in metastatic breast cancer (MBC). A threshold capable to classify patients according to MLR, NLR and PLR, was computed through a receiving operator curve analysis after propensity score matching with a series of female blood donors. Exosomes were isolated from plasma by ExoQuick solution and characterized by flow-cytometry. NLR, MLR, PLR and exosomal subpopulations potentially involved in the pre-metastatic niche were significantly different in MBC patients with respect to controls. MLR was significantly associated with number of sites at the onset of metastatic disease, while high levels of MLR and NLR were found to be associated with poor prognosis. Furthermore, exosomal subpopulations varied according to NLR, MLR, PLR and both were associated with different breast cancer subtypes and sites of distant involvement. This study highlights the nuanced role of immunity in MBC spread, progression and outcome. Moreover, they suggest potential interaction mechanisms between immunity, MBC and the metastatic niche.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy.
- Department of Medicine, Division of Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy.
| | - Debora Basile
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | - Barbara Toffoletto
- Anatomic Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Michela Bulfoni
- Anatomic Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Silvia Zago
- Clinical Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Alessandro Magini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06122, Italy
| | - Marta Lera
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
| | - Giacomo Pelizzari
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | - Pietro Parisse
- INSTM-ST Unit, Area Science Park, Trieste, 34149, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Trieste, 34149, Italy
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Trieste, 34149, Italy
| | - Maria Grazia Vitale
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | - Valentina Fanotto
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | - Marta Bonotto
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | | | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | - Camilla Lisanti
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06122, Italy
| | - Carla Di Loreto
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Anatomic Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Gianpiero Fasola
- Department of Oncology, ASUFC University Hospital, Udine, 33100, Italy
| | - Francesco Curcio
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Clinical Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Anatomic Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Daniela Cesselli
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Anatomic Pathology Institute, ASUFC University Hospital, Udine, 33100, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
- Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| |
Collapse
|
3
|
Transforming growth factor-β1 enhances proliferative and metastatic potential by up-regulating lymphoid enhancer-binding factor 1/integrin αMβ2 in human renal cell carcinoma. Mol Cell Biochem 2019; 465:165-174. [PMID: 31848806 DOI: 10.1007/s11010-019-03676-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Renal cell carcinoma (RCC) is a kind of malignant tumor with high recurrence, and it is urgent to find molecular markers for diagnosis and prognosis of RCC. Our study investigated the expression and function of integrin αMβ2 in RCC cells, aiming to understand the role of integrin αMβ2 in RCC and develop new therapeutic target for RCC. Overexpression and knockdown of lymphoid enhancer-binding factor 1 (LEF1) were performed using vector containing full-length cDNA and via siRNA technology, respectively. The expressions of mRNA and protein were detected by RT-PCR and Western blot, respectively. Proliferation of RCC cell was analyzed using WST-1 assay, and metastasis of RCC cell was evaluated using the transwell system. Our results demonstrated that LEF1 and integrin αMβ2 were up-regulated in RCC cells via TGF-β1-dependent mechanism, and LEF1 together with β-catenin directly increased integrin αMβ2 level. On the other hand, TGF-β1-induced proliferation, migration and invasion were suppressed by function-blocking antibody against integrin αMβ2 in RCC cells. In addition, integrin αMβ2 is crucial for LEF1 mediated cell invasion by regulating MMP-2, MMP-9 and calpain-2 secretion in RCC cells. LEF1/integrin αMβ2 expression was regulated by TGF-β1, and LEF1/integrin αMβ2 was involved in TGF-β1's improvement effects on the proliferation and metastasis of RCC. Blocking integrin αMβ2 activity could be a therapeutic option for patients with advanced RCC.
Collapse
|
4
|
Spengler D, Winoto-Morbach S, Kupsch S, Vock C, Blöchle K, Frank S, Rintz N, Diekötter M, Janga H, Weckmann M, Fuchs S, Schromm AB, Fehrenbach H, Schütze S, Krause MF. Novel therapeutic roles for surfactant-inositols and -phosphatidylglycerols in a neonatal piglet ARDS model: a translational study. Am J Physiol Lung Cell Mol Physiol 2017; 314:L32-L53. [PMID: 28860142 DOI: 10.1152/ajplung.00128.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological and immune-protective properties of surfactant-derived phospholipids and phospholipid subfractions in the context of neonatal inflammatory lung disease are widely unknown. Using a porcine neonatal triple-hit acute respiratory distress syndrome (ARDS) model (repeated airway lavage, overventilation, and LPS instillation into airways), we assessed whether the supplementation of surfactant (S; poractant alfa) with inositol derivatives [inositol 1,2,6-trisphosphate (IP3) or phosphatidylinositol 3,5-bisphosphate (PIP2)] or phosphatidylglycerol subfractions [16:0/18:1-palmitoyloleoyl-phosphatidylglycerol (POPG) or 18:1/18:1-dioleoyl-phosphatidylglycerol (DOPG)] would result in improved clinical parameters and sought to characterize changes in key inflammatory pathways behind these improvements. Within 72 h of mechanical ventilation, the oxygenation index (S+IP3, S+PIP2, and S+POPG), the ventilation efficiency index (S+IP3 and S+POPG), the compliance (S+IP3 and S+POPG) and resistance (S+POPG) of the respiratory system, and the extravascular lung water index (S+IP3 and S+POPG) significantly improved compared with S treatment alone. The inositol derivatives (mainly S+IP3) exerted their actions by suppressing acid sphingomyelinase activity and dependent ceramide production, linked with the suppression of the inflammasome nucleotide-binding domain, leucine-rich repeat-containing protein-3 (NLRP3)-apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-caspase-1 complex, and the profibrotic response represented by the cytokines transforming growth factor-β1 and IFN-γ, matrix metalloproteinase (MMP)-1/8, and elastin. In addition, IκB kinase activity was significantly reduced. S+POPG and S+DOPG treatment inhibited polymorphonuclear leukocyte activity (MMP-8 and myeloperoxidase) and the production of interleukin-6, maintained alveolar-capillary barrier functions, and reduced alveolar epithelial cell apoptosis, all of which resulted in reduced pulmonary edema. S+DOPG also limited the profibrotic response. We conclude that highly concentrated inositol derivatives and phosphatidylglycerol subfractions in surfactant preparations mitigate key inflammatory pathways in inflammatory lung disease and that their clinical application may be of interest for future treatment of the acute exudative phase of neonatal ARDS.
Collapse
Affiliation(s)
- Dietmar Spengler
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Supandi Winoto-Morbach
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Sarah Kupsch
- Division of Immunobiophysics, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Christina Vock
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck and Borstel, Germany
| | - Katharina Blöchle
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Susanna Frank
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Nele Rintz
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Marie Diekötter
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany.,Division of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Harshavardhan Janga
- Section of Experimental Traumatology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Markus Weckmann
- Division of Pediatric Pneumology and Allergology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck , Germany.,Airway Research Center North, German Center for Lung Research, Lübeck and Borstel, Germany
| | - Sabine Fuchs
- Section of Experimental Traumatology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck and Borstel, Germany
| | - Stefan Schütze
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| | - Martin F Krause
- Department of General Pediatrics, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel , Germany
| |
Collapse
|
5
|
Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung Epithelial Cell-Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221-Induced Integrin β 1 Recycling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1453-1464. [PMID: 28674181 PMCID: PMC5561736 DOI: 10.4049/jimmunol.1700165] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). Macrophage migration and recruitment are often seen at the early stage of lung inflammatory responses to noxious stimuli. Using an acid inhalation-induced lung injury model, we explored the mechanisms by which acid exposure initiates macrophage recruitment and migration during development of ALI. The lung epithelium comprises a large surface area and functions as a first-line defense against noxious insults. We found that acid exposure induced a remarkable microvesicle (MV) release from lung epithelium as detected in bronchoalveolar lavage fluid. Significantly elevated RNA, rather than protein, was found in these epithelium-derived MVs after acid and included several highly elevated microRNAs, including microRNA (miR)-17 and miR-221. Acid-induced epithelial MV release promoted macrophage migration in vitro and recruitment into the lung in vivo and required, in part, MV shuttling of miR-17 and/or miR-221. Mechanistically, acid-induced epithelial MV miR-17/221 promoted β1 integrin recycling and presentation back onto the surface of macrophages, in part via a Rab11-mediated pathway. Integrin β1 is known to play an essential role in regulating macrophage migration. Taken together, acid-induced ALI results in epithelial MV shuttling of miR-17/221 that in turn modulates macrophage β1 integrin recycling, promoting macrophage recruitment and ultimately contributing to lung inflammation.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Jingxuan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| |
Collapse
|
6
|
Leukocyte Kinetics and Migration in the Lungs. Respir Med 2017. [DOI: 10.1007/978-3-319-41912-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Sprangers S, Schoenmaker T, Cao Y, Everts V, de Vries TJ. Integrin αMβ2 is differently expressed by subsets of human osteoclast precursors and mediates adhesion of classical monocytes to bone. Exp Cell Res 2016; 350:161-168. [PMID: 27889375 DOI: 10.1016/j.yexcr.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral blood and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.
Collapse
Affiliation(s)
- Sara Sprangers
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Ton Schoenmaker
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Teun J de Vries
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| |
Collapse
|
8
|
Kong W, Nuo M, Zhu XP, Han XJ, Luo L, Wang X. Pre-stem cell formation by non-platelet RNA-containing particle fusion. Clin Exp Pharmacol Physiol 2013; 40:412-21. [PMID: 23611023 PMCID: PMC3748798 DOI: 10.1111/1440-1681.12101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/29/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022]
Abstract
We found a group of non-platelet RNA-containing particles (NPRCP) in human umbilical cord blood. To understand the origin, characterization and differentiation of NPRCP, we examined cord blood-isolated NPRCP in vitro. The NPRCP range in size from < 1 to 5 μm, have a thin bilayer membrane and various morphological features, contain short RNA and microRNA and express octamer-binding transcription factor 4 (OCT4), sex-determining region Y 2 (SOX2) and DEAD box polypeptide 4 (DDX4). On coculture with nucleated cells from umbilical cord blood, NPRCP fuse to small, active, non-nucleated cells called 'particle fusion-derived non-nucleated cells' (PFDNC). The PFDNC are approximately 8 μm in diameter and are characterized by their twisting movement in culture plates. They can easily move into and out of nucleated cells and finally differentiate into mesenchymal-like cells. In addition, the larger non-nucleated cellular structures that are derived from the aggregation and fusion of multiple NPRCP can further differentiate into large stem cells that also release OCT4- and SOX2-positive non-nucleated small cells. Our data provide strong evidence that NPRCP can fuse into PFDNC, which further differentiate into mesenchymal-like cells. Multiple NPRCP also fuse into other types of large stem cells. We believe that stem cells are derived from NPRCP fusion. There is considerable potential for the use of NPRCP in clinical therapy.
Collapse
Affiliation(s)
- Wuyi Kong
- Beijing Khasar Medical Technology Co., Beijing, China.
| | | | | | | | | | | |
Collapse
|
9
|
McGettrick HM, Butler LM, Buckley CD, Ed Rainger G, Nash GB. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J Leukoc Biol 2012; 91:385-400. [DOI: 10.1189/jlb.0911458] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
10
|
Couture P, Paradis-Massie J, Oualha N, Thibault G. Adhesion and transcellular migration of neutrophils and B lymphocytes on fibroblasts. Exp Cell Res 2009; 315:2192-206. [PMID: 19394331 DOI: 10.1016/j.yexcr.2009.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/01/2009] [Accepted: 04/19/2009] [Indexed: 01/13/2023]
Abstract
During tissue inflammation, infiltrated leukocytes may have physical contacts with fibroblasts. We observed that neutrophils and B lymphocytes adhered in a larger proportion than T cells on cultured fibroblasts. Microscopy showed that adhesion was also characterized by leukocyte engulfment by the fibroblasts. In migration assays, only neutrophils and B lymphocytes were selectively able to migrate through a fibroblast barrier. Adhesion and migration were increased by stimulation with tumor necrosis factor-alpha (TNF-alpha) and phorbol-12-myristate-13-acetate (PMA). Antibodies against ICAM-1/beta2 integrin blocked the interaction of neutrophils to fibroblasts. For B lymphocytes the couple VCAM-1/alpha4 integrin was also involved in this interaction. Human skin fibroblasts presented similar adhesion characteristics as rat cardiac fibroblasts. By measuring the distance between the border of migration holes and cadherin-positive adherens junctions, more than 65% of the holes correspond to the transcellular route over the paracellular route. Furthermore, vimentin staining revealed that the migration holes were highly nested by intermediate filaments in accordance with the transcellular route. Our results demonstrated that engulfment of neutrophils and B lymphocytes by fibroblasts resulted in selective passage by a transcellular route.
Collapse
Affiliation(s)
- Patrick Couture
- Institut de recherches cliniques de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
11
|
Yakubenko VP, Belevych N, Mishchuk D, Schurin A, Lam SCT, Ugarova TP. The role of integrin alpha D beta2 (CD11d/CD18) in monocyte/macrophage migration. Exp Cell Res 2008; 314:2569-78. [PMID: 18621369 DOI: 10.1016/j.yexcr.2008.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 11/28/2022]
Abstract
Integrin alpha(D)beta(2) (CD11d/CD18) is a multiligand macrophage receptor with recognition specificity identical to that of the major myeloid cell-specific integrin alpha(M)beta(2) (CD11b/CD18, Mac-1). Despite its prominent upregulation on inflammatory macrophages, the role of alpha(D)beta(2) in monocyte and macrophage migration is unknown. In this study, we have generated model and natural cell lines expressing different densities of alpha(D)beta(2) and examined their migration to various extracellular matrix proteins. When expressed at a low density, alpha(D)beta(2) on the surface of recombinant HEK293 cells and murine IC-21 macrophages cooperates with beta(1)/beta(3) integrins to support cell migration. However, its increased expression on the alpha(D)beta(2)-expressing HEK293 cells and its upregulation by PMA on the IC-21 macrophages result in increased cell adhesiveness and inhibition of cell migration. Furthermore, ligation of alpha(D)beta(2) with anti-alpha(D) blocking antibodies restores beta(1)/beta(3)-driven cell migration by removing the excess alpha(D)beta(2)-mediated adhesive bonds. Consistent with in vitro data, increased numbers of inflammatory macrophages were recovered from the inflamed peritoneum of mice after the administration of anti-alpha(D) antibody. These results demonstrate that the density of alpha(D)beta(2) is critically involved in modulating macrophage adhesiveness and their migration, and suggest that low levels of alpha(D)beta(2) contribute to monocyte migration while alpha(D)beta(2) upregulation on differentiated macrophages may facilitate their retention at sites of inflammation.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Petrescu MS, Larry CL, Bowden RA, Williams GW, Gagen D, Li Z, Smith CW, Burns AR. Neutrophil interactions with keratocytes during corneal epithelial wound healing: a role for CD18 integrins. Invest Ophthalmol Vis Sci 2007; 48:5023-9. [PMID: 17962453 DOI: 10.1167/iovs.07-0562] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the role of keratocytes and leukocyte beta(2) (CD18) integrins in neutrophil (PMN) migration through the corneal stroma after epithelial scrape injury. METHODS Using C57BL/6 wild-type and CD18(-/-) mice, corneas were excised at 6 hours (wild-type) or 24 hours (CD18(-/-)) after central corneal epithelial abrasion, time points determined previously to have similar levels of emigrated PMNs. Corneas were prepared for ultrastructural morphometric analysis of PMNs, keratocyte networks, and collagen. RESULTS Transmission electron microscopy revealed intact keratocyte networks within the paralimbus that were morphometrically similar, regardless of epithelial injury or mouse genotype. Secondary to epithelial abrasion, extravasated PMNs within the paralimbus developed close contacts with keratocytes and collagen. In wild-type mice, 40% of the PMN surface was in contact with the keratocyte surface, and this value decreased to 10% in CD18(-/-) mice. PMN contact with collagen was similar in wild-type and CD18(-/-) mice, with approximately 50% of the PMN surface contacting the collagen fibrils. Since corneal edema resulting from scrape injury was similar, regardless of genotype and did not involve structural changes in collagen fibrils, these data favor a direct role for CD18 in mediating PMN contact with keratocytes. CONCLUSIONS The data show that in response to epithelial scrape injury, PMN migration in the corneal stroma involves close contact between keratocytes and collagen. Although PMN-keratocyte contacts require CD18 integrins, contact with collagen is CD18 independent. Fundamentally, PMN migration along keratocyte networks constitutes the beginning of a new experimental concept for understanding leukocyte migration within the wounded cornea.
Collapse
Affiliation(s)
- Matei S Petrescu
- Department of Pediatrics, Critical Care Section, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The emigration of leucocytes into the tissue as a crucial step in the response to inflammatory signals has been acknowledged for more than 100 years. The endothelium does not only represent a mechanical barrier between blood and tissue, the circulatory system also connects different organ systems with each other, thus allowing the communication between remote systems. Leukocytes can function as messengers and messages at the same time. Failure or dysregulation of leucocyte-endothelial communication can severely affect the integrity of the organism. The interaction between leucocytes and the vascular endothelium has been recognised as an attractive target for the therapy of numerous disorders and diseases, including excessive inflammatory responses and autoimmune diseases, both associated with enormous consequences for patients and the health care system. There is promising evidence that the success rate of such treatments will increase as the understanding of the molecular mechanisms keeps improving. This chapter reviews the current knowledge about leucocyte-endothelial interaction. It will also display examples of both physiological and dysregulated leucocyte-endothelial interactions and identify potential therapeutical approaches.
Collapse
Affiliation(s)
- K Ley
- Robert M. Berne Cardiovascular Research Center, University of Virginia Health System, 415 Lane Road, MR5 Building, Charlottesville, VA 22903, USA.
| | | |
Collapse
|
14
|
Miyao N, Suzuki Y, Takeshita K, Kudo H, Ishii M, Hiraoka R, Nishio K, Tamatani T, Sakamoto S, Suematsu M, Tsumura H, Ishizaka A, Yamaguchi K. Various adhesion molecules impair microvascular leukocyte kinetics in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1059-L1068. [PMID: 16387754 DOI: 10.1152/ajplung.00365.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the endothelial expression of various adhesion molecules substantially differs between pulmonary microvessels, their importance for neutrophil and lymphocyte sequestration in ventilator-induced lung injury (VILI) has not been systematically analyzed. We investigated the kinetics of polymorphonuclear cells (PMN) and mononuclear cells (MN) in the acinar microcirculation of the isolated rat lung with VILI by real-time confocal laser fluorescence microscopy, with or without inhibition of ICAM-1, VCAM-1, or P-selectin by monoclonal antibodies (MAb). Adhesion molecules in each microvessel were estimated by intravital fluorescence microscopy or immunohistochemical staining. In high tidal volume-ventilated lungs, 1) ICAM-1, VCAM-1, and P-selectin were differently upregulated in venules, arterioles, and capillaries; 2) venular PMN rolling was improved by inhibition of ICAM-1, VCAM-1, or P-selectin, whereas arteriolar PMN rolling was improved by ICAM-1 or VCAM-1 inhibition; 3) capillary PMN entrapment was ameliorated only by anti-ICAM-1 MAb; and 4) MN rolling in venules and arterioles and MN entrapment in capillaries were improved by ICAM-1 and VCAM-1 inhibition. In conclusion, the contribution of endothelial adhesion molecules to abnormal leukocyte behavior in VILI-injured microcirculation is microvessel and leukocyte specific. ICAM-1- and VCAM-1-dependent, but P-selectin-independent, arteriolar PMN rolling, which is expected to reflect the initial stage of tissue injury, should be taken as a phenomenon unique to ventilator-associated lung injury.
Collapse
Affiliation(s)
- Naoki Miyao
- Department of Medicine, Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim JH, Lee SY, Bak SM, Suh IB, Lee SY, Shin C, Shim JJ, In KH, Kang KH, Yoo SH. Effects of matrix metalloproteinase inhibitor on LPS-induced goblet cell metaplasia. Am J Physiol Lung Cell Mol Physiol 2004; 287:L127-33. [PMID: 15020297 DOI: 10.1152/ajplung.00047.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial infections of the lung are known to induce inflammatory responses, which lead to mucus hypersecretion. Moreover, mucin synthesis in the airways has been reported to be regulated by neutrophilic inflammation-induced epidermal growth factor receptor (EGFR) expression and its activation. Furthermore, matrix metalloproteinases (MMPs), especially MMP-9, have been reported to promote the transmigration of activated neutrophils. In this study, we investigated the associations between lipopolysaccharide (LPS)-induced goblet cell (GC) metaplasia and EGFR expression and the effects of MMP inhibitor (MMPI). Various concentrations of LPS were instilled into the tracheas of pathogen-free Sprague-Dawley rats, and airways were examined at different times after LPS instillation. To examine the role of MMP-9, we treated rats 3 days before LPS instillation and daily thereafter with MMPI. Neutrophilic infiltration, Alcian blue/periodic acid-Schiff (AB/PAS) staining, and immunohistochemical staining for MUC5AC, EGFR, and MMP-9 were performed. The instillation of LPS increased AB/PAS and MUC5AC staining in time- and dose-dependent manners, and treatment with MMPI significantly prevented GC metaplasia. The instillation of LPS into the trachea also induced neutrophilic infiltration and EGFR and MMP-9 expression in the airway epithelium, and MMPI was found to significantly prevent neutrophil recruitment, GC metaplasia, and EGFR and MMP-9 expression. This study demonstrates that the MMP-9 and EGFR cascades are associated with LPS-induced mucus hypersecretion.
Collapse
Affiliation(s)
- Je Hyeong Kim
- Department of Internal Medicine, Korea University Ansam Hospital, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Blake KM, Carrigan SO, Issekutz AC, Stadnyk AW. Neutrophils migrate across intestinal epithelium using beta2 integrin (CD11b/CD18)-independent mechanisms. Clin Exp Immunol 2004; 136:262-8. [PMID: 15086389 PMCID: PMC1809036 DOI: 10.1111/j.1365-2249.2004.02429.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recruitment of polymorphonuclear leucocytes (PMN) across the intestinal epithelium is dependent on specific adhesion molecules and chemoattractants diffusing from the intestinal lumen. The present understanding is that in response to fMLP, PMN migration across a T84 colon carcinoma monolayer is dependent on the beta(2) integrin, Mac-1 (CD11b/CD18). To further understand PMN transepithelial migration, we sought to determine whether migration to C5a, IL-8 and LTB(4) was similarly Mac-1-, or even CD18-dependent. T84 epithelial cell monolayers growing on Transwell filters were used in combination with radiolabelled peripheral blood PMN. The number of migrated PMN was established by the amount of radioactivity recovered from the well after the migration period. Monoclonal antibodies were used to block integrin function. Whereas essentially all migration to fMLP across T84 monolayers was prevented by anti-CD18 antibody, significant migration to C5a, IL-8 or LTB(4) persisted despite anti-CD18 antibody, indicating PMN are capable of beta(2) integrin-independent transepithelial migration. An antibody to CD11b but not CD11a blocked migration to an extent similar as with anti-CD18. CD18-independent PMN migration to C5a occurred only in the basolateral-to-apical direction across epithelial cells. Co-stimulation of PMN with C5a and fMLP or IL-8 plus LTB(4) and fMLP still resulted in CD18-independent migration. Thus CD18 use during PMN migration across this model epithelium is a function of the chemoattractant inducing migration. The finding of CD18-independent migration mechanisms needs to be considered when developing antiadhesion molecule strategies to reduce or reverse intestinal inflammation.
Collapse
Affiliation(s)
- K M Blake
- Department of Microbiology and Immunology, Dalhousie University and the Dalhousie Inflammation Group, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
17
|
Abstract
The major function of the respiratory epithelium was once thought to be that of a physical barrier. However, it constitutes the interface between the internal milieu and the external environment as well as being a primary target for inhaled respiratory drugs. It also responds to changes in the external environment by secreting a large number of molecules and mediators that signal to cells of the immune system and underlying mesenchyme. Thus, the epithelium is in a unique position to translate gene-environment interactions. Normally, the epithelium has a tremendous capacity to repair itself following injury. However, evidence is rapidly accumulating to show that the airway epithelium of asthmatics is abnormal and has increased susceptibility to injury compared to normal epithelium. Areas of detachment and fragility are a characteristic feature not observed in other inflammatory diseases such as COPD. In addition to being more susceptible to damage, normal repair processes are also compromised. Failure of appropriate growth and differentiation of airway epithelial cells will cause persistent mucosal injury. The response to traditional therapy such as glucocorticoids may also be compromised. However, whether the differences observed in asthmatic epithelium are a cause of or secondary to the development of the disease remains unanswered. Strategies to address this question include careful examination of the ontogeny of the disease in children and use of gene array technology should provide some important answers, as well as allow a better understanding of the critical role that the epithelium plays under normal conditions and in diseases such as asthma.
Collapse
Affiliation(s)
- Darryl A Knight
- Asthma and Allergy Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
| | | |
Collapse
|
18
|
Luu NT, Rainger GE, Buckley CD, Nash GB. CD31 regulates direction and rate of neutrophil migration over and under endothelial cells. J Vasc Res 2003; 40:467-79. [PMID: 14566092 DOI: 10.1159/000074296] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 08/19/2003] [Indexed: 11/19/2022] Open
Abstract
Mechanisms guiding migration of neutrophils through endothelium are poorly understood. We showed previously that CD31-CD31 binding acted as an 'accelerator' for neutrophils migrating on platelets, while neutrophil alpha(v)beta3-integrin acted as a sensor to align migration with the direction of imposed flow. Here, we perfused neutrophils over human umbilical vein endothelial cells (HUVEC) treated with tumour necrosis factor-alpha, and characterised the kinetics of migration over, through and underneath the HUVEC. Before penetrating the monolayer, activated neutrophils migrated relatively slowly over the surface (approximately 6 microm/min), preferentially in the direction of flow. Once transmigrated, neutrophils moved more rapidly (approximately 14 microm/min) without preferred direction. Treatment of HUVEC and/or neutrophils with function-blocking antibodies against CD31 reduced directionality but not velocity of migration on top of HUVEC, and reduced velocity of migration underneath the monolayer. If neutrophils were pre-activated with formyl peptide, they did not migrate through the HUVEC, but migrated with increased velocity and directionality on top. Under these circumstances, both velocity and directionality were reduced by blocking CD31. alpha(v)beta3-integrin did not regulate migration under any conditions. We conclude that CD31-CD31 bonds act as robust sensors which can guide neutrophil migration, and also modify its velocity. Thus mechanical and adhesive signals can regulate neutrophil migration driven by locally-acting chemotactic agents.
Collapse
Affiliation(s)
- N Thin Luu
- Department of Physiology, The Medical School, The University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
19
|
Woo CH, Yoo MH, You HJ, Cho SH, Mun YC, Seong CM, Kim JH. Transepithelial migration of neutrophils in response to leukotriene B4 is mediated by a reactive oxygen species-extracellular signal-regulated kinase-linked cascade. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6273-9. [PMID: 12794160 DOI: 10.4049/jimmunol.170.12.6273] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The epithelial cells that form a barrier lining the lung airway are key regulators of neutrophil trafficking into the airway lumen in a variety of lung inflammatory diseases. Although the lipid mediator leukotriene B(4) (LTB(4)) is known to be a principal chemoattractant for recruiting neutrophils to inflamed sites across the airway epithelium, the precise signaling mechanism involved remains largely unknown. In the present study, therefore, we investigated the signaling pathway through which LTB(4) induces transepithelial migration of neutrophils. We found that LTB(4) induces concentration-dependent transmigration of DMSO-differentiated HL-60 neutrophils and human polymorphonuclear neutrophils across A549 human lung epithelium. This effect was mediated via specific LTB(4) receptors and was inhibited by pretreating the cells with N-acetylcysteine (NAC), an oxygen free radical scavenger, with diphenylene iodonium (DPI), an inhibitor of NADPH oxidase-like flavoproteins, or with PD98059, an extracellular signal-regulated kinase (ERK) inhibitor. Consistent with those findings, LTB(4)-induced ERK phosphorylation was completely blocked by pretreating cells with NAC or DPI. Taken together, our observations suggest LTB(4) signaling to transepithelial migration is mediated via generation of reactive oxygen species, which leads to downstream activation of ERK. The physiological relevance of this signaling pathway was demonstrated in BALB/c mice, in which intratracheal instillation of LTB(4) led to acute recruitment of neutrophils into the airway across the lung epithelium. Notably, the response to LTB(4) was blocked by NAC, DPI, PD98059, or CP105696, a specific LTB(4) receptor antagonist.
Collapse
Affiliation(s)
- Chang-Hoon Woo
- Graduate School of Biotechnology, Korea University, Anam-dong, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev 2003; 83:309-36. [PMID: 12663861 DOI: 10.1152/physrev.00023.2002] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil emigration in the lung differs substantially from that in systemic vascular beds where extravasation occurs primarily through postcapillary venules. Migration into the alveolus occurs directly from alveolar capillaries and appears to progress through a sequence of steps uniquely influenced by the cellular anatomy and organization of the alveolar wall. The cascade of adhesive and stimulatory events so critical to the extravasation of neutrophils from postcapillary venules in many tissues is not evident in this setting. Compelling evidence exists for unique cascades of biophysical, adhesive, stimulatory, and guidance factors that arrest neutrophils in the alveolar capillary bed and direct their movement through the endothelium, interstitial space, and alveolar epithelium. A prominent path accessible to the neutrophil appears to be determined by the structural interactions of endothelial cells, interstitial fibroblasts, as well as type I and type II alveolar epithelial cells.
Collapse
Affiliation(s)
- Alan R Burns
- Department of Medicine, Section of Cardiovascular Sciences, The DeBakey Heart Center at Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
21
|
Lishko VK, Yakubenko VP, Ugarova TP. The interplay between integrins alphaMbeta2 and alpha5beta1 during cell migration to fibronectin. Exp Cell Res 2003; 283:116-26. [PMID: 12565824 DOI: 10.1016/s0014-4827(02)00024-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A directed migration of leukocytes through the extracellular matrix requires the regulated engagement of integrin cell adhesion receptors. The integrin alpha(M)beta(2) (CD11b/CD18, Mac-1) is progressively upregulated to high levels on migrating phagocytic leukocytes in response to inflammatory stimuli and is able to bind numerous ligands in the interstitial matrix. The role of alpha(M)beta(2) in migration of leukocytes through the extracellular matrix and its cooperation with other leukocyte integrins during migration are not understood. Using a model system consisting of cells that express different levels of alpha(M)beta(2) and an invariable level of endogenous integrin alpha(5)beta(1), we have explored a situation relevant to migrating neutrophils when alpha(M)beta(2) and alpha(5)beta(1) engage the same ligand, fibronectin. We show that fibronectin is a ligand for alpha(M)beta(2) and that both alpha(M)beta(2) and alpha(5)beta(1) on the alpha(M)beta(2)-expressing cells contribute to adhesion to fibronectin. However, migration of these cells to fibronectin is mediated by alpha(5)beta(1), whereas alpha(M)beta(2) retards migration. The decrease in migration correlates directly with the increased alpha(M)beta(2) density. Ligation of alpha(M)beta(2) with function-blocking antibodies can reverse this effect. The restorative effects of antibodies are caused by the removal of restraint imposed by the excess of alpha(M)beta(2)-fibronectin adhesive bonds. These findings indicate that alpha(M)beta(2) can increase general cell adhesiveness which results in braking of cell migration mediated by integrin alpha(5)beta(1). Because alpha(M)beta(2) binds numerous proteins in the extracellular matrix with a specificity overlapping that of the beta(1) integrins, the results suggest that alpha(M)beta(2) can affect the beta(1) integrin-mediated cell migration.
Collapse
Affiliation(s)
- Valeryi K Lishko
- Joseph J Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
22
|
Guo RF, Riedemann NC, Laudes IJ, Sarma VJ, Kunkel RG, Dilley KA, Paulauskis JD, Ward PA. Altered neutrophil trafficking during sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:307-14. [PMID: 12077259 DOI: 10.4049/jimmunol.169.1.307] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In sepsis, dysregulation of the inflammatory system is well known, as reflected in excessive inflammatory mediator production, complement activation, and appearance of defects in phagocytic cells. In the current study sepsis was induced in rats by cecal ligation/puncture. Early in sepsis the beta(1) and beta(2) integrin content on blood neutrophils increased in a nontranscriptional manner, and the increase in beta(2), but not beta(1), integrin content was C5a dependent. Similar changes could be induced in vitro on blood neutrophils following contact with phorbol ester or C5a. Direct injury of lungs of normal rats induced by deposition of IgG immune complexes (IgG-IC) caused 5-fold increases in the myeloperoxidase content that was beta(2), but not beta(1), dependent. In contrast, in cecal ligation/puncture lungs myeloperoxidase increased 10-fold after IgG immune complex deposition and was both beta(1) and beta(2) integrin dependent. These data suggest that sepsis causes enhanced neutrophil trafficking into the lung via mechanisms that are not engaged in the nonseptic state.
Collapse
Affiliation(s)
- Ren-Feng Guo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials 2001; 22:1987-96. [PMID: 11426876 DOI: 10.1016/s0142-9612(00)00382-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An in vitro model (Nygren et al., J Lab Clin Med 129 (1997) 35-46) was used to investigate interactions between leukocytes and four modified TiO2-surfaces. Surface topography was measured using scanning electron microscopy and optical profilometry while Auger electron spectroscopy was used to determine surface composition and oxide thickness. The surfaces were either smooth or rough with either thin or thick oxides. All surfaces consisted of TiO2 covered by a carbonaceous layer. The surfaces were incubated with capillary blood for time periods of between 8 min and 32 h. Immunofluorescence techniques together with computer aided image analysis and chemiluminescence technique were used to detect cell adhesion, expression of adhesion receptors and the zymosan-stimulated respiratory burst response. Leukocyte adhesion to the surfaces increased during the first hours of blood-material contact and then decreased. Polymorphonuclear granulocytes were the dominating leukocytes on all surfaces followed by monocytes. Cells adhering to rough surfaces had higher normalized expression of adhesive receptors than cells on smooth surfaces. Maximum respiratory burst response occurred earlier on the smooth than on the rough surfaces. In conclusion, topography had a greater impact than oxide thickness on most cellular reactions investigated, but the latter often had a dampening effect on the responses.
Collapse
Affiliation(s)
- C Eriksson
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden.
| | | | | |
Collapse
|
24
|
Ridger VC, Wagner BE, Wallace WA, Hellewell PG. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3484-90. [PMID: 11207307 DOI: 10.4049/jimmunol.166.5.3484] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil migration to lung alveoli is a characteristic of lung diseases and is thought to occur primarily via capillaries rather than postcapillary venules. The role of adhesion molecules CD18 and CD29 on this migration in a mouse model of lung inflammation has been investigated. The number of neutrophils present in bronchoalveolar lavage fluid was determined 4 h after intratracheal instillation of LPS (0.1-1 microg) or murine recombinant KC (CXC chemokine, 0.03-0.3 microg). Both stimuli produced a dose-related increase in neutrophil accumulation. Intravenous anti-mouse CD18 mAb, 2E6 (0.5 mg/mouse), significantly (p < 0.001) attenuated LPS (0.3 microg)- but not KC (0.3 microg)-induced neutrophil accumulation. The anti-mouse CD29 mAb, HM beta 1-1 (0.02 mg/mouse), significantly (p < 0.05) inhibited both LPS (0.3 microg)- and KC (0.3 microg)-induced neutrophil migration. A second mAb to CD18 (GAME-46) and both F(ab')(2) and Fab of HM beta 1-1 produced similar results to those above, while coadministration of mAbs did not result in greater inhibition. Electron microscopy studies showed that CD29 was involved in the movement of neutrophils from the interstitium into alveoli. The effect of mAbs to CD49 (alpha integrin) subunits of CD29 was also examined. mAbs to CD49e and CD49f inhibited both responses, while anti-CD49b and CD49d significantly inhibited responses to KC only. These data suggest that CD29 plays a critical role in neutrophil migration in pulmonary inflammation and that CD49b and CD49d mediate CD18-independent neutrophil accumulation.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD/biosynthesis
- Antigens, CD/blood
- Antigens, CD/immunology
- Antigens, CD/physiology
- CD18 Antigens/immunology
- CD18 Antigens/physiology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/immunology
- Cell Migration Inhibition
- Chemokine CXCL1
- Chemokines
- Chemokines, CXC
- Cricetinae
- Cytokines/administration & dosage
- Dose-Response Relationship, Immunologic
- Immunoglobulin Fab Fragments/administration & dosage
- Inflammation/immunology
- Injections, Intravenous
- Integrin alpha1
- Integrin beta1/immunology
- Integrin beta1/physiology
- Integrins/antagonists & inhibitors
- Integrins/biosynthesis
- Integrins/blood
- Integrins/immunology
- Intubation, Intratracheal
- Lipopolysaccharides/administration & dosage
- Lipopolysaccharides/antagonists & inhibitors
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/immunology
- Rats
Collapse
Affiliation(s)
- V C Ridger
- Cardiovascular Research Group, Division of Clinical Sciences, Northern General Hospital, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | |
Collapse
|
25
|
Werr J, Eriksson EE, Hedqvist P, Lindbom L. Engagement of β
2
integrins induces surface expression of β
1
integrin receptors in human neutrophils. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.4.553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Joachim Werr
- Department of Physiology and Pharmacology, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | - Einar E. Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | - Per Hedqvist
- Department of Physiology and Pharmacology, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| | - Lennart Lindbom
- Department of Physiology and Pharmacology, Karolinska Institutet, S‐171 77 Stockholm, Sweden
| |
Collapse
|
26
|
Qian Y, Noya M, Ainsworth AJ. Molecular characterization and leukocyte distribution of a teleost beta1 integrin molecule. Vet Immunol Immunopathol 2000; 76:61-74. [PMID: 10973686 DOI: 10.1016/s0165-2427(00)00200-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The beta1 integrin, in combination with the alpha subunit, is responsible for migration of leukocytes into areas of inflammation. Although identified in mammalian species; the beta1 or CD29 molecule has yet to be identified in fish. The present investigation has identified a full-length channel catfish, Ictalurus punctatus, cDNA beta1 molecule composed of 2786 bases and a deduced amino acid sequence of 797 amino acids. The catfish molecule has an amino acid identity ranging from 71.87 to 74.12% with bovine, feline, human, and Xenopus. The channel catfish molecule retains several characteristics of mammalian beta1 molecules, such as four cysteine-rich repeat regions, and eight potential N-linked glycosylation sites. Based on Western blotting the channel catfish beta1 molecule has a molecular mass of approximately 130kDa, essentially the same as that for mammalian species. These results confirm the existence and expression of a beta1 gene in channel catfish, a species phylogenetically distant from mammals.
Collapse
Affiliation(s)
- Y Qian
- Department of Microbiology and Immunology, CB 7290, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
27
|
Mackarel AJ, Russell KJ, Brady CS, FitzGerald MX, O'Connor CM. Interleukin-8 and leukotriene-B(4), but not formylmethionyl leucylphenylalanine, stimulate CD18-independent migration of neutrophils across human pulmonary endothelial cells in vitro. Am J Respir Cell Mol Biol 2000; 23:154-61. [PMID: 10919980 DOI: 10.1165/ajrcmb.23.2.3853] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although neutrophil migration from the systemic circulation involves the beta2- (or CD18) integrin family, the existence of an alternative, CD18-independent route of neutrophil extravasation to tissues has been demonstrated in animal models. The molecular interactions involved in this alternative migratory route have not yet been characterized. The objective of this study was to assess the CD18-dependency of neutrophil migration across human endothelial cells from an organ known to support CD18-independent migration, the lung, with a view to establishing an in vitro model to facilitate study of CD18-independent migration. Neutrophil migration across human pulmonary artery endothelial cells (HPAECs) in response to three different chemoattractants, formylmethionyl leucylphenyl-alanine (FMLP), interleukin (IL)-8, and leukotriene (LT) B(4), was examined. Results demonstrated that a function-blocking antibody to CD18 decreased FMLP-stimulated migration by 71.7 +/- 4.4% (P < 0.001). In contrast, migration in response to LTB(4) was decreased by only 20.5 +/- 10.2% (P < 0.01), and no significant decrease was observed with migration to IL-8. Neutrophils that migrated to FMLP had 1.7-fold more surface CD11b/CD18 compared with nonmigrated neutrophils (P < 0.01), whereas this integrin complex was not significantly upregulated on neutrophils that had migrated to IL-8 or LTB(4). Further investigation of this migratory route indicated that it did not involve the beta1 integrins (CD29) or the endothelial selectins, E- or P-selectin, nor did it require the activity of either metalloproteinases or neutrophil elastase. These results indicate that neutrophil migration across HPAECs in vitro to IL-8 and LTB(4) is predominantly CD18-independent and provides a much-needed in vitro system for examination of the neutrophil-endothelial interactions involved in this alternative migratory route.
Collapse
Affiliation(s)
- A J Mackarel
- Department of Medicine and Therapeutics, University College Dublin, Ireland.
| | | | | | | | | |
Collapse
|
28
|
von den Driesch P. Polymorphonuclears: structure, function, and mechanisms of involvement in skin diseases. Clin Dermatol 2000; 18:233-44. [PMID: 10856657 DOI: 10.1016/s0738-081x(99)00116-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Rosseau S, Selhorst J, Wiechmann K, Leissner K, Maus U, Mayer K, Grimminger F, Seeger W, Lohmeyer J. Monocyte migration through the alveolar epithelial barrier: adhesion molecule mechanisms and impact of chemokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:427-35. [PMID: 10605039 DOI: 10.4049/jimmunol.164.1.427] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alveolar monocyte influx requires adherence and transmigration through the vascular endothelium, extracellular matrix, and alveolar epithelium. For investigating the monocyte migratory process across the epithelial barrier, we employed both the A549 cell line and isolated human alveolar epithelial cells. Under baseline conditions, spontaneous bidirectional transepithelial monocyte migration was noted, which was dose-dependently increased in the presence of the monocyte chemoattractant protein-1. TNF-alpha stimulation of the alveolar epithelium provoked the polarized apical secretion of monocyte chemoattractant protein-1 and RANTES and up-regulation of ICAM-1 and VCAM-1 expression, accompanied by markedly enhanced transepithelial monocyte traffic in the basal-to-apical direction. Multiple adhesive interactions were noted to contribute to the enhanced monocyte traffic across the TNF-alpha-stimulated alveolar epithelium: these included the beta 2 integrins CD11a, CD11b, CD11c/CD18, the beta 1 integrins very late Ag (VLA)-4, -5, and -6, and the integrin-associated protein CD47 on monocytes, as well as ICAM-1, VCAM-1, CD47, and matrix components on the epithelial side. In contrast, spontaneous monocyte migration through unstimulated epithelium depended predominantly on CD11b/CD18 and CD47, with some additional contribution of VLA-4, -5, and -6. In summary, unlike transendothelial monocyte traffic, for which beta 1 and beta 2 integrins are alternative mechanisms, monocyte migration across the alveolar epithelium largely depends on CD11b/CD18 and CD47 but required the additional engagement of the beta 1 integrins for optimal migration. In response to inflammatory challenge, the alveolar epithelium orchestrates enhanced monocyte traffic to the apical side by polarized chemokine secretion and up-regulation of ICAM-1 and VCAM-1.
Collapse
Affiliation(s)
- S Rosseau
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnston B, Kubes P. The alpha4-integrin: an alternative pathway for neutrophil recruitment? IMMUNOLOGY TODAY 1999; 20:545-50. [PMID: 10562704 DOI: 10.1016/s0167-5699(99)01544-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- B Johnston
- Immunology Research Group, Dept of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
31
|
Miettinen HM, Gripentrog JM, Jesaitis AJ. Chemotaxis of chinese hamster ovary cells expressing the human neutrophil formyl peptide receptor: role of signal transduction molecules and alpha5beta1 integrin. J Cell Sci 1998; 111 ( Pt 14):1921-8. [PMID: 9645940 DOI: 10.1242/jcs.111.14.1921] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the N-formyl peptide receptor (FPR) of human neutrophils by ligands such as N-formyl-methionine-leucine-phenylalanine (fMLP) induces mobilization of intracellular calcium, cell adhesion, chemotaxis, superoxide production and degranulation. Chinese hamster ovary (CHO) cells are normally devoid of FPR and unresponsive to fMLP, but when stably transfected with a human FPR cDNA, exhibited some of these same responses. Specifically, stimulation with fMLP resulted in release of intracellular calcium and chemotactic migration toward a gradient of fMLP. As in neutrophils, both processes were inhibited through receptor desensitization by prior exposure to a higher or equal concentration of ligand or by treatment with pertussis toxin. Soluble and membrane-bound fibronectin greatly increased fMLP-induced chemotaxis of CHO cells expressing FPR, but not of wild-type CHO cells, suggesting a role for FPR in activation of integrin function. Evidence for this hypothesis was obtained by demonstrating that CHO cells expressing FPR rapidly increased their adhesion to a fibronectin-coated surface after stimulation with fMLP. Both chemotaxis and adhesion were largely inhibited by RGDS peptide and a function-blocking antibody against alpha5 integrin. FPR-mediated chemotaxis of the CHO transfectants was partly inhibited by a tyrosine kinase inhibitor, herbimycin A, and blocked by a phosphoinositide 3-kinase inhibitor, wortmannin. These data suggest that stimulation of CHO FPR transfectants with a gradient of fMLP results in phosphoinositide 3-kinase-dependent chemotactic migration, which is enhanced by binding of activated alpha5beta1 to fibronectin. This non-myeloid, non-lymphoid fibroblastic cell line will thus serve as a useful model to investigate additional requirements of signal transduction molecules, adhesion molecules and cytoskeletal elements in FPR-mediated chemotaxis.
Collapse
Affiliation(s)
- H M Miettinen
- Department of Microbiology, Montana State University, Bozeman, MT 59717-3520, USA.
| | | | | |
Collapse
|