1
|
Clinical Regimens of Favipiravir Inhibit Zika Virus Replication in the Hollow-Fiber Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.00967-18. [PMID: 29967017 DOI: 10.1128/aac.00967-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/25/2018] [Indexed: 01/04/2023] Open
Abstract
Zika virus (ZIKV) infection is associated with serious, long-term neurological manifestations. There are currently no approved therapies for the treatment or prevention of ZIKV infection. Favipiravir (FAV) is a viral polymerase inhibitor with broad-spectrum activity. Our prior studies used static FAV concentrations and demonstrated promising activity. However, the anti-ZIKV activity of dynamic FAV concentrations has never been evaluated in a human cell line. Here we employed the hollow-fiber infection model (HFIM) to simulate the human pharmacokinetic (PK) profiles associated with the clinically utilized FAV dosage regimens against influenza and Ebola viruses and assessed the viral burden profiles. Clinically achievable FAV concentrations inhibited ZIKV replication in HUH-7 cells in a dose-dependent fashion (50% effective concentration = 236.5 μM). The viral burden profiles under dynamic FAV concentrations were predicted by use of a mechanism-based mathematical model (MBM) and subsequently successfully validated in the HFIM. This validated, translational MBM can now be used to predict the anti-ZIKV activity of other FAV dosage regimens in the presence of between-patient variability in pharmacokinetics. This approach can be extended to rationally optimize FAV combination dosage regimens which hold promise to treat ZIKV infections in nonpregnant patients.
Collapse
|
2
|
Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose for transplant pediatrics: A systematic review and meta-analysis. Pediatr Transplant 2018; 22:e13248. [PMID: 29920880 DOI: 10.1111/petr.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
This systematic review was designed to find out optimal tacrolimus dose in pediatrics according to their CYP3A5*1 genotype by performing meta-analysis. PubMed, Scopus, ISI web of Science, ProQuest, Cochrane library, and clinicaltrail.gov were systematically searched to find studies in which tacrolimus dose and/or blood concentration and/or concentration-to-dose (C/D) ratio were determined in genotype groups of CYP3A5*1 in pediatric population. Data were extracted at 14 time points post-transplantation and meta-analysis of mean and SD was performed. In all, 11 studies including 596 pediatric transplant recipients were entered into systematic review and meta-analysis. Analysis of tacrolimus required dose, blood concentration, and C/D ratio in 14 time points post-transplantation resulted in significant differences between expressers and non-expressers of CYP3A5*1. It seems that 0.06 mg/kg/day higher tacrolimus dose in expressers can produce same blood level as non-expressers. Using results of TDM for tacrolimus dose adjustment, it takes about 1 month for patients to reach stable and optimum tacrolimus blood concentration. This is too long time period which increases the risk of immunosuppressive over/under-dose and drug toxicity or organ rejection. Considering our results, defining genetic profile helps to predict the individual required dose more rapidly, actually before beginning of treatment.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Faculty of Pharmacy, Department of Pharmacognosy and Pharmaceutical Biotechnology, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Gómez-Martín A, Hernández AF, Martínez-González LJ, González-Alzaga B, Rodríguez-Barranco M, López-Flores I, Aguilar-Garduno C, Lacasana M. Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities. CHEMOSPHERE 2015; 139:534-540. [PMID: 26318115 DOI: 10.1016/j.chemosphere.2015.07.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
Polymorphisms in genes encoding xenobiotic-metabolizing enzymes (XME) are important parameters accounting for the wide inter-individual variability to environmental exposures. Paraoxonase-1 (PON1), butyrylcholinesterase (BChE) and Cytochrome-P450 constitute major classes of XME involved in the detoxification of pesticide chemicals, in particular organophosphates. This study explored the allelic frequency, linkage disequilibrium and haplotype analysis of ten common polymorphic variants of seven key genes involved in organophosphate metabolism (BCHE-K, BCHE-A, PON1 Q192R, PON1 L55M, PON1 -108C/T, CYP2C19 G681A, CYP2D6 G1846A, CYP3AP1 -44G/A, GSTM1∗0 and GSTT1∗0) in a children population living near an intensive agriculture area in Spain. It was hypothesized that individuals with unfavorable combinations of gene variants will be more susceptible to adverse effects from organophosphate exposure. Genomic DNA from 496 healthy children was isolated and amplified by PCR. Hydrolysis probes were used for the detection of eight specific SNPs and two copy number variants (CNVs) by using TaqMan® Assay-based real-time PCR. Frequencies of SNPs and CNVs in the target genes were in Hardy-Weinberg equilibrium and broadly consistent with European populations. Linkage disequilibrium was found between the three PON1 genetic polymorphisms studied and between BCHE-K and BCHE-A. The adverse genotype combination (unusual BCHE variants, PON1 55MM/-108TT and null genotype for both GSTM1 and GSTT1) potentially conferring a greater genetic risk from exposure to organophosphates was observed in 0.2% of our study population. This information allows broadening our knowledge about differential susceptibility toward environmental toxicants and may be helpful for further research to understand the inter-individual toxicokinetic variability in response to organophosphate pesticides exposure.
Collapse
Affiliation(s)
- Antonio Gómez-Martín
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; Center GENYO (Pfizer-University of Granada-Andalusian Government Center for Genomics and Oncological Research), Granada, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain.
| | - Luis Javier Martínez-González
- Center GENYO (Pfizer-University of Granada-Andalusian Government Center for Genomics and Oncological Research), Granada, Spain
| | - Beatriz González-Alzaga
- Andalusian School of Public Health (EASP), Granada, Spain; Institute of Biosanitary Research (ibs.GRANADA), University Hospitals/University of Granada, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Institute of Biosanitary Research (ibs.GRANADA), University Hospitals/University of Granada, Granada, Spain
| | | | | | - Marina Lacasana
- Andalusian School of Public Health (EASP), Granada, Spain; Institute of Biosanitary Research (ibs.GRANADA), University Hospitals/University of Granada, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Vilanova-Costa CAST, Porto HKP, Pereira LCG, Carvalho BP, Dos Santos WB, Silveira-Lacerda EDP. MDR1 and cytochrome P450 gene-expression profiles as markers of chemosensitivity in human chronic myelogenous leukemia cells treated with cisplatin and Ru(III) metallocomplexes. Biol Trace Elem Res 2015; 163:39-47. [PMID: 25253429 DOI: 10.1007/s12011-014-0133-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/16/2014] [Indexed: 01/11/2023]
Abstract
Leukemia is a major type of cancer affecting a significant segment of the population, and especially children. In fact, leukemia is the most frequent childhood cancer, with 26 % of all cases, and 20 % mortality. The multidrug resistance phenotype (MDR) is considered one of the major causes of failure in cancer chemotherapy. The present study aimed to investigate the relationship between the expression of MDR1 and CYP450 genes in human chronic myelogenous leukemia cells (K-562) treated with cisplatin (cisPt) and two ruthenium-based coordinated complexes [cisCRu(III) and cisDRu(III)]. The tested compounds induced apoptosis in K-562 tumor cells as evidenced by caspase 3 activation. Results also revealed that the amplification of P-gp gene is greater in K-562 cells exposed to cisPt and cisCRu(III) than cisDRu(III). Taken together, all these results strongly demonstrate that MDR-1 overexpression in K-562 cells could be associated to a MDR phenotype, and moreover, it is also contributing to the platinum and structurally related compound, resistance in these cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cisplatin/pharmacology
- Cytochrome P-450 Enzyme System/biosynthesis
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Ruthenium/pharmacology
Collapse
Affiliation(s)
- Cesar Augusto Sam Tiago Vilanova-Costa
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas - ICB, Universidade Federal de Goiás - UFG, Campus Samambaia (Campus II), Cx. Postal: 131, Goiânia, GO, 74001-970, Brazil,
| | | | | | | | | | | |
Collapse
|
5
|
Jenison RD, Bucala R, Maul D, Ward DC. Thin-film technology for direct visual detection of nucleic acid sequences: applications in clinical research. Expert Rev Mol Diagn 2014; 6:89-99. [PMID: 16359270 DOI: 10.1586/14737159.6.1.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Certain optical conditions permit the unaided eye to detect thickness changes on surfaces on the order of 20 A, which are of similar dimensions to monomolecular interactions between proteins or hybridization of complementary nucleic acid sequences. Such detection exploits specific interference of reflected white light, wherein thickness changes are perceived as surface color changes. This technology, termed thin-film detection, allows for the visualization of subattomole amounts of nucleic acid targets, even in complex clinical samples. Thin-film technology has been applied to a broad range of clinically relevant indications, including the detection of pathogenic bacterial and viral nucleic acid sequences and the discrimination of sequence variations in human genes causally related to susceptibility or severity of disease.
Collapse
Affiliation(s)
- Robert D Jenison
- Inverness Medical-Biostar Inc., 331 South 104 St., Louisville, CO 80027, USA.
| | | | | | | |
Collapse
|
6
|
Esmerian MO, Mitri Z, Habbal MZ, Geryess E, Zaatari G, Alam S, Skouri HN, Mahfouz RA, Taher A, Zgheib NK. Influence ofCYP2C9andVKORC1Polymorphisms on Warfarin and Acenocoumarol in a Sample of Lebanese People. J Clin Pharmacol 2013; 51:1418-28. [DOI: 10.1177/0091270010382910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Zgheib NK, Mitri Z, Geryess E, Noutsi P. Cytochrome P4502E1 (CYP2E1) Genetic Polymorphisms in a Lebanese Population: Frequency Distribution and Association with Morbid Diseases. Genet Test Mol Biomarkers 2010; 14:393-7. [DOI: 10.1089/gtmb.2009.0193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathalie Khoueiry Zgheib
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahi Mitri
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eddy Geryess
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Pakiza Noutsi
- Department of Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Ewing T, Feher M. Forecasting CYP2D6 and CYP3A4 Risk with a Global/Local Fusion Model of CYP450 Inhibition. Mol Inform 2010; 29:127-41. [DOI: 10.1002/minf.200900040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 11/12/2022]
|
9
|
McGovern BH, Birch C, Zaman MT, Bica I, Stone D, Quirk JR, Davis B, Zachary K, Basgoz N, Graeme-Cook F, Gandhi RT. Managing symptomatic drug-induced liver injury in HIV-hepatitis C virus-coinfected patients: a role for interferon. Clin Infect Dis 2007; 45:1386-92. [PMID: 17968840 DOI: 10.1086/522174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/11/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected patients with hepatitis C virus (HCV) coinfection are at increased risk for drug-induced liver injury (DILI) compared with patients with HIV infection alone. The mechanism underlying this observation is unknown. We hypothesized that interferon (IFN) would induce biochemical improvement through its anti-inflammatory properties and thereby facilitate the reintroduction of antiretroviral therapy (ART) in patients with DILI. METHODS Patients with symptomatic DILI were referred for evaluation; biopsy of a liver sample was performed for all patients, except 1 with clinical cirrhosis. RESULTS Twelve patients with acquired immunodeficiency syndrome and symptomatic grade 3/4 hepatotoxicity received treatment with IFN and ribavirin (RBV). Seven of these patients had a history of recurrent DILI. The mean baseline CD4(+) T cell counts and HIV RNA levels were 124 cells/mm(3) and 115,369 copies/mL, respectively. Biopsies of liver samples demonstrated significant necroinflammation (mean grade, 10.3) and fibrosis (mean stage, 2.9). Three patients continued to receive ART when they began treatment with IFN-RBV; 9 reinitiated ART within an average of 12 weeks (range, 4-20 weeks) of HCV treatment initiation. All patients attained marked improvement in aminotransferases and continued to receive ART treatment during a mean follow-up regimen of 26.5 months, with subsequent virologic suppression and immunologic reconstitution (mean CD4(+) cell count increase, 251/mm(3)). However, only 1 patient maintained HCV suppression after completion of treatment with IFN-RBV. CONCLUSIONS In patients with symptomatic DILI, treatment with IFN-ribavirin (RBV) led to decreases in aminotransferase levels, which enabled the reinitiation of ART. The beneficial effects of IFN-based therapy may be modulated through the suppression of proinflammatory cytokines, even in virologic nonresponders. Herein, we propose a novel mechanism for DILI, whereby HCV- and HIV-associated inflammatory mediators induce liver injury synergistically.
Collapse
|
10
|
Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ, Klein CE, Rublein JC, Kashuba ADM. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 2006; 42:52-60. [PMID: 16639344 DOI: 10.1097/01.qai.0000219774.20174.64] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The effect of lopinavir/ritonavir (LPV/r) administration on cytochrome P450 (CYP) enzyme activity was quantified using a phenotyping biomarker cocktail. Changes in CYP2C9, CYP2C19, CYP3A, CYP1A2, N-acetyltransferase-2 (NAT-2), and xanthine oxidase (XO) activities were evaluated using warfarin (WARF) + vitamin K, omeprazole (OMP), intravenous (IV) and oral (PO) midazolam (MDZ), and caffeine (CAF). DESIGN : Open-label, multiple-dose, pharmacokinetic study in healthy volunteers. METHODS Subjects (n = 14) simultaneously received PO WARF 10 mg, vitamin K 10 mg, OMP 40 mg, CAF 2 mg/kg, and IV MDZ 0.025 mg/kg on days (D) 1 and 14, and PO MDZ 5 mg on D2 and D15. LPV/r (400/100 mg twice daily) was administered on D4-17. CYP2C9 and CYP2C19 activities were quantified by S-WARF AUC0-inf and OMP/5-hydroxy OMP ratio, respectively. CYP1A2, NAT-2, and XO activities were quantified by urinary CAF metabolite ratios. Hepatic and intestinal + hepatic CYP3A activities were quantified by IV (CL) and PO (CL/F) MDZ clearance, respectively. RESULTS After LPV/r therapy, CYP2C9, CYP2C19, and CYP1A2 activity increased by 29%, 100%, and 43% (P = 0.001, 0.046, and 0.001), respectively. No changes were seen in NAT-2 or XO activity. Hepatic and intestinal + hepatic CYP3A activity decreased by 77% (P < 0.001) and 92% (P = 0.001), respectively. CONCLUSION LPV/r therapy results in modest induction of CYP1A2 and CYP2C9 and potent induction of CYP2C19 activity. Increasing doses of concomitant medications metabolized by these enzymes may be necessary. LPV/r inhibited intestinal CYP3A to a greater extent than hepatic CYP3A activity. Doses of concomitant CYP3A substrates should be reduced when combined with LPV/r, although intravenously administered compounds may require less of a relative dose reduction than orally administered compounds.
Collapse
Affiliation(s)
- Rosa F Yeh
- School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Adverse drug effects (ADEs) are of great importance in medicine and account for up to 5% of all hospital admissions. ADEs can arise from several mechanisms and a wide range of drugs can cause immune-mediated ADEs (IMADEs). For a drug to elicit an IMADE, it must be both immunogenic (that is, able to sensitize the immune system) and antigenic (that is, able to evoke a response from a sensitized immune system). Unlike protein therapeutics, small-molecule drugs (or xenobiotics) are usually neither immunogenic nor antigenic. IMADEs are therefore the result of complex interactions between drug-metabolizing enzymes, immune sensitization and immune effectors. The genetic aspects of this interplay are discussed in this review.
Collapse
Affiliation(s)
- Peter J Bugelski
- Director of Experimental Pathology, Department of Toxicology and Investigational Pharmacology, Centocor Inc., 200 Great Valley Parkway, Malvern, Pennsylvania 19355, USA.
| |
Collapse
|
12
|
Iohom G, Fitzgerald D, Cunningham AJ. Principles of pharmacogenetics—implications for the anaesthetist. Br J Anaesth 2004; 93:440-50. [PMID: 15220176 DOI: 10.1093/bja/aeh200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- G Iohom
- Department of Anaesthesia and Intensive Care Medicine, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
13
|
Lin DW, Nelson PS. The role of cyclooxygenase-2 inhibition for the prevention and treatment of prostate carcinoma. ACTA ACUST UNITED AC 2004; 2:119-26. [PMID: 15040874 DOI: 10.3816/cgc.2003.n.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experimental and epidemiologic studies have demonstrated that nonsteroidal antiinflammatory drugs (NSAIDs) are effective in the prevention of human cancers. Nonsteroidal antiinflammatory drugs inhibit the cyclooxygenase (COX) enzyme that functions to convert arachidonic acid to prostaglandins (PGs). Cyclooxygenase-2, a key COX isoenzyme, is rapidly induced in response to inflammatory stimuli, growth factors, cytokines, and promoters of neoplastic growth. Cyclooxygenase-2-catalyzed reactions may be involved in carcinogenesis via 2 distinct mechanisms: (1). DNA damage and (2). PG-mediated effects. Reactions mediated by COX-2 form reactive oxygen species that can directly induce the oxidation of DNA or instigate the bioactivation of carcinogens. Prostaglandin E2, a byproduct of COX-2-mediated arachidonic acid metabolism, exhibits several biologic actions that have been shown to promote tumorigenesis and tumor progression. These actions include increased cell proliferation, promotion of angiogenesis, and the elevated expression of the antiapoptotic protein Bcl-2. In addition, PGE2 decreases natural killer cell activity and alters immune surveillance. In vitro experimental studies find that COX-2 inhibitors decrease cellular proliferation, increase apoptosis, and modulate genes involved in cell cycle regulation. Evidence from animal studies supports a role for NSAIDs in prostate cancer (CaP) prevention. Population-based studies have observed a reduced incidence of CaP among men using NSAIDs. Because CaP evolves slowly and rarely strikes men before the sixth or seventh decade of life, any strategy to delay or lengthen the time to development of clinically evident CaP, such as chemoprevention strategies, would greatly impact the natural history of this disease. Recent progress and critical analyses in the roles of COX-2 inhibition on prostate carcinogenesis and CaP prevention will be presented.
Collapse
Affiliation(s)
- Daniel W Lin
- Department of Urology, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
14
|
Cauffiez C, Lo-Guidice JM, Quaranta S, Allorge D, Chevalier D, Cenée S, Hamdan R, Lhermitte M, Lafitte JJ, Libersa C, Colombel JF, Stücker I, Broly F. Genetic polymorphism of the human cytochrome CYP2A13 in a French population: implication in lung cancer susceptibility. Biochem Biophys Res Commun 2004; 317:662-9. [PMID: 15063809 DOI: 10.1016/j.bbrc.2004.03.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
The human cytochrome CYP2A13, which is mainly expressed in the respiratory tract, has been shown to be highly efficient in vitro in the metabolism of tobacco-smoke carcinogens and procarcinogens such as 4-methylnitroso-1-(3-pyridyl)-1-butanone (NNK). In order to investigate the extent of CYP2A13 genetic polymorphism in a French Caucasian population of 102 individuals, a screening for sequence variations in the 5'-untranslated and protein encoding regions of its gene was performed using a polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) strategy. Six polymorphisms in the coding region were identified, including two rare missense mutations (C474G or Asp158Glu, G967T or Val323Leu) and one nonsense mutation (Arg101Stop). This deleterious mutation, the most frequent (5%) in our population, presumably encodes a severely truncated protein. The influence of the nonsense mutation in lung cancer susceptibility was examined by PCR-SSCP using peripheral blood DNA from 204 cases of lung cancer and 201 controls. The CYP2A13*7 allele, which harbours the C301T mutation, was present in 2.0% of controls and 3.4% of cases. However, multivariate analysis showed an elevated risk for small cell lung cancer in subjects heterozygous for the null allele (odds ratio OR=9.9; 95% confidence interval CI=1.9-52.2). This increased risk was not linked to other histological types of lung cancer.
Collapse
Affiliation(s)
- Christelle Cauffiez
- Equipe d'accueil 2679, Faculté de Médecine de Lille, Pôle Recherche, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Qiu LO, Linder MW, Antonino-Green DM, Valdes R. Suppression of cytochrome P450 2E1 promoter activity by interferon-gamma and loss of response due to the -71G>T nucleotide polymorphism of the CYP2E1*7B allele. J Pharmacol Exp Ther 2004; 308:284-8. [PMID: 14566010 DOI: 10.1124/jpet.103.057208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The CYP2E1*7B allele is defined by two nucleotide sequence polymorphisms, -71G>T and -333T>A. The CYP2E1 promoter sequence flanking the -71G nucleotide is consistent with a gamma-interferon activated sequence. Inflammation and interferon (IFN)-gamma suppress expression of CYP2E1 in vivo; however, the exact mechanism is not known. The objectives of this study were to determine whether the CYP2E1 promoter is regulated by IFN-gamma and to examine the influence of the nucleotide substitutions on this function. Treatment of HepG2 cells with IFN-gamma, after transient transfection with a luciferase reporter gene bearing the native CYP2E1 (-71G) promoter sequence resulted, in a dose-dependent reduction of luciferase activity. In contrast, no suppression was observed in cells transfected with the *7B allele promoter (-333A and -71T) nor a CYP2E1 plasmid containing only the -71T polymorphism. These data indicate that IFN-gamma suppresses native CYP2E1 promoter activity and that the -71G is critical for this response.
Collapse
Affiliation(s)
- Ling O Qiu
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
16
|
Tanaka E, Kurata N, Yasuhara H. How useful is the "cocktail approach" for evaluating human hepatic drug metabolizing capacity using cytochrome P450 phenotyping probes in vivo? J Clin Pharm Ther 2003; 28:157-65. [PMID: 12795773 DOI: 10.1046/j.1365-2710.2003.00486.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Relatively selective in vivo substrate probes have been developed for several major CYP isoforms involved in oxidative drug metabolism. There are basically two in vivo methods for identifying the phenotype. One method, the selective (CYP-specific) phenotyping method, involves administering one single probe drug, whereas the other is a mixed phenotyping or "cocktail" method involving the simultaneous administration of multiple probe drugs, specific for the individual P450. At present, caffeine and chlorzoxazone are used most often as probe drugs for CYP1A2 and CYP2E1, respectively, but these are not necessarily the best probe drugs. Of the potential probe drugs for CYP2C9, CYP2C19, CYP2D6 and CYP3A4, none is really useful. Despite current limitations, the cocktail method for obtaining information about multiple CYP activities in a single experimental session is likely to be more widely used as a screening or phenotyping method for humans in the future.
Collapse
Affiliation(s)
- E Tanaka
- Institute of Community Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki-ken 305-8575, Japan.
| | | | | |
Collapse
|
17
|
Abstract
In addition to differences in the pharmacodynamic response in the infant, the dose and the pharmacokinetic processes acting upon that dose principally determine the efficacy and/or safety of a therapeutic or inadvertent exposure. At a given dose, significant differences in therapeutic efficacy and toxicant susceptibility exist between the newborn and adult. Immature pharmacokinetic processes in the newborn predominantly explain such differences. With infant development, the physiological and biochemical processes that govern absorption, distribution, metabolism, and excretion undergo significant growth and maturational changes. Therefore, any assessment of the safety associated with an exposure must consider the impact of these maturational changes on drug pharmacokinetics and response in the developing infant. This paper reviews the current data concerning the growth and maturation of the physiological and biochemical factors governing absorption, distribution, metabolism, and excretion. The review also provides some insight into how these developmental changes alter the efficiency of pharmacokinetics in the infant. Such information may help clarify why dynamic changes in therapeutic efficacy and toxicant susceptibility occur through infancy.
Collapse
Affiliation(s)
- Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, SK, S7N 5C9, Saskatoon, Canada.
| | | |
Collapse
|
18
|
Abstract
This review focuses on the toxicological interactions between alcohol (ethanol) and psychiatric drugs (antidepressants and antipsychotics), including those leading to fatal poisoning. Acute or chronic ingestion of alcohol when combined with psychiatric drugs may lead to several clinically significant toxicological interactions. The metabolism of these drugs is generally but not always delayed by acute alcohol ingestion. Drugs undergoing metabolism may also show increased metabolic clearance with chronic alcohol ingestion. Therefore, the net effect may be influenced by internal (e.g. disease, age, gender), external (e.g. environment, diet) and pharmacokinetic (e.g. dose, timing of ingestion, gastrointestinal absorption, distribution and elimination) factors. Cases of fatal poisoning involving coadministration of psychiatric drugs, alcohol and other drugs prompted this review.
Collapse
Affiliation(s)
- E Tanaka
- Department of Forensic Medicine, Institute of Community Medicine, University of Tsukuba, Ibaraki-ken, Japan.
| |
Collapse
|
19
|
Abstract
Dramatic developmental changes in the physiological and biochemical processes that govern drug pharmacokinetics and pharmacodynamics occur during the first year of life. These changes may have significant consequences for the way infants respond to and deal with drugs. The ontogenesis of systemic clearance mechanisms is probably the most critical determinant of a pharmacological response in the developing infant. In recent years, advances in molecular techniques and an increased availability of fetal and infant tissues have afforded enhanced insight into the ontogeny of clearance mechanisms. Information from these studies is reviewed to highlight the dynamic and complex nature of developmental changes in clearance mechanisms in infants during the first year of life. Hepatic and renal elimination mechanisms constitute the two principal clearance pathways of the developing infant. Drug metabolising enzyme activity is primarily responsible for the hepatic clearance of many drugs. In general, when compared with adult activity levels normalised to amount of hepatic microsomal protein, hepatic cytochrome P450-mediated metabolism and the phase II reactions of glucuronidation, glutathione conjugation and acetylation are deficient in the neonate, but sulfate conjugation is an efficient pathway at birth. Parturition triggers the dramatic development of drug metabolising enzymes, and each enzyme demonstrates an independent rate and pattern of maturation. Marked interindividual variability is associated with their developmental expression, making the ontogenesis of hepatic metabolism a highly variable process. By the first year of life, most enzymes have matured to adult activity levels. When compared with adult values, renal clearance mechanisms are compromised at birth. Dramatic increases in renal function occur in the ensuing postpartum period, and by 6 months of age glomerular filtration rate normalised to bodyweight has approached adult values. Maturation of renal tubular functions exhibits a more protracted time course of development, resulting in a glomerulotubular imbalance. This imbalance exists until adult renal tubule function values are approached by 1 year of age. The ontogeny of hepatic biliary and renal tubular transport processes and their impact on the elimination of drugs remain largely unknown. The summary of the current understanding of the ontogeny of individual pathways of hepatic and renal elimination presented in this review should serve as a basis for the continued accruement of age-specific information concerning the ontogeny of clearance mechanisms in infants. Such information can only help to improve the pharmacotherapeutic management of paediatric patients.
Collapse
Affiliation(s)
- Jane Alcorn
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | |
Collapse
|
20
|
Zhou S, Kestell P, Paxton JW. Predicting pharmacokinetics and drug interactions in patients from in vitro and in vivo models: the experience with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an anti-cancer drug eliminated mainly by conjugation. Drug Metab Rev 2002; 34:751-90. [PMID: 12487149 DOI: 10.1081/dmr-120015693] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The novel anti-tumor agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was developed in the Auckland Cancer Society Research Center. Its pharmacokinetic properties have been investigated using both in vitro and in vivo models, and the resulting data extrapolated to patients. The metabolism of DMXAA has been extensively studied mainly using hepatic microsomes, which indicated that UGT1A9 and UGT2B7-catalyzed glucuronidation on its acetic acid side chain and to a lesser extent CYP1A2-catalyzed hydroxylation of the 6-methyl group are the major metabolic pathways, resulting in DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid. The predominant metabolite in human urine (up to 60% of total dose) was identified as DMXAA-G, which was chemically reactive, undergoing hydrolysis, intramolecular rearrangement, and covalent binding to plasma proteins. In vivo formation of DMXAA-protein adducts were also observed in cancer patients receiving DMXAA treatment. The comparison of the in vitro human hepatic microsomal metabolism and inhibition of DMXA by UGT and/or CYP substrates with animal species indicated species differences. Renal microsomes from all animal species examined had glucuronidation activity for DMXAA, but lower than the liver. In vitro-in vivo extrapolations based on human microsomal data indicated a 7-fold underestimation of plasma clearance in patients. In contrast, allometric scaling using in vivo data from the mouse, rat, and rabbit predicted a plasma clearance of 3.5 mL/min/kg, similar to that observed in patients (3.7 mL/min/kg). Based on in vitro metabolic inhibition studies, it appears possible to predict the effects on the plasma kinetic profile of DMXAA of drugs such as diclofenac, which are mainly metabolized by UGT2B7. However, it did not appear possible to predict the effect of thalidomide on the pharmacokinetics of DMXAA in patients based on in vitro inhibition and animal studies. These data indicate that preclincial pharmacokinetic studies using both in vitro and in vivo models play an important but different role in predicting pharmacokinetics and drug interactions in patients.
Collapse
Affiliation(s)
- Shufeng Zhou
- Division of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
21
|
Mikolaenko I, Robinson CA, Davis GG. A review of methadone deaths in Jefferson County, Alabama. Am J Forensic Med Pathol 2002; 23:299-304. [PMID: 12198363 DOI: 10.1097/00000433-200209000-00021] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interpretation of the concentration of a drug is more difficult when a combination of drugs is present in a decedent's blood. An increase in deaths resulting from co-intoxication with methadone and a benzodiazepine led the authors to perform a retrospective study of cases examined at the Jefferson County Coroner/Medical Examiner Office. They found 101 deaths wherein methadone was detected in the blood. Based on the drugs detected in the blood, these 101 cases were grouped into four categories: (1) pure methadone intoxication, (2) intoxication with methadone and benzodiazepine, (3) intoxication with methadone and other drugs excluding benzodiazepine, and (4) intoxication with methadone, benzodiazepines, and other drugs. Methadone was the sole intoxicant in 15 cases, with a mean concentration of 0.27 mg/L. Benzodiazepines were the most frequently detected co-intoxicant (60 of 101 cases). Benzodiazepine was the only co-intoxicant in 30 cases, and the mean methadone concentration in those 30 cases was 0.599 mg/L. Higher levels of methadone may occur in acute intoxication with methadone and benzodiazepine because benzodiazepines compete with methadone for methadone receptors. Higher levels of methadone may occur with chronic abuse of methadone and benzodiazepines because over time, benzodiazepines inhibit the hepatic enzymes that metabolize methadone.
Collapse
Affiliation(s)
- Irina Mikolaenko
- Department of Pathology, University of Alabama at Birmingham, 35233-1601, USA
| | | | | |
Collapse
|
22
|
Chevalier D, Allorge D, Lo-Guidice JM, Cauffiez C, Lepetit C, Migot-Nabias F, Kenani A, Lhermitte M, Broly F. Sequence analysis, frequency and ethnic distribution of VNTR polymorphism in the 5'-untranslated region of the human prostacyclin synthase gene (CYP8A1). Prostaglandins Other Lipid Mediat 2002; 70:31-7. [PMID: 12428676 DOI: 10.1016/s0090-6980(02)00016-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prostacyclin synthase enzyme (CYP8A1, EC 5.3.99.4) is the unique member of family 8 in the cytochrome P450 superfamily. Inheritable interindividual differences in prostacyclin production may be implicated in the pathogenesis of human vascular diseases. Recently, we functionally characterized a variable number of tandem repeat (VNTR) polymorphism in the 5'-proximal regulatory region of CYP8A1. In this study, we extended the CYP8A1 VNTR polymorphism analysis using a panel of DNA samples from distinct ethnic populations: Tunisians, Gaboneses and French Caucasians. A total of nine VNTR were detected, three of which represent new variants in the CYP8A1 promoter region. Differences among the three ethnic panels in the frequency of the VNTR variants were observed. This study represents the first multi-population-based analysis of the frequency and distribution of VNTR polymorphism affecting the CYP8A1 promoter.
Collapse
Affiliation(s)
- Dany Chevalier
- EA2679, Faculté de Médecine de Lille, Pĵle Recherche, Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lewin S, Walters T, Locarnini S. Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies. Antiviral Res 2002; 55:381-96. [PMID: 12206877 DOI: 10.1016/s0166-3542(02)00071-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) causes a generally non-cytopathic infection in the liver. Even though HBV is a DNA virus, it replicates via reverse transcription which is coordinated within the viral nucleocapsid by the virus-specific polymerase. The major transcriptional template is the viral mimichromosome from which the viral DNA exists as a covalently closed circular (ccc) molcule. The virus infects hepatocytes but can also be found in non-hepatocyte reservoirs such as bile-duct epithelium, mesangial cells of the kidney, pancreatic islet cells and lymphoid cells. When patients infected with HBV are treated with either interferon alpha or lamivudine, responses are variable and unpredictable. Sophisticated mathematical models analysing the dynamics of viral clearance during antiviral therapy have recently been applied to chronic hepatitis B. Typically complex profiles, rather than the usual biphasic responses seen with other diseases have been observed, indicating that antiviral efficacy requires substantila improvement. This may be achieved with combination chemotherapy. However, chronic hepatitis B is a complex and heterogeneous disease entity, and the challenge for the future is to define measurable end-points of treatment and address key virological issues such as the role of cccDNA and extra-hepatocyte replication in treatment failure. Clearly, new therapies and effective combination therapy protocols are urgently required in order to improve the present poor response rates in patients undergoing treatment.
Collapse
Affiliation(s)
- Sharon Lewin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
24
|
Abstract
AIM: Genetic polymorphism in enzymes of carcinogen metabolism has been found to have the influence on the susceptibility to cancer. Cytochrome P450 2E1 (CYP2E1) is considered to play an important role in the metabolic activation of procarcinogens such as N-nitrosoamines and low molecular weight organic compounds. The purpose of this study is to determine whether CYP450 2E1 polymorphisms are associated with risks of gastric cancer.
METHODS: We conducted a population based case-control study in Changle county, Fujian Province, a high-risk region of gastric cancer in China. Ninety-one incident gastric cancer patients and ninety-four healthy controls were included in our study. Datas including demographic characteristcs, diet intake, and alcohol and tobacco consumption of indivduals in our study were completed by a standardized questionnaire. PCR-RFLP revealed three genotypes:heterozygote (C1/C2) and two homozygotes (C1/C1 and C2/C2) in CYP2E1.
RESULTS: The frequency of variant genotypes (C1/C2 and C2/C2) in gastric cancer cases and controls was 36.3% and 24.5%, respectively. The rare homozygous C2/C2 genotype was found in 6 indivduals in gastric cancer group (6.6%), whereas there was only one in the control group (1.1%). However, there was no statistically significan difference between the two groups (two-tailed Fisher’s exact test, P = 0.066). Indivduals in gastric cancer group were more likely to carry genotype C1/C2 (odds ratio, OR = 1.50) and C2/C2 (OR = 7.34) than indivduals in control group (χ² = 4.597, for trend P = 0.032). The frequencies of genotypes with the C2 allele (C1/C2 and C2/C2 genotypes) were compared with those of genotypes without C2 allele (C1/C1 genotype) among indivduals in gastric cancer group and control group according to the pattern of gastric cancer risk factors. The results show that indivduals who exposed to these gastric cancer risk factors and carry the C2 allele seemed to have a higher risk of developing gastric cancer.
CONCLUSION: Polymorphism of CYP2E1 gene may have some effct in the development of gastric cancer in Changle county, Fujian Province.
Collapse
Affiliation(s)
- L Cai
- Department of Epidemiology, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | | | | |
Collapse
|
25
|
Hoffmann MM, Winkelmann BR, Wieland H, März W. The significance of genetic polymorphisms in modulating the response to lipid-lowering drugs. Pharmacogenomics 2001; 2:107-21. [PMID: 11368750 DOI: 10.1517/14622416.2.2.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The response to lipid-lowering drugs is modified by a number of factors like age, gender, concomitant disease and genetic determinants. Even within homogenous groups of patients, individual responses vary greatly. Until now, no clinical or biochemical parameter exists which predicts whether a subject will respond well to a particular lipid-lowering drug or, in the extreme case, will develop adverse, life-threatening effects (e.g., myositis or rhabdomyolysis). The recent advances in the human genome project promises to have a great impact on our understanding of lipid and lipoprotein metabolism and of the individual response to lipid-lowering drugs. Monogenetic disorders of the lipid metabolism produce severe clinical phenotypes, such as Tangier disease, but have a minor role in the evaluation of cardiovascular risk in the general population. On the other hand, several polymorphisms in genes involved in lipoprotein metabolism (e.g., apolipoprotein E) are associated with the plasma levels of lipoproteins, explaining a substantial fraction of the variance of LDL or HDL concentrations. In combination, the knowledge of these polymorphisms, further variants yet to be discovered and variants within the genes involved in the metabolism of lipid-lowering drugs will in the future allow these drugs to be selected according to the patients needs and thus increase both efficacy and cost-effectiveness of lipid-lowering regimes.
Collapse
Affiliation(s)
- M M Hoffmann
- Division of Clinical Chemistry, Department of Medicine, Albert-Ludwigs University, Hugstetter Str. 55, 79106 Freiburg, Germany
| | | | | | | |
Collapse
|
26
|
Kerb R, Hoffmeyer S, Brinkmann U. ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics 2001; 2:51-64. [PMID: 11258197 DOI: 10.1517/14622416.2.1.51] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transport by ATP-dependent efflux pumps, such as P-glycoprotein (PGP) and multi-drug resistance related proteins (MRPs), influences bioavailability and disposition of drugs. These efflux pumps serve as defence mechanisms and determine bioavailability and CNS concentrations of many drugs. However, despite the fact that substantial data have been accumulated on the structure, function and pharmacological role of ABC transporters and even though modification of PGP function is an important mechanism of drug interactions and adverse effects in humans, there is a striking lack of data on variability of the underlying genes. This review focuses on the human drug transporter proteins PGP (MDR1) and the multi-drug resistance proteins MRP1 and MRP2. An overview is provided of pharmacologically relevant genetic, structural and functional data as well as on hereditary polymorphisms, their phenotypical consequences and pharmacological implications.
Collapse
Affiliation(s)
- R Kerb
- Epidauros Biotechnology, Pharmacogenetics Laboratory, Am Neuland 1, D-82347 Bernried, Germany
| | | | | |
Collapse
|
27
|
Chevalier D, Lo-Guidice JM, Sergent E, Allorge D, Debuysère H, Ferrari N, Libersa C, Lhermitte M, Broly F. Identification of genetic variants in the human thromboxane synthase gene (CYP5A1). Mutat Res 2001; 432:61-7. [PMID: 11465543 DOI: 10.1016/s1383-5726(00)00004-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thromboxane synthase (CYP5A1) catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. It has been implicated in the patho-physiological process of a variety of diseases, such as atherosclerosis, myocardial infarction, stroke and asthma. On the basis of the hypothesis that variations of the CYP5A1 gene may play an important role in human diseases, we performed a screening for variations in the human CYP5A1 gene sequence. We examined genomic DNA from 200 individuals, for mutations in the promoter region, the protein encoding sequences and the 3'-untranslated region of the CYP5A1. Eleven polymorphisms have been identified in the CYP5A1 gene including eight missense mutations R61H, D161E, N246S, L357V, Q417E, E450K, T451N and R466Q. This is the first report of genetic variants in the human CYP5A1 altering the protein sequence. The effect of these variants on the metabolic activity of CYP5A1 remains to be further evaluated.
Collapse
Affiliation(s)
- D Chevalier
- Laboratoire de Biochimie et Biologie Moléculaire, Hĵpital Calmette et, Faculté de Médecine, Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stefanović M, Topić E, Ivanisević AM, Relja M, Korsić M. Genotyping of CYP2D6 in Parkinson's disease. Clin Chem Lab Med 2000; 38:929-34. [PMID: 11097352 DOI: 10.1515/cclm.2000.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease is characterized by progressive degradation of dopaminergic neurons. Cytochrome P450 CYP2D6 enzyme is one of the most investigated and highly polymorphic isoforms, which metabolizes many drugs and is also involved in the metabolism of dopamine. Using allele-specific multiplex PCR, we genotyped 186 subjects for CYP2D6 *3, *4, *6, *7, and *8 alleles in order to estimate allelic, genotype and predicted phenotype frequencies in the control and patient groups, and to investigate the possible statistical difference between Parkinson's disease patients (n=41) and healthy controls (n=145). Parkinson's disease patients were further divided into two subgroups according to Hoehn and Yahr staging of the disease (HY), i.e. groups with HY stage less than 2.5 (HY <2.5; n=27) and more than 2.5 (HY >2.5; n=14). A subgroup of Parkinson's disease patients exhibiting side effects such as "on-off" phenomenon and dyskinesia (both suggesting favorable response to therapy) were compared with a subgroup of patients showing no such response. The preliminary results of this study showed that only the prevalence of CYP2D6 *4 allele differed significantly between the PD patients and control group (20.7% vs. 11.0%; p=0.027; RR=2.1, 95%CI 1.113-3.994). In the HY >2.5 subgroup, the CYP2D6*4 allelic difference was even greater (25.0% vs. 11.0% in controls; p=0.062, RR=2.69, 95%CI 1.090-6.624). Genotype frequencies differed only in the HY >2.5 subgroup, however with a level of significance of p=0.095.
Collapse
Affiliation(s)
- M Stefanović
- Clinical Institute of Chemistry, School of Medicine, University of Zagreb & Sestre milosrdnice University Hospital, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|