1
|
Díaz-Otero F, Jaramillo-Meza L, Manzo-Sandoval A, Olguín-Alor R, Diosdado-Vargas F. Comparative longitudinal analysis of T lymphocyte subpopulations in calves vaccinated with different doses of BCG-Phipps or with culture filtrate protein extract of Mycobacterium bovis in a natural transmission setting. BMC Vet Res 2025; 21:78. [PMID: 39972321 PMCID: PMC11837346 DOI: 10.1186/s12917-025-04572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Currently, control programmes for bovine tuberculosis (bTB) contemplate the use of vaccines to reduce disease incidence rates. The BCG vaccine and the culture filtrate protein extract (CFPE) of Mycobacterium bovis are strong candidates for vaccination against bTB. We conducted an analysis of the immune response and evaluated activation and memory markers in CD4+ and CD8+ T-lymphocyte subpopulations in Holstein-Friesian calves immunised with different doses of M. bovis BCG-Phipps vaccine (1×10⁴ and 1×10⁶ CFU) or with CFPE (300 µg and 600 µg) in a natural transmission setting. The study was carried out in a dairy herd, selecting calves aged 1-4 months that tested negative in various bTB diagnostic tests. In the groups immunised with the BCG-Phipps vaccine, gamma interferon (IFN-γ) secretion levels increased significantly, with the highest increase observed in the group that received a dose of 1×10⁶ CFU (P ≤ 0.05). The CD4+/CD8+ ratio increased significantly over time in both vaccinated and unvaccinated groups, with no significant differences between them. However, notable differences were observed in activated (CD25+) and memory (CD45RO+) CD4 and CD8 T-cell populations across different times and treatments. Remarkably, the groups immunised with the BCG vaccine remained free of M. bovis infection, as evidenced by negative IFN-γ results using ESAT-6/CFP-10 antigens and negative PCR test results for bacterial detection. The comparative analysis of the immune response induced by the different doses of the BCG-Phipps and CFPE vaccines revealed that the group of animals vaccinated with the 1×10⁶ CFU dose exhibited greater production of gamma interferon and a higher percentage of CD4+ T cells, as well as activated and memory CD8+ T cells compared to the other vaccinated and control groups in the natural transmission environment.
Collapse
Affiliation(s)
- Fernando Díaz-Otero
- Laboratorio de Inmunología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico.
| | - Laura Jaramillo-Meza
- Laboratorio de Bacteriología Experimental, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Anabelle Manzo-Sandoval
- Laboratorio de Inmunología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Roxana Olguín-Alor
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas. UNAM, Mexico City, Mexico
| | - Fernando Diosdado-Vargas
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| |
Collapse
|
2
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
3
|
Le Page L, Baldwin CL, Telfer JC. γδ T cells in artiodactyls: Focus on swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104334. [PMID: 34919982 DOI: 10.1016/j.dci.2021.104334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is the most effective medical strategy for disease prevention but there is a need to improve livestock vaccine efficacy. Understanding the structure of the immune system of swine, which are considered a γδ T cell "high" species, and thus, particularly how to engage their γδ T cells for immune responses, may allow for development of vaccine optimization strategies. The propensity of γδ T cells to home to specific tissues, secrete pro-inflammatory and regulatory cytokines, exhibit memory or recall responses and even function as antigen-presenting cells for αβ T cells supports the concept that they have enormous potential for priming by next generation vaccine constructs to contribute to protective immunity. γδ T cells exhibit several innate-like antigen recognition properties including the ability to recognize antigen in the absence of presentation via major histocompatibility complex (MHC) molecules enabling γδ T cells to recognize an array of peptides but also non-peptide antigens in a T cell receptor-dependent manner. γδ T cell subpopulations in ruminants and swine can be distinguished based on differential expression of the hybrid co-receptor and pattern recognition receptors (PRR) known as workshop cluster 1 (WC1). Expression of various PRR and other innate-like immune receptors diversifies the antigen recognition potential of γδ T cells. Finally, γδ T cells in livestock are potent producers of critical master regulator cytokines such as interferon (IFN)-γ and interleukin (IL)-17, whose production orchestrates downstream cytokine and chemokine production by other cells, thereby shaping the immune response as a whole. Our knowledge of the biology, receptor expression and response to infectious diseases by swine γδ T cells is reviewed here.
Collapse
Affiliation(s)
- Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
MIDESP: Mutual Information-Based Detection of Epistatic SNP Pairs for Qualitative and Quantitative Phenotypes. BIOLOGY 2021; 10:biology10090921. [PMID: 34571798 PMCID: PMC8469369 DOI: 10.3390/biology10090921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The interactions between SNPs, which are known as epistasis, can strongly influence the phenotype. Their detection is still a challenge, which is made even more difficult through the existence of background associations that can hide correct epistatic interactions. To address the limitations of existing methods, we present in this study our novel method MIDESP for the detection of epistatic SNP pairs. It is the first mutual information-based method that can be applied to both qualitative and quantitative phenotypes and which explicitly accounts for background associations in the dataset. Abstract The interactions between SNPs result in a complex interplay with the phenotype, known as epistasis. The knowledge of epistasis is a crucial part of understanding genetic causes of complex traits. However, due to the enormous number of SNP pairs and their complex relationship to the phenotype, identification still remains a challenging problem. Many approaches for the detection of epistasis have been developed using mutual information (MI) as an association measure. However, these methods have mainly been restricted to case–control phenotypes and are therefore of limited applicability for quantitative traits. To overcome this limitation of MI-based methods, here, we present an MI-based novel algorithm, MIDESP, to detect epistasis between SNPs for qualitative as well as quantitative phenotypes. Moreover, by incorporating a dataset-dependent correction technique, we deal with the effect of background associations in a genotypic dataset to separate correct epistatic interaction signals from those of false positive interactions resulting from the effect of single SNP×phenotype associations. To demonstrate the effectiveness of MIDESP, we apply it on two real datasets with qualitative and quantitative phenotypes, respectively. Our results suggest that by eliminating the background associations, MIDESP can identify important genes, which play essential roles for bovine tuberculosis or the egg weight of chickens.
Collapse
|
5
|
Tian L, Wang S, Jiang S, Liu Z, Wan X, Yang C, Zhang L, Zheng Z, Wang B, Li L. Luteolin as an adjuvant effectively enhances CTL anti-tumor response in B16F10 mouse model. Int Immunopharmacol 2021; 94:107441. [PMID: 33611060 DOI: 10.1016/j.intimp.2021.107441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Luteolin, a naturally found dietary flavonoid, has a wide range of beneficial biological effects, including effects against tumors and oxidants. Studies proved that luteolin can modulate immune responses. In this study, we investigated the function of luteolin as an antitumor vaccine adjuvant (to treat malignant melanoma) in vitro and in vivo. We found that Luteolin may activated the PI3K-Akt pathways in APCs (Antigen Presenting Cells), induced the activation of APCs, enhanced CTL (Cytotoxic T Lymphocyte) responses, and inhibited tolerogenic T cells. To prove the role of CD8+T cells in immune process, we sorted the CD8+T cells from the immunized mice and transferred them to the B16F10 tumor-bearing mice, the result showed that the survival rate was improved. We also observed that in the mice immunized with Luteolin as an adjuvant, the tumor growth was significantly reduced. Taken together, the result demonstrated that luteolin showed promising properties as a vaccine adjuvant for treating malignant melanoma.
Collapse
Affiliation(s)
- Le Tian
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Shuang Wang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Qingdao University, Qingdao, China
| | - Zeyuan Liu
- Department of Special Medicine, Qingdao University, Qingdao, China
| | - Xueqi Wan
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Chaochao Yang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Li Zhang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Zheng Zheng
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Qingdao University, Qingdao, China
| | - Ling Li
- School of Basic Medical, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Special features of γδ T cells in ruminants. Mol Immunol 2021; 134:161-169. [PMID: 33774521 DOI: 10.1016/j.molimm.2021.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ruminant γδ T cells were discovered in the mid-1980's shortly after a novel T cell receptor (TCR) gene from murine cells was described in 1984 and the murine TCRγ gene locus in 1985. It was possible to identify γδ T cell populations early in ruminants because they represent a large proportion of the peripheral blood mononuclear cells (PBMC). This null cell population, γδ T cells, was designated as such by its non-reactivity with monoclonal antibodies (mAb) against ovine and bovine CD4, CD8 and surface immunoglobulin (Ig). γδ T cells are non-conventional T cells known as innate-like cells capable of using both TCR as well as other types of receptor systems including pattern recognition receptors (PRR) and natural killer receptors (NKR). Bovine γδ T cells have been shown to respond to stimulation through toll-like receptors, NOD, and NKG2D as well as to cytokines alone, protein and non-protein antigens through their TCR, and to pathogen-infected host cells. The two main populations of γδ T cells are distinguished by the presence or absence of the hybrid co-receptor/PRR known as WC1 or T19. These two populations not only differ by their proportional representation in various tissues and organs but also by their migration into inflamed tissues. The WC1+ cells are found in the blood, skin and spleen while the WC1- γδ T cells predominate in the gut, mammary gland and uterus. In ruminants, γδ T cells may produce IFNγ, IL-17, IL-10 and TGFβ, have cytotoxic activity and memory responses. The expression of particular WC1 family members controls the response to particular pathogens and correlates with differences in cytokine responses. The comparison of the WC1 gene families in cattle, sheep and goats is discussed relative to other multigenic arrays that differentiate γδ T cells by function in humans and mice.
Collapse
|
7
|
Benedictus L, Steinbach S, Holder T, Bakker D, Vrettou C, Morrison WI, Vordermeier M, Connelley T. Hydrophobic Mycobacterial Antigens Elicit Polyfunctional T Cells in Mycobacterium bovis Immunized Cattle: Association With Protection Against Challenge? Front Immunol 2020; 11:588180. [PMID: 33281817 PMCID: PMC7688591 DOI: 10.3389/fimmu.2020.588180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosis in vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.
Collapse
Affiliation(s)
- Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Sabine Steinbach
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Thomas Holder
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, Netherlands
| | - Christina Vrettou
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - W Ivan Morrison
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Timothy Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
8
|
Abstract
Gamma delta (γδ) T cells constitute a major lymphocyte population in peripheral blood and epithelial surfaces. They play nonredundant roles in host defense against diverse pathogens. Although γδ T cells share functional features with other cells of the immune system, their distinct methods of antigen recognition, rapid response, and tissue tropism make them a unique effector population. This review considers the current state of our knowledge on γδ T cell biology in ruminants and the important roles played by this nonconventional T cell population in protection against several infectious diseases of veterinary and zoonotic importance.
Collapse
|
9
|
Rusk RA, Palmer MV, Waters WR, McGill JL. Measuring bovine γδ T cell function at the site of Mycobacterium bovis infection. Vet Immunol Immunopathol 2017; 193-194:38-49. [PMID: 29129226 DOI: 10.1016/j.vetimm.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Collapse
Affiliation(s)
- Rachel A Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - W Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
10
|
Parlane NA, Buddle BM. Immunity and Vaccination against Tuberculosis in Cattle. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-014-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Principi N, Esposito S. The present and future of tuberculosis vaccinations. Tuberculosis (Edinb) 2014; 95:6-13. [PMID: 25458613 DOI: 10.1016/j.tube.2014.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
The clinical, social, and economic burden of tuberculosis (TB) remains high worldwide, thereby highlighting the importance of TB prevention. The bacilli Calmette-Guérin (BCG) vaccine that is currently available can protect younger children but is less effective in adults, the major source of TB transmission. In addition, the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains and the high prevalence of HIV infection have significantly complicated TB prognosis and treatment. Together, these data highlight the need for new and more effective vaccines. Recently, several vaccines containing multiple antigens, including some of those specific for dormant Mtb strains, have been developed. These vaccines appear to be the best approach for satisfactory Mtb prevention. However, until a new vaccine is proven more effective and safe than BCG, BCG should remain part of the immunization schedules for neonates and children at risk for TB as a fundamental prophylactic measure.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
12
|
Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 2014; 26:559-77. [PMID: 25311810 DOI: 10.1016/j.smim.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.
Collapse
|
13
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Ray Waters W. The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Vet Immunol Immunopathol 2014; 159:133-43. [DOI: 10.1016/j.vetimm.2014.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Abstract
Clinical trials of vaccines against Mycobacterium tuberculosis are well under way and results are starting to come in. Some of these results are not so encouraging, as exemplified by the latest Aeras-422 and MVA85A trials. Other than empirically determining whether a vaccine reduces the number of cases of active tuberculosis, which is a daunting prospect given the chronic nature of the disease, we have no way of assessing vaccine efficacy. Therefore, investigators seek to identify biomarkers that predict vaccine efficacy. Historically, focus has been on the production of interferon-γ by CD4(+) T cells, but this has not been a useful correlate of vaccine-induced protection. In this Opinion article, we discuss recent advances in our understanding of the immune control of M. tuberculosis and how this knowledge could be used for vaccine design and evaluation.
Collapse
|
15
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
16
|
Holderness J, Hedges JF, Ramstead A, Jutila MA. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Annu Rev Anim Biosci 2013; 1:99-124. [PMID: 25387013 DOI: 10.1146/annurev-animal-031412-103639] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
γδ T cells are a functionally heterogeneous population and contribute to many early immune responses. The majority of their activity is described in humans and mice, but the immune systems of all jawed vertebrates include the γδ T cell lineage. Although some aspects of γδ T cells vary between species, critical roles in early immune responses are often conserved. Common features of γδ T cells include innate receptor expression, antigen presentation, cytotoxicity, and cytokine production. Herein we compare studies describing these conserved γδ T cell functions and other, potentially unique, functions. γδ T cells are well documented for their potential immunotherapeutic properties; however, these proposed therapies are often focused on human diseases and the mouse models thereof. This review consolidates some of these studies with those in other animals to provide a consensus for the current understanding of γδ T cell function across species.
Collapse
Affiliation(s)
- Jeff Holderness
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717; , , ,
| | | | | | | |
Collapse
|
17
|
Killick KE, Browne JA, Park SDE, Magee DA, Martin I, Meade KG, Gordon SV, Gormley E, O'Farrelly C, Hokamp K, MacHugh DE. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes. BMC Genomics 2011; 12:611. [PMID: 22182502 PMCID: PMC3292584 DOI: 10.1186/1471-2164-12-611] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 12/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. RESULTS Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. CONCLUSIONS This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.
Collapse
Affiliation(s)
- Kate E Killick
- UCD College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tuberculosis immunity: opportunities from studies with cattle. Clin Dev Immunol 2010; 2011:768542. [PMID: 21197095 PMCID: PMC3004413 DOI: 10.1155/2011/768542] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/11/2010] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis and M. bovis share >99% genetic identity and induce similar host responses and disease profiles upon infection. There is a rich history of codiscovery in the development of control measures applicable to both human and bovine tuberculosis (TB) including skin-testing procedures, M. bovis BCG vaccination, and interferon-γ release assays. The calf TB infection model offers several opportunities to further our understanding of TB immunopathogenesis. Recent observations include correlation of central memory immune responses with TB vaccine efficacy, association of SIRPα+ cells in ESAT-6:CFP10-elicited multinucleate giant cell formation, early γδ T cell responses to TB, antimycobacterial activity of memory CD4+ T cells via granulysin production, association of specific antibody with antigen burden, and suppression of innate immune gene expression in infected animals. Partnerships teaming researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in man and animals.
Collapse
|
19
|
Ameni G, Aseffa A, Hewinson G, Vordermeier M. Comparison of different testing schemes to increase the detection Mycobacterium bovis infection in Ethiopian cattle. Trop Anim Health Prod 2009; 42:375-83. [DOI: 10.1007/s11250-009-9429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 08/11/2009] [Indexed: 11/28/2022]
|
20
|
Hogg AE, Worth A, Beverley P, Howard CJ, Villarreal-Ramos B. The antigen-specific memory CD8+ T-cell response induced by BCG in cattle resides in the CD8+gamma/deltaTCR-CD45RO+ T-cell population. Vaccine 2008; 27:270-9. [PMID: 18996428 DOI: 10.1016/j.vaccine.2008.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/03/2008] [Accepted: 10/12/2008] [Indexed: 01/11/2023]
Abstract
Tuberculosis (TB) remains a worldwide leading cause of death among infectious diseases. Development of safer and more efficacious vaccines requires a basic understanding of the protective mechanisms induced by BCG. Here we show that vaccination of cattle with BCG induces CD8+gamma/deltaTCR-CD45RO+ T-cells that can produce IFN-gamma, up-regulate transcription and expression of perforin, lyse BCG-infected monocyte-derived macrophages (MoMvarphi) and contribute to a reduction in the number of intracellular mycobacteria. We also observed BCG-induced CD8+ responses in vivo. After infection of cattle with Mycobacterium bovis, CD8+gamma/deltaTCR-CD45RO+ cells responded more strongly to M. bovis-infected MoMvarphi than to BCG-infected MoMvarphi. These results indicate that the antigen-specific CD8+ memory response resides in the CD8+gamma/deltaTCR-CD45RO+ cell population.
Collapse
Affiliation(s)
- Alison E Hogg
- Institute for Animal Health, Compton, Nr. Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | |
Collapse
|
21
|
Endsley JJ, Hogg A, Shell LJ, McAulay M, Coffey T, Howard C, Capinos Scherer CF, Waters WR, Nonnecke B, Estes DM, Villarreal-Ramos B. Mycobacterium bovis BCG vaccination induces memory CD4+ T cells characterized by effector biomarker expression and anti-mycobacterial activity. Vaccine 2007; 25:8384-94. [PMID: 17996992 DOI: 10.1016/j.vaccine.2007.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 02/06/2023]
Abstract
The effector mechanisms used by CD4+ T cells to control mycobacteria differ between humans and rodent models of TB and should be investigated in additional animal models. In these studies, the bovine model was used to characterize the mycobactericidal CD4+ T cell response induced by vaccination with the attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG). Antigenic stimulation of peripheral blood CD4+ T cells from BCG-vaccinated cattle enhanced expression of perforin and IFNgamma in cells expressing a CD45RA-CD45RO+CD62L+ cell surface phenotype, enhanced transcription of granulysin, IFNgamma, perforin, IL-4, IL-13, and IL-21, and enhanced anti-mycobacterial activity of CD4+ T cells against BCG-infected macrophages.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Pediatrics and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Navarrete-Vázquez G, Molina-Salinas GM, Duarte-Fajardo ZV, Vargas-Villarreal J, Estrada-Soto S, González-Salazar F, Hernández-Núñez E, Said-Fernández S. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg Med Chem 2007; 15:5502-8. [PMID: 17562368 DOI: 10.1016/j.bmc.2007.05.053] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 11/16/2022]
Abstract
4-(5-Substituted-1,3,4-oxadiazol-2-yl)pyridine derivatives 1-12 were synthesized and evaluated for their in vitro antimycobacterial activity. Some compounds showed an interesting activity against Mycobacterium tuberculosis H(37)Rv and five clinical isolates (drug-sensitive and -resistant strains). Compound 4 [4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine] was 10 times more active than isoniazid, 20 times more active than streptomycin, and 28 times more potent than ethambutol against drug-resistant strain CIBIN 112. Compound 5 [4-(5-heptadecyl-1,3,4-oxadiazol-2-yl)pyridine] showed the same behavior as compound 4. Both of the above structures bear a high lipophilic chain bonded to the 5-position of the oxadiazole moiety. This fact implies that there exists a contribution of lipophilicity, which could facilitate the entrance of these molecules through lipid-enriched bacterial cell membrane.
Collapse
Affiliation(s)
- Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62210, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pollock JM, Rodgers JD, Welsh MD, McNair J. Pathogenesis of bovine tuberculosis: the role of experimental models of infection. Vet Microbiol 2005; 112:141-50. [PMID: 16384665 DOI: 10.1016/j.vetmic.2005.11.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In many countries, test-and-slaughter policies based on tuberculin skin testing have made a significant impact on the control of bovine tuberculosis (caused by infection with Mycobacterium bovis). However, in some countries these policies have not proved as effective and improved disease control strategies are required (including improved diagnostic tests and development of vaccines). The host pathogen interactions in bovine tuberculosis are very complex. While studies of the disease in naturally infected field cases of bovine tuberculosis have provided valuable information, detailed knowledge can also be gained through studies of disease models. A number of studies have developed M. bovis infection models employing a range of routes and challenge doses. An early objective was assessment of vaccine efficiency, and models of infection remain central to current work in this area. Development of the intra-nasal and intra-tracheal models have also advanced our understanding of the kinetics of the immune response. In many of these studies, understanding of pathogenesis has been improved by definition of the cells that respond to infection and those that are instrumental in modulation of host responses. Experimental models of infection have been adapted to study cattle to cattle transmission, modeling one of the fundamental routes of infection. This review provides a historical perspective on the types of experimental models used in over 100 years of research and outlines new opportunities to refine those methods for bovine and human tuberculosis and to contribute to improved diagnostics, advanced understanding of immunology and vaccine design.
Collapse
Affiliation(s)
- J M Pollock
- Veterinary Sciences Division, The Department of Agriculture and Rural Development, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | | | | | | |
Collapse
|
24
|
Pollock JM, Welsh MD, McNair J. Immune responses in bovine tuberculosis: Towards new strategies for the diagnosis and control of disease. Vet Immunol Immunopathol 2005; 108:37-43. [PMID: 16150494 DOI: 10.1016/j.vetimm.2005.08.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In several countries, bovine tuberculosis (caused by infection with Mycobacterium bovis) is a major economic problem with the potential to be a significant public health risk. Where traditional test-and-slaughter policies based on skin testing with tuberculin have not been fully successful, new tools including additional diagnostic tests and improved vaccines are required urgently. This paper considers how recent developments in knowledge of immune responses and mycobacterial antigens can be used in the logical development of more efficient strategies for the identification of infected cattle.
Collapse
Affiliation(s)
- J M Pollock
- Veterinary Sciences Division, The Department of Agriculture and Rural Development, Stoney Road, Stormont, Belfast BT4 3SD, UK.
| | | | | |
Collapse
|
25
|
Cagiola M, Feliziani F, Severi G, Pasquali P, Rutili D. Analysis of possible factors affecting the specificity of the gamma interferon test in tuberculosis-free cattle herds. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:952-6. [PMID: 15358658 PMCID: PMC515264 DOI: 10.1128/cdli.11.5.952-956.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (TB) is still a zoonotic problem in the world. Despite the fact that eradication programs for bovine TB are being implemented in many countries, it remains a public health problem. These programs are mainly based on a single intradermal tuberculin test using bovine tuberculin purified protein derivative (PPD), isolation, and slaughtering of infected animals. The aim of this study was to assess the specificity of the gamma interferon (IFN-gamma) test in TB-free cattle herds, by using not only Australian tuberculins but also tuberculins produced at our institute, and to correlate the response with the type of production (beef cattle, dairy cattle, and a dual-purpose breed), the housing system, and the age of the animals. We studied 800 animals selected from 20 TB- and paratuberculosis-free herds. The animals were tested in parallel, after stimulation with Australian tuberculins and tuberculins produced at our institute, by using the skin test and two IFN-gamma assays. The results of this trial showed that the specificity of the IFN-gamma test is higher than that of the skin test (96.8%) and ranges from 97.3% (using only Australian tuberculins) to 98.6% (using tuberculins produced at our institute). We found that different categories of cattle could influence the specificity of the skin test but that these differences tended to be reduced in the IFN-gamma assay, especially when Italian PPDs were used.
Collapse
Affiliation(s)
- M Cagiola
- Istituto Zooprofilattico dell'Umbria e delle Marche, Perugia, Italy.
| | | | | | | | | |
Collapse
|
26
|
McShane H, Hill A. Prime-boost immunisation strategies for tuberculosis. Microbes Infect 2005; 7:962-7. [PMID: 15890555 DOI: 10.1016/j.micinf.2005.03.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
Vaccines against intracellular pathogens such as Mycobacterium tuberculosis need to induce strong cellular immune responses. Heterologous prime-boost immunisation strategies induce higher levels of both CD4+ and CD8+ T cells than homologous boosting with the same vector. Recombinant pox-viruses are particularly good at boosting previously primed T cell responses. Using BCG as the priming immunisation in such a heterologous prime-boost strategy is a practical solution, which allows the beneficial effects of BCG in children to be maintained.
Collapse
Affiliation(s)
- Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK.
| | | |
Collapse
|
27
|
Denis M, Wedlock DN, Buddle BM. Vaccination of brushtail possums,
Trichosurus vulpecula
, with Bacille Calmette–Guerin induces T lymphocytes that reduce
Mycobacterium bovis
replication in alveolar macrophages via a contact‐dependent/nitric oxide‐independent mechanism. Immunol Cell Biol 2005; 83:57-66. [PMID: 15661042 DOI: 10.1111/j.1440-1711.2005.01309.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The permissiveness of alveolar macrophages from brushtail possums for the replication of Mycobacterium bovis was examined. Mycobacterium bovis replication was indirectly measured by assessing bacterial metabolism via the incorporation of [3-H]-uracil by bacilli released from lysed macrophages previously infected with mycobacteria. Alveolar macrophages allowed substantial replication of virulent M. bovis, in contrast to Bacille Calmette-Guerin (BCG) Pasteur, which replicated poorly. The addition of crude lymphokines enhanced the metabolic activity of phagocytosed M. bovis in possum macrophages. Possum lymphokines enhanced the ability of possum macrophages to generate reactive oxygen intermediates, measured by the reduction of nitroblue tetrazolium, which is indicative of an activation process. Similarly, the addition of recombinant possum TNF-alpha enhanced the permissiveness of alveolar macrophages for M. bovis. In contrast to mouse peritoneal macrophages, possum alveolar macrophages did not release significant levels of nitric oxide (NO) after stimulation with M. bovis and/or lymphokines. However, the uptake of virulent M. bovis by possum macrophages was associated with an enhanced ability of cells to release TNF-alpha, whereas very low levels of TNF-alpha were released after infection with BCG. The addition of a selective inhibitor of inducible NO synthase had no impact on the replication of M. bovis or BCG in possum macrophages in the presence or absence of lymphokines. Co-culturing infected possum alveolar macrophages with autologous blood mononuclear cells from BCG-vaccinated possums led to a significant decrease in the metabolic activity of intracellular M. bovis. This effect was contact dependent and NO independent and was mediated by a population of CD3+ cells. In addition, adding scavengers of reactive oxygen intermediates did not abrogate this phenomenon.
Collapse
Affiliation(s)
- Michel Denis
- AgResearch, Wallaceville Animal Research Centre, Upper Hutt, New Zealand.
| | | | | |
Collapse
|
28
|
Denis M, Wedlock DN, Buddle BM. Ability of T cell subsets and their soluble mediators to modulate the replication of Mycobacterium bovis in bovine macrophages. Cell Immunol 2004; 232:1-8. [PMID: 15922710 DOI: 10.1016/j.cellimm.2005.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 12/19/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) from cattle vaccinated with Bacillus Calmette-Guerin (BCG) were obtained and expanded in vitro by incubation with purified protein derivative. The ability of these cells to modulate the replication of virulent Mycobacterium bovis in autologous-infected macrophages was compared to cells from non-vaccinated controls. Cells from non-vaccinated animals were shown to confer a significant degree of mycobacteriostatic activity to autologous-infected macrophages. This activity was not inhibited by including a neutralizing antibody versus interferon-gamma (IFN-gamma), and was dependent on direct contact between PBMCs and infected macrophages. Addition of autologous PBMCs from BCG-vaccinated cattle was shown to significantly enhance macrophage resistance to M. bovis, and this increased macrophage resistance was partly abrogated by including a neutralizing antibody to IFN-gamma. Addition of T cells from non-vaccinated animals to infected macrophages was associated with a modest increase in macrophage release of TNF-alpha and nitric oxide, whereas PBMCs from vaccinated animals increased very significantly the release of these factors. Neutralization of nitric oxide (NO), by inclusion of monomethyl-L-arginine, significantly diminished the ability of PBMCs from vaccinated animals to enhance macrophage resistance to M. bovis, but had no impact on the ability of T cells from naive animals to modulate macrophage function. The ability of naive cells to increase macrophage anti-M. bovis activity was largely mediated by CD4+ T cells, whereas both CD4+ T cells and CD8+ T cells conferred macrophage resistance to M. bovis in vaccinated animals. These data highlight the role of IFN-gamma and NO in the immune resistance of cattle to M. bovis.
Collapse
Affiliation(s)
- Michel Denis
- AgResearch, Wallaceville Animal Research Centre, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | |
Collapse
|