1
|
Copping KJ, Callaghan MJ, Geesink GH, Gugusheff JR, McMillen IC, Rodgers RJ, Muhlhausler BS, Vithayathil MA, Perry VEA. Periconception and First Trimester Diet Modifies Appetite, Hypothalamic Gene Expression, and Carcass Traits in Bulls. Front Genet 2021; 12:720242. [PMID: 34539749 PMCID: PMC8448419 DOI: 10.3389/fgene.2021.720242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Nulliparous yearling beef heifers (n=360) were used to evaluate the effects of maternal dietary protein during the periconception and first trimester periods of gestation on postnatal growth, feedlot performance, carcass characteristics, and the expression of genes associated with appetite in the arcuate nucleus of their male progeny. Heifers were individually fed a diet of 1.18g crude protein (CP)/day High protein (HPeri) or 0.62g CP/day Low protein (LPeri) beginning 60days before conception. From 24 to 98days post-conception (dpc), half of each treatment group changed to the alternative post-conception diet and were fed 1.49g CP/day (HPost) or 0.88g CP/day (LPost) yielding four treatment groups in a 2×2 factorial design. From day 98 of gestation, heifers received a common diet until parturition. Calves were weaned at 183days and developed on pasture before feedlot entry. Bulls underwent a 70-day Residual Feed Intake (RFI) feedlot test commencing at 528days of age. Feedlot entry and final body weight (BW), feedlot average daily gain (ADG) and RFI were not different (p>0.05). Progeny of dams that had a change in diet (LPeri/HPost and HPeri/LPost) had 9% higher daily dry matter intake (DMI) during the RFI test (p<0.05) than progeny of dams that received low diet throughout both the peri-conception period and first trimester (LPeri/LPost). Further, mRNA expression of the appetite-stimulating agouti-related protein (AGRP) was increased in the arcuate nucleus of High Peri/LPost bulls (p<0.05). Longissimus dorsi muscle cross sectional area, carcass dressing percentage, and estimated retail beef yield (RBY) were all higher (p<0.05), and rump (P8) fat tended to be lower (p=0.07), for bulls from HPost dams despite no difference in carcass weight (p<0.05). This study is of commercial importance to the livestock industry as specific periods of maternal dietary supplementation may increase feed intake, enhance progeny muscling, and alter fat deposition leading to improvement in efficiency of meat production in beef cattle.
Collapse
Affiliation(s)
- Katrina J Copping
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Geert H Geesink
- School of Rural and Environmental Science, University of New England, Armidale, NSW, Australia
| | - Jessica R Gugusheff
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Raymond J Rodgers
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Beverly S Muhlhausler
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia.,Nutrition and Health Program, Health and Biosecurity Business Unit, CSIRO, Adelaide, SA, Australia
| | - Mini A Vithayathil
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Viv E A Perry
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Sartori ED, Sessim AG, Brutti DD, Lopes JF, McManus CM, Barcellos JOJ. Fetal programming in sheep: effects on pre- and postnatal development in lambs. J Anim Sci 2020; 98:5902497. [PMID: 32894763 DOI: 10.1093/jas/skaa294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
This systematic review and meta-analysis aim to summarize the effects of maternal undernutrition or overnutrition during pregnancy on fetal weight and morphometric measurements during pregnancy, at birth, and postnatal period in sheep. After completing the search, selection, and data extraction steps, the measure of effect was generated by the individual comparison of each indicator with the average of the control and treated group (undernutrition or overnutrition) using the DerSimonian and Laird method for random effects. Subgroup analyses were also performed for lambing order, litter size, sex, as well as level, timing, and duration of the intervention. Fetal weight during the first third of pregnancy was not affected by maternal undernutrition or overnutrition. On the other hand, undernutrition in the second and last third of gestation reduces the weight of the lamb both during pregnancy, at birth, and during the postnatal period, requiring at least 120 postnatal days to achieve the same weight as its contemporaries in the control treatment. However, this reduction in weight is not accompanied by reductions in morphometric measurements, demonstrating that the animals were lighter, but of equal size. In overnutrition, there is an increase in fetal weight in the second third of gestation. However, in the last third of the gestational period, there are no differences in fetal weight for the multiparous subgroup, but it was reduced in primiparous ewes. There are no effects of overnutrition on birth weight; however, this result is highly heterogeneous. Thus, maternal nutrition of ewe during pregnancy has effects on fetal and postnatal weight, but not on size. Furthermore, the effects of undernutrition are more homogeneous while overnutrition showed heterogeneous responses.
Collapse
Affiliation(s)
- Everton D Sartori
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amir G Sessim
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danielle D Brutti
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jusecléia F Lopes
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Concepta M McManus
- University of Brasilia, Darcy Ribeiro University Campus, Brasília, Distrito Federal, Brazil
| | - Júlio O J Barcellos
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
El-Haddad MA, Desai M, Gayle D, Ross MG. In Utero Development of Fetal Thirst and Appetite: Potential for Programming. ACTA ACUST UNITED AC 2016; 11:123-30. [PMID: 15051031 DOI: 10.1016/j.jsgi.2003.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thirst and appetite-mediated ingestive behavior develop and are likely programmed in utero, thus preparing for newborn and adult ingestive behavior. Fetal swallowing activity is markedly different from that of the adult, as spontaneous fetal swallowing occurs at a markedly (six-fold) higher rate compared with spontaneous adult drinking activity. This high rate of fetal swallowing is critical for the regulation of amniotic fluid volume and the development of the fetal gastrointestinal tract. Disordered fetal swallowing has been associated with both a decrease (oligohydramnios) and increase (polyhydramnios) in amniotic fluid volume. Both conditions are associated with a significant increase in perinatal morbidity and mortality, and limited treatment modalities are currently available. The mechanisms underlying the high rate of human fetal swallowing are regulated, in part, by tonic activity of central angiotensin II, glutamate N-methyl-D-aspartate receptors, and neuronal nitric oxide synthase. Fetal hypertonicity-mediated dipsogenesis is likely programmed in utero, as offspring of water-restricted ewes demonstrate a programmed syndrome of plasma hypertonicity, with significant hematologic and cardiovascular alterations. Similar to dipsogenic mechanisms, peripheral and central fetal orexic mechanisms also develop in utero, as demonstrated by increased fetal swallowing after both oral sucrose infusion and central injection of neuropeptide Y. The role of leptin in regulating fetal ingestive behavior is interesting because, contrary to actions in adults, leptin does not suppress fetal ingestive behavior. Teleologically, this may be of value during the newborn period, as unopposed appetite stimulatory mechanisms may facilitate rapid fetal and newborn weight gain. An adverse intrauterine environment, with altered fetal orexic factors during the critical developmental period of fetal life, may alter the normal setpoints of appetitive behavior and potentially lead to programming of adulthood hyperphagia and obesity. Further research is needed to delineate the mechanistic relationship between the intrauterine environment and the development of the setpoints of adult appetite and thirst.
Collapse
Affiliation(s)
- M A El-Haddad
- Perinatal Research Laboratories, Harbor/UCLA Medical Center, UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
4
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
5
|
Bell AW, Greenwood PL. Prenatal origins of postnatal variation in growth, development and productivity of ruminants. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review provides an update on recent research into the effects of maternal nutrition on fetal biology and the growth, development and productivity of progeny in postnatal life of ruminant livestock. Evidence is summarised for effects on postnatal growth and body composition, feed intake and efficiency, carcass characteristics and meat quality, wool production, reproduction and lactation performance. In general, these demonstrated effects are not large in relation to the effects of postnatal nutrition and other environmental influences. The mechanisms underpinning the above production outcomes are briefly discussed in terms of systemic endocrine and metabolic responses, and cellular and molecular effects in skeletal muscle, bone, adipose tissue, wool follicles and brain of fetal, neonatal and adult progeny. Treatments observed to elicit tissue responses include maternal under- and overnutrition at various stages of pregnancy and placental insufficiency caused by increased litter size, chronic maternal heat stress and premating carunclectomy in sheep. The as yet meagre evidence for epigenetic mediation of intergenerational effects in ruminants is considered, as is the likelihood that other, more conventional explanations may suffice in some cases. Finally, evidence is summarised for the proposition that the placenta is not merely a passive conduit for nutrient transfer from dam to fetus, but plays an active role in buffering the effects of variations in maternal nutrition on fetal growth and development, and thence, postnatal outcomes.
Collapse
|
6
|
Adam CL, Williams PA, Milne JS, Aitken RP, Wallace JM. Orexigenic Gene Expression in Late Gestation Ovine Foetal Hypothalamus is Sensitive to Maternal Undernutrition and Realimentation. J Neuroendocrinol 2015. [PMID: 26212239 DOI: 10.1111/jne.12302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adverse nutritional effects on developing foetal hypothalamic appetitive pathways may contribute to programmed hyperphagia and obesity in intra-uterine growth-restricted, low birth weight offspring. In the present study, for the first time, hypothalamic gene expression for primary orexigenic and anorexigenic genes was examined in late gestation ovine foetuses (130 days; term=145 days) whose mothers were undernourished (UN) or well-nourished (C) throughout pregnancy, or transferred from UN to C on day 90 (UN-C). Pregnancies resulted from singleton embryo transfer into adolescent growing ewes. Body weight, carcass fat content and perirenal adipose tissue (PAT) mass were all lower for UN (n=9) than C (n=7) and intermediate for UN-C foetuses (n=6), with no effect of sex. PAT leptin gene expression (by the reverse transcriptase-polymerase chain reaction) was lower in UN than C and UN-C groups, and lower in males than females. Gene expression (by in situ hybridisation with radiolabelled riboprobes) in the arcuate nucleus was greater in UN than C foetuses for neuropeptide Y (NPY), agouti-related peptide (AGRP) and leptin receptor (OBRb) but not different for pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript. Gene expression in UN-C foetuses was intermediate for NPY and AGRP and not different from C foetuses for OBRb. Gene expression for NPY, AGRP and OBRb correlated negatively with foetal carcass fat content and with PAT leptin gene expression across all groups. Males had greater mRNA expression for AGRP than females, with NPY and OBRb showing similar trends. Therefore, maternal undernutrition throughout pregnancy increased orexigenic gene expression in the late gestation foetal hypothalamus, and expression levels were largely normalised by improved maternal nutrition in the last third of pregnancy. These findings may have implications for avoiding or correcting prenatal programming of postnatal hyperphagia and obesity.
Collapse
Affiliation(s)
- C L Adam
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - P A Williams
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - J S Milne
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - R P Aitken
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - J M Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Dellschaft NS, Alexandre-Gouabau MC, Gardner DS, Antignac JP, Keisler DH, Budge H, Symonds ME, Sebert SP. Effect of pre- and postnatal growth and post-weaning activity on glucose metabolism in the offspring. J Endocrinol 2015; 224:171-82. [PMID: 25416820 DOI: 10.1530/joe-14-0600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Maternal caloric restriction during late gestation reduces birth weight, but whether long-term adverse metabolic outcomes of intra-uterine growth retardation (IUGR) are dependent on either accelerated postnatal growth or exposure to an obesogenic environment after weaning is not established. We induced IUGR in twin-pregnant sheep using a 40% maternal caloric restriction commencing from 110 days of gestation until term (∼147 days), compared with mothers fed to 100% of requirements. Offspring were reared either as singletons to accelerate postnatal growth or as twins to achieve standard growth. To promote an adverse phenotype in young adulthood, after weaning, offspring were reared under a low-activity obesogenic environment with the exception of a subgroup of IUGR offspring, reared as twins, maintained in a standard activity environment. We assessed glucose tolerance together with leptin and cortisol responses to feeding in young adulthood when the hypothalamus was sampled for assessment of genes regulating appetite control, energy and endocrine sensitivity. Caloric restriction reduced maternal plasma glucose, raised non-esterified fatty acids, and changed the metabolomic profile, but had no effect on insulin, leptin, or cortisol. IUGR offspring whose postnatal growth was enhanced and were obese showed insulin and leptin resistance plus raised cortisol. This was accompanied by increased hypothalamic gene expression for energy and glucocorticoid sensitivity. These long-term adaptations were reduced but not normalized in IUGR offspring whose postnatal growth was not accelerated and remained lean in a standard post-weaning environment. IUGR results in an adverse metabolic phenotype, especially when postnatal growth is enhanced and offspring progress to juvenile-onset obesity.
Collapse
Affiliation(s)
- Neele S Dellschaft
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Marie-Cecile Alexandre-Gouabau
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - David S Gardner
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Jean-Philippe Antignac
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Duane H Keisler
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Helen Budge
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Michael E Symonds
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Sylvain P Sebert
- Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA Early Life Research UnitAcademic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UKINRA and University of NantesUMR-1280 Physiologie des Adaptations Nutritionnelles, CHU Hôtel Dieu, 44093 Nantes cedex 1, FranceSchool of Veterinary Medicine and ScienceThe University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKInstitute of Health SciencesCentre for Life-Course Epidemiology, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, FinlandOnirisLaboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, USC INRA 1329, Nantes, FranceDepartment of Animal ScienceUniversity of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
8
|
Ginane C, Bonnet M, Baumont R, Revell DK. Feeding behaviour in ruminants: a consequence of interactions between a reward system and the regulation of metabolic homeostasis. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14481] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Feeding behaviour, through both diet selection and food intake, is the predominant way that an animal attempts to fulfil its metabolic requirements and achieve homeostasis. In domestic herbivores across the wide range of production practices, voluntary feed intake is arguably the most important factor in animal production, and a better understanding of systems involved in intake regulation can have important practical implications in terms of performance, health and welfare. In this review, we provide a conceptual framework that highlights the critical involvement and interconnections of two major regulatory systems of feeding behaviour: the reward and the homeostatic systems. A review of the literature on ruminants and rodents provides evidence that feeding behaviour is not only shaped by homeostatic needs but also by hedonic and motivational incentives associated with foods through experiences and expectations of rewards. The different brain structures and neuronal/hormonal pathways involved in these two regulatory systems is evidence of their different influences on feeding behaviours that help explain deviation from behaviour based solely on satisfying nutritional needs, and offers opportunities to influence feeding motivation to meet applied goals in livestock production. This review further highlights the key contribution of experience in the short (behavioural learning) and long term (metabolic learning), including the critical role of fetal environment in shaping feeding behaviour both directly by food cue–consequence pairings and indirectly via modifications of metabolic functioning, with cascading effects on energy balance and body reserves and, consequently, on feeding motivation.
Collapse
|
9
|
Cardoso RC, Alves BRC, Prezotto LD, Thorson JF, Tedeschi LO, Keisler DH, Amstalden M, Williams GL. Reciprocal changes in leptin and NPY during nutritional acceleration of puberty in heifers. J Endocrinol 2014; 223:289-98. [PMID: 25326602 DOI: 10.1530/joe-14-0504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Feeding a high-concentrate diet to heifers during the juvenile period, resulting in increased body weight (BW) gain and adiposity, leads to early-onset puberty. In this study, we tested the hypothesis that the increase in GnRH/LH release during nutritional acceleration of puberty is accompanied by reciprocal changes in circulating leptin and central release of neuropeptide Y (NPY). The heifers were weaned at 3.5 months of age and fed to gain either 0.5 (Low-gain; LG) or 1.0 kg/day (High-gain; HG) for 30 weeks. A subgroup of heifers was fitted surgically with third ventricle guide cannulas and was subjected to intensive cerebrospinal fluid (CSF) and blood sampling at 8 and 9 months of age. Mean BW was greater in HG than in LG heifers at week 6 of the experiment and remained greater thereafter. Starting at 9 months of age, the percentage of pubertal HG heifers was greater than that of LG heifers, although a replicate effect was observed. During the 6-h period in which CSF and blood were collected simultaneously, all LH pulses coincided with or shortly followed a GnRH pulse. At 8 months of age, the frequency of LH pulses was greater in the HG than in the LG group. Beginning at 6 months of age, concentrations of leptin were greater in HG than in LG heifers. At 9 months of age, concentrations of NPY in the CSF were lesser in HG heifers. These observations indicate that increased BW gain during juvenile development accelerates puberty in heifers, coincident with reciprocal changes in circulating concentrations of leptin and hypothalamic NPY release.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Bruna R C Alves
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Ligia D Prezotto
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Jennifer F Thorson
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Luis O Tedeschi
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Duane H Keisler
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Marcel Amstalden
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Gary L Williams
- Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA Animal Reproduction LaboratoryTexas A&M AgriLife Research Station, 3507 Highway 59E, Beeville, Texas 78102, USADepartment of Animal ScienceKleberg Center, Texas A&M University, College Station, Texas 77843, USADivision of Animal SciencesAnimal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
10
|
Crespi EJ, Unkefer MK. Development of food intake controls: neuroendocrine and environmental regulation of food intake during early life. Horm Behav 2014; 66:74-85. [PMID: 24727079 DOI: 10.1016/j.yhbeh.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/18/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The development of neuroendocrine regulation of food intake during early life has been shaped by natural selection to allow for optimal growth and development rates needed for survival. In vertebrates, neonates or early larval forms typically exhibit "feeding drive," characterized by a developmental delay in 1) responsiveness of the hypothalamus to satiety signals (e.g., leptin, melanocortins) and 2) sensitivity to environmental cues that suppress food intake. Homeostatic regulation of food intake develops once offspring transition to later life history stages when growth is slower, neuroendocrine systems are more mature, and appetite becomes more sensitive to environmental or social cues. Across vertebrate groups, there is a tremendous amount of developmental plasticity in both food intake regulation and stress responsiveness depending on the environmental conditions experienced during early life history stages or by pregnant/brooding mothers. This plasticity is mediated through the organizing effects of hormones acting on the food intake centers of the hypothalamus during development, which alter epigenetic expression of genes associated with ingestive behaviors. Research is still needed to reveal the mechanisms through which environmental conditions during development generate and maintain these epigenetic modifications within the lifespan or across generations. Furthermore, more research is needed to determine whether observed patterns of plasticity are adaptive or pathological. It is clear, however, that developmental programming of food intake has important effects on fitness, and therefore, has ecological and evolutionary implications.
Collapse
Affiliation(s)
- Erica J Crespi
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Margaret K Unkefer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Ross MG, Desai M. Developmental Programming of Appetite/Satiety. ANNALS OF NUTRITION AND METABOLISM 2014; 64 Suppl 1:36-44. [DOI: 10.1159/000360508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
McGillick EV, Orgeig S, McMillen IC, Morrison JL. The fetal sheep lung does not respond to cortisol infusion during the late canalicular phase of development. Physiol Rep 2013; 1:e00130. [PMID: 24400136 PMCID: PMC3871449 DOI: 10.1002/phy2.130] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022] Open
Abstract
The prepartum surge in plasma cortisol concentrations in humans and sheep promotes fetal lung and surfactant system maturation in the support of air breathing after birth. This physiological process has been used to enhance lung maturation in the preterm fetus using maternal administration of betamethasone in the clinical setting in fetuses as young as 24 weeks gestation (term = 40 weeks). Here, we have investigated the impact of fetal intravenous cortisol infusion during the canalicular phase of lung development (from 109- to 116-days gestation, term = 150 ± 3 days) on the expression of genes regulating glucocorticoid (GC) activity, lung liquid reabsorption, and surfactant maturation in the very preterm sheep fetus and compared this to their expression near term. Cortisol infusion had no impact on mRNA expression of the corticosteroid receptors (GC receptor and mineralocorticoid receptor) or HSD11B-2, however, there was increased expression of HSD11B-1 in the fetal lung. Despite this, cortisol infusion had no effect on the expression of genes involved in lung sodium (epithelial sodium channel -α, -β, or -γ subunits and sodium–potassium ATPase-β1 subunit) or water (aquaporin 1, 3, and 5) reabsorption when compared to the level of expression during exposure to the normal prepartum cortisol surge. Furthermore, in comparison to late gestation, cortisol infusion does not increase mRNA expression of surfactant proteins (SFTP-A, -B, and -C) or the number of SFTP-B-positive cells present in the alveolar epithelium, the cells that produce pulmonary surfactant. These data suggest that there may be an age before which the lung is unable to respond biochemically to an increase in fetal plasma cortisol concentrations.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001 ; Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| |
Collapse
|
13
|
Jana B, Kozłowska A, Wojtkiewicz J, Majewski M. Effect of the denervation of porcine ovaries on dexamethasone-induced cyst formation. Acta Vet Hung 2013; 61:220-33. [PMID: 23661390 DOI: 10.1556/avet.2013.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we have shown that the activity of noradrenergic nerve fibres increased and the steroid content changed in porcine ovaries with dexamethasone-(DXM-) induced polycystic status. To better understand the role of the ovarian nerves in the formation of cystic status, the morphology and steroidogenic activity of the ovaries of DXM-treated gilts after denervation of the gonads were investigated in this study. Ovarian denervation was performed on day 3 of the first studied oestrous cycle and then, on days 7-21 of the cycle, DXM was administered. Following neurectomy and DXM treatment, cysts, medium-sized follicles and corpora lutea were not present, while the number of small-sized follicles increased. Denervation and DXM application led to a reduction in the number of dopamine-β-hydroxylase- and/or neuropeptide Y-immunoreactive nerve fibres. The concentrations of progesterone, androstenedione, testosterone and oestradiol-17β in the follicular fluid and/or in the wall of small-sized follicles of the experimental gilts were lower than in the controls. A similar result was demonstrated for P450scc, 3β-HSD and P450arom protein contents in the small follicles. Our data showed that DXM was not able to stimulate the formation of cysts in denervated porcine ovaries, indicating that the ovarian peripheral nerves might participate in the aetiopathogenesis of polycystic status.
Collapse
Affiliation(s)
- Barbara Jana
- 1 Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences Division of Reproductive Biology Tuwima 10 10-748 Olsztyn Poland
| | | | - Joanna Wojtkiewicz
- 3 University of Warmia and Mazury Department of Neurology and Neurosurgery, Faculty of Medical Sciences Olsztyn Poland
| | - Mariusz Majewski
- 2 University of Warmia and Mazury Department of Human Physiology Olsztyn Poland
| |
Collapse
|
14
|
Crespi EJ, Denver RJ. Developmental reversal in neuropeptide Y action on feeding in an amphibian. Gen Comp Endocrinol 2012; 177:348-52. [PMID: 22561289 DOI: 10.1016/j.ygcen.2012.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (NPY) is expressed in the hypothalamus where it exerts orexigenic actions within the feeding control circuit. While NPY stimulates feeding in juvenile and adult animals, it is not known whether NPY influences food intake at earlier life stages. We investigated a role for NPY in regulating feeding at two stages of the life cycle of an amphibian, the Western spadefoot toad Spea hammondii. We administered NPY by intracerebroventricular (i.c.v.) injection to juvenile toads or prometamorphic tadpoles, and monitored locomotion, feeding behavior and/or food intake. Injection of NPY (20 or 200 ng/g BW) into juvenile toads decreased the latency to, and increased the number of strikes at prey, and the number of crickets eaten compared to uninjected or vehicle-injected controls. By contrast, injection of NPY (0.02-20 ng/g BW) into prometamorphic tadpoles caused a dose-dependent decrease in time spent foraging compared to controls. Blocking NPY signaling in the prometamorphic tadpole brain by i.c.v. injection of a general NPY receptor antagonist increased foraging, and partly blocked the action of exogenous NPY on foraging. Taken together, our findings show a developmental reversal in NPY actions on feeding in an amphibian, with the peptide having a characteristic orexigenic action in the juvenile toad, but an inhibitory action on foraging in the prometamorphic tadpole. The anorexigenic action of NPY in the tadpole correlates with a decrease in feeding that occurs at metamorphic climax when the tadpole's gut and cranium remodels for the transition to a carnivorous diet.
Collapse
Affiliation(s)
- Erica J Crespi
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
15
|
Laporte-Broux B, Roussel S, Ponter AA, Perault J, Chavatte-Palmer P, Duvaux-Ponter C. Short-term effects of maternal feed restriction during pregnancy on goat kid morphology, metabolism, and behavior1. J Anim Sci 2011; 89:2154-63. [DOI: 10.2527/jas.2010-3374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
16
|
Rojas J, Arraiz N, Aguirre M, Velasco M, Bermúdez V. AMPK as Target for Intervention in Childhood and Adolescent Obesity. J Obes 2010; 2011:252817. [PMID: 21318055 PMCID: PMC3034972 DOI: 10.1155/2011/252817] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/25/2010] [Accepted: 10/15/2010] [Indexed: 02/07/2023] Open
Abstract
Childhood obesity is a major worldwide health problem. Intervention programs to ameliorate the rate of obesity have been designed and implemented; yet the epidemic has no end near in sight. AMP-activated protein kinase (AMPK) has become one of the most important key elements in energy control, appetite regulation, myogenesis, adipocyte differentiation, and cellular stress management. Obesity is a multifactorial disease, which has a very strong genetic component, especially epigenetic factors. The intrauterine milieu has a determinant impact on adult life, since the measures taken for survival are kept throughout life thanks to epigenetic modification. Nutrigenomics studies the influence of certain food molecules on the metabolome profile, raising the question of an individualized obesity therapy according to metabolic (and probably) genetic features. Metformin, an insulin sensitizing agent, its known to lower insulin resistance and enhance metabolic profile, with an additional weight reduction capacity, via activation of AMPK. Exercise is coadjutant for lifestyle modifications, which also activates AMPK in several ways contributing to glucose and fat oxidation. The following review examines AMPK's role in obesity, applying its use as a tool for childhood and adolescent obesity.
Collapse
Affiliation(s)
- Joselyn Rojas
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| | - Nailet Arraiz
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| | - Miguel Aguirre
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| | - Manuel Velasco
- Clinical Pharmacologic Unit, Vargas Medical School, Central University of Venezuela, Caracas 1010, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| |
Collapse
|
17
|
De Blasio MJ, Blache D, Gatford KL, Robinson JS, Owens JA. Placental restriction increases adipose leptin gene expression and plasma leptin and alters their relationship to feeding activity in the young lamb. Pediatr Res 2010; 67:603-8. [PMID: 20220548 DOI: 10.1203/pdr.0b013e3181dbc471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Low birth weight and catch-up growth predict increased adiposity in children and adults. This may be due in part to leptin resistance, as adults who were born small exhibit increased plasma leptin concentration relative to adiposity. Placental restriction (PR), a major cause of intrauterine growth restriction, reduces size at birth and increases feeding activity and adiposity by 6 wk in sheep. We hypothesized that PR would increase plasma leptin concentration and alter its relationship with feeding activity and adiposity in young lambs. Body size, plasma leptin, feeding activity, adiposity, leptin, and leptin receptor gene expression in adipose tissue were measured (12 control, 12 PR). PR reduced size at birth and increased adiposity. Plasma leptin concentration decreased with age, but to a lesser extent after PR and correlated positively with adiposity similarly in control and PR. PR increased plasma leptin concentration and perirenal adipose tissue leptin expression. Feeding activity correlated negatively with plasma leptin concentration in controls, but positively after PR. PR increases adipose tissue leptin expression and plasma leptin concentration, however, this increased abundance of peripheral leptin does not inhibit feeding activity (suckling event frequency), suggesting PR programs resistance to appetite and energy balance regulation by leptin, leading to early onset obesity.
Collapse
Affiliation(s)
- Miles J De Blasio
- Robinson Institute & School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | |
Collapse
|
18
|
Sébert SP, Hyatt MA, Chan LLY, Yiallourides M, Fainberg HP, Patel N, Sharkey D, Stephenson T, Rhind SM, Bell RC, Budge H, Gardner DS, Symonds ME. Influence of prenatal nutrition and obesity on tissue specific fat mass and obesity-associated (FTO) gene expression. Reproduction 2010; 139:265-74. [DOI: 10.1530/rep-09-0173] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent discovery of an association between body composition, energy intake and the fat mass and obesity-associated (FTO) gene represents a promising new therapeutic target in obesity prevention. In a well, pre-established large animal model, we investigated the regulation ofFTOgene expression under conditions either leading to obesity or increased risk of obesity related disorders: i) a sedentary ‘Western’ lifestyle and ii) prenatal exposure to nutrient restriction. Pregnant sheep were either fed to fully meet their nutritional requirements throughout gestation or 50% of this amount from early-to-mid gestation. Following weaning, offspring were either made obese through exposure to a sedentary obesogenic environment or remained lean. A significant positive relationship between placentalFTOgene expression and fetal weight was found at 110 days gestation. In both the newborn and adult offspring, the hypothalamus was the major site ofFTOgene expression. HypothalamicFTOgene expression was upregulated by obesity and was further increased by prenatal nutrient restriction. Importantly, we found a strong negative relationship between the hypothalamicFTOgene expression and food intake in lean animals only that may imply FTO as a novel controller of energy intake. In contrast,FTOgene expression in the heart was downregulated in obese offspring born to nutrient restricted mothers. In addition,FTOgene expression was unaffected by obesity or prenatal diet in insulin-dependent tissues, where it changed with age possibly reflecting adaptations in cellular energetic activity. These findings extend information gained from human epidemiology and provide new insights into the regulation ofin vivoenergy metabolism to prevent obesity.
Collapse
|
19
|
Symonds ME, Budge H, Stephenson T, Gardner DS. Leptin, Fetal Nutrition, and Long-Term Outcomes for Adult Hypertension. ACTA ACUST UNITED AC 2009; 12:73-9. [PMID: 16036318 DOI: 10.1080/10623320590933860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One factor contributing to later hypertension, particularly in response to nutritional challenges is excess fat deposition around the kidney. In this review we discuss the hypothesis that these adverse conditions can be entrained by exposure of the conceptus to maternal nutrient restriction in early pregnancy. To this end we have shown in sheep that maternal nutrient restriction coincident with the time of embryogenesis and placental growth results in an early increase in fetal fat mass around the kidney that persists into later life. This is accompanied by an increase in leptin mRNA abundance and growth factor sensitivity. These adaptations occur in conjunction with reduced maternal plasma cortisol, thyroid hormones and leptin concentrations over the period of nutrient restriction. Some, but not all of these effects on fat development are accompanied by long term cardiovascular adaptations. As young adults, offspring from mothers nutrient restricted between early to mid gestation exhibit a leftward resetting, and blunting, of the cardiovascular baroreflex that appears to be mediated centrally through altered regional angiotensinogen II activity. At the same time, fat mass remains raised in nutrient restricted offspring. These animals demonstrate a marked increase in plasma leptin following sympathetic stimulation which is not observed in controls that indicates resetting of adipocyte sensitivity to stress. In conclusion, global nutrient restriction confined to the periods of embryonic and placental development therefore, programmes adult physiology, which may enhance predisposition to later disease given the appropriate environmental stimuli.
Collapse
Affiliation(s)
- Michael E Symonds
- Centre for Reproduction and Early Life, Institute of Clinical Research, University Hospital, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Abstract
The intrauterine milieu impacts fetal growth directly during gestation. It is now clear, however, that postnatal phenotype is also influenced by prenatal conditions. A variety of disorders in the adult have been linked to fetal size at birth; these include glucose intolerance, cardiovascular disease, and the subjects of this review, obesity and hypertension. We will review recent data regarding these associations and the pathophysiologic mechanisms underlying them in humans as well as in animal models.
Collapse
Affiliation(s)
- Donald A Novak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
21
|
Sébert SP, Hyatt MA, Chan LLY, Patel N, Bell RC, Keisler D, Stephenson T, Budge H, Symonds ME, Gardner DS. Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity. Endocrinology 2009; 150:634-41. [PMID: 18818297 PMCID: PMC2875166 DOI: 10.1210/en.2008-0542] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The impact of maternal nutrient restriction during early-to-midgestation, a period coinciding with early fetal brain development, on appetite regulation and energy balance in the offspring after juvenile obesity was examined. Pregnant sheep were either fed to meet fully their nutritional requirements throughout gestation or 50% of this amount between 30 and 80 d gestation. After weaning, offspring were either made obese through exposure to a sedentary obesogenic environment or remained lean. Maternal nutrient restriction had no effect on birth weight or subsequent growth. At 1 wk of age, only, gene expression for neuropeptide Y in the hypothalamus was reduced in nutrient-restricted offspring. By 1 yr of age, all O animals had increased plasma leptin, nonesterified fatty acids, and insulin, with the latter effect amplified in NR offspring. Fasting plasma glucose, triglycerides, and cortisol were unaffected by obesity. The entrained reduction in physical activity that led to obesity persisted when all animals were maintained within individual pens. However, NRO offspring exhibited reduced daily food intake and were, therefore, no longer in positive "energy balance." This adaptation was accompanied by elevated hypothalamic gene expression for the melanocortin-4 and insulin receptors, AMP-activated kinase, and acetyl coenzyme A carboxylase alpha. In conclusion, nutrient restriction specifically targeted over the period of early fetal brain development contributes to a profoundly different adaptation in energy balance after juvenile obesity. The extent to which this adaptive response may benefit the offspring or result in an exacerbated risk of type 2 diabetes remains to be established.
Collapse
Affiliation(s)
- S P Sébert
- Centre for Reproduction and Early Life, Institute for Clinical Research, University Hospital, Nottingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The early origins of later obesity: pathways and mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 646:71-81. [PMID: 19536665 DOI: 10.1007/978-1-4020-9173-5_8] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excess bodyweight is the sixth most important risk factor contributing to the overall burden of disease worldwide. In excess of a billion adults and 10% of all children are now classified as overweight or obese. The main adverse consequences of obesity are the metabolic syndrome, cardiovascular disease and type 2 diabetes and a diminished average life expectancy. It has been argued that the complex pathological processes underlying obesity reflect environmental and genetic interactions, and individuals from disadvantaged communities seem to have greater risks than more affluent individuals partly because of fetal and postnatal programming interactions. Abundant evidence indicates that the obesity epidemic reflects progressive secular and age-related decreases in physical activity, together with passive over-consumption of energy dense foods despite neurobiological processes designed to regulate energy balance. The difficulty in treating obesity, however, highlights the deficits in our current understanding of the pathophysiology which underlies the initiation and chronic nature of this disorder. Large population based studies in Europe and North America in healthy women and in women with gestational diabetes have demonstrated that there are clear relationships between maternal and fetal nutrient supply, fetal growth patterns and the subsequent risk of obesity and glucose intolerance in childhood and adult life. In this review we discuss the impact of fetal nutrition on the biology of the developing adipocyte and brain and the growing evidence base supporting an intergenerational cycle of obesity.
Collapse
|
23
|
Huang JX, Luo XG, Lu L, Liu B. Effects of age and strain on yolk sac utilization and leptin levels in newly hatched broilers. Poult Sci 2008; 87:2647-52. [PMID: 19038822 DOI: 10.3382/ps.2007-00462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The dynamics of yolk sac utilization and changes of leptin levels in serum, hypothalamus, and yolk sac with age were investigated in Beijing-You (BY) and Arbor Acres (AA) male broilers during 11 d after hatch. The growth rate and feed intake of BY broilers were lower (P < 0.0001) than those of AA broilers, but the dynamics of the weights and total energy contents of yolk sacs were similar between both strains and decreased exponentially with age. Leptin levels in yolk sacs of both broiler strains increased with age during 3 d posthatching. Compared with those of AA broilers, leptin levels in yolk sacs of BY broilers were greater (P <or= 0.0413) on d 0 and 3. There was no change in serum leptin levels in BY broilers, whereas in AA broilers, serum leptin levels on d 1 and 3 were greater (P <or= 0.0306) than that on d 0 and then decreased with age. Compared with AA broilers, BY broilers showed lower (P <or= 0.0254) levels of serum leptin on d 1 and 3. Hypothalamic leptin levels of both strains decreased with age except AA broilers on d 0. Hypothalamic neuropeptide Y (NPY) levels of BY and AA broilers increased with age until d 7 and then decreased. There were no differences in hypothalamic leptin and NPY levels between both strains during 11 d after hatch. Correlation analysis showed that average daily feed intake had a negative correlation with serum and hypothalamic leptin and positive correlation with hypothalamic NPY. Our results indicated that the dynamics of yolk sac utilization were similar between BY and AA broilers and decreased exponentially with age. The developmental changes of leptin and NPY in serum and hypothalamus with age varied in parameter and strain, and both signal molecules might be involved in the early programming of feed intake in chickens, but the mechanisms need further studies.
Collapse
Affiliation(s)
- J X Huang
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100094, China
| | | | | | | |
Collapse
|
24
|
Mühlhäusler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity: The brain. Organogenesis 2008; 4:144-52. [PMID: 19279726 PMCID: PMC2634588 DOI: 10.4161/org.4.3.6503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 12/16/2022] Open
Abstract
The increasing incidence of obesity in the developed and developing world in the last decade has led to a need to define our understanding of the physiological mechanisms which can predispose individuals to weight gain in infancy, childhood and adulthood. There is now a considerable body of evidence which has shown that the pathway to obesity may begin very early in life, and that exposure to an inappropriate level of nutrition during prenatal and/or early postnatal development can predispose individuals to obesity in later life The brain is at the heart of the regulation of appetite and food preferences, and it is increasingly being recognized that the development of central appetitive structures is acutely sensitive to the nutritional environment both before and immediately after birth. This review will summarize the body of work which has highlighted the critical role of the brain in the early origins of obesity and presents some perspectives as to the potential application of these research findings in the clinical setting.
Collapse
Affiliation(s)
- Beverly Sara Mühlhäusler
- Early Origins of Adult Health Research Group; Sansom Institute; University of South Australia; Adelaide Australia
| | | | | |
Collapse
|
25
|
Adam CL, Findlay PA, Chanet A, Aitken RP, Milne JS, Wallace JM. Expression of energy balance regulatory genes in the developing ovine fetal hypothalamus at midgestation and the influence of hyperglycemia. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1895-900. [DOI: 10.1152/ajpregu.00163.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence suggests that the prenatal nutritional environment influences the risk of developing obesity, a major health problem worldwide. It is hypothesized that fetal nutrition influences the developing neuroendocrine hypothalamus, the integrative control center for postnatal energy balance regulation. The present aim was to determine whether relevant hypothalamic genes are expressed in midgestation and whether they are nutritionally (glucose) sensitive at this time. Hypothalami from a cohort of 81-day singleton sheep fetuses, with varying glycemia by virtue of maternal dietary and/or growth hormone treatment, were subject to in situ hybridization analysis for primary orexigenic, anorexigenic, and related receptor genes (term = 147 days, n = 24). Neuropeptide Y, agouti-related peptide, proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), and insulin receptor mRNAs were all localized in the hypothalamic arcuate nucleus (ARC) of all fetuses, whereas leptin receptor mRNA was expressed more abundantly in the ventromedial hypothalamic nucleus. ARC expression levels of POMC and CART genes, but none of the other genes, were positively correlated with fetal plasma glucose concentrations. Therefore, key central components of adult energy balance regulation were already present as early as midgestation (equivalent to 22 wk in humans), and two anorexigenic components were upregulated by elevated glycemia. Such changes provide a potential mechanism for the prenatal origins of postnatal energy balance dysregulation and obesity.
Collapse
|
26
|
McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL, Morrison JL. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol 2008; 102:82-9. [PMID: 18226059 DOI: 10.1111/j.1742-7843.2007.00188.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 'developmental origins of adult health and disease' hypothesis stated that environmental factors, particularly maternal undernutrition, act in early life to programme the risks for adverse health outcomes, such as cardiovascular disease, obesity and the metabolic syndrome in adult life. Early physiological tradeoffs, including activation of the foetal hypothalamo-pituitary-adrenal (HPA) axis, confer an early fitness advantage such as foetal survival, while incurring delayed health costs. We review the evidence that such tradeoffs are anticipated from conception and that the periconceptional nutritional environment can programme the developmental trajectory of the stress axis and the systems that maintain and regulate arterial blood pressure. There is also evidence that restriction of placental growth and function, results in an increased dependence of the maintenance of arterial blood pressure on the sequential recruitment of the sympathetic nervous system and HPA axis. While the 'early origins of adult disease' hypothesis has focussed on the impact of maternal undernutrition, an increase in maternal nutritional intake and in maternal body mass intake has become more prevalent in developed countries. Exposure to overnutrition in foetal life results in a series of central and peripheral neuroendocrine responses that in turn programme development of the fat cell and of the central appetite regulatory system. While the physiological responses to foetal undernutrition result in the physiological trade off between foetal survival and poor health outcomes that emerge after reproductive senescence, exposure to early overnutrition results in poor health outcomes that emerge in childhood and adolescence. Thus, the effects of early overnutrition can directly impact on reproductive fitness and on the health of the next generation. In this context, the physiological responses to relative overnutrition in early life may directly contribute to an intergenerational cycle of obesity.
Collapse
Affiliation(s)
- I Caroline McMillen
- Early Origins of Adult Health Research Group, Sansom Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Igosheva N, Taylor PD, Poston L, Glover V. Prenatal stress in the rat results in increased blood pressure responsiveness to stress and enhanced arterial reactivity to neuropeptide Y in adulthood. J Physiol 2007; 582:665-74. [PMID: 17495046 PMCID: PMC2075315 DOI: 10.1113/jphysiol.2007.130252] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown previously that stress in the pregnant rat leads to a heightened cardiovascular response to restraint in adult offspring. The present study was undertaken to explore further the persistent cardiovascular effects of prenatal stress, with a focus on peripheral vascular function. Sprague-Dawley female rats were exposed to restraint/bright light three times daily in the last week of pregnancy. Litters from stressed and control females were cross-fostered to control dams to eliminate possible effects of maternal stress on nursing behaviour. At 120 days, offspring cardiovascular variables were measured by radiotelemetry. Reactivity of mesenteric small arteries was assessed by myography, and responses to electrical field stimulation determined. Resting cardiovascular parameters in prenatally stressed (PS) offspring were similar to controls but PS rats showed a greater increase in systolic blood pressure following restraint stress (P<0.05). Recovery was also prolonged in PS animals compared with controls and was of longer duration in PS females than in PS males (P<0.05). Adult PS females, but not males, also had elevated basal plasma corticosterone levels in comparison with controls (P<0.05). Vascular reactivity to neuropeptide Y (P<0.05) and electrical field stimulation (P<0.05) in mesenteric arteries was also significantly increased in PS animals. Vascular responses to adrenergic agonists as well as endothelial dilator function did not differ between PS and controls. We conclude that prenatal stress during late gestation has long-lasting effects on cardiovascular responsiveness and vascular reactivity to neuropeptide Y in the offspring.
Collapse
Affiliation(s)
- Natalia Igosheva
- Maternal & Fetal Research Unit, Division of Reproduction and Endocrinology, King's College London, St. Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK.
| | | | | | | |
Collapse
|
28
|
Abstract
High circulating concentrations of leptin in obesity are associated with an apparent loss of its characteristic anorexic action within the hypothalamic region of the brain. Central insensitivity to leptin may therefore contribute to the aetiology of this disease, and an increased understanding of the underlying mechanisms will identify potential means of prevention and/or therapeutic targets. Seasonal animals such as sheep and Siberian hamsters (Phodopus sungorus) exhibit annual photoperiod-driven cycles of appetite and body weight. Increased food intake and weight gain in long days (summer) are associated with high circulating leptin, and decreased intake and weight loss in short days (winter) with low leptin. Critically, these cycles are associated with reversible changes in sensitivity to leptin. High sensitivity is seen in short days and relative insensitivity in long days, demonstrated both in sheep given leptin centrally via intracerebroventricular cannulas and in hamsters given leptin peripherally. In addition, primary hypothalamic appetite-regulating targets for leptin (i.e. neuropeptide Y, melanocortin and cocaine- and amphetamine-regulated transcript pathways) respond differently in these species to changes in circulating leptin and nutritional status induced by photoperiod as opposed to such changes induced by food restriction. Studies of seasonal animals will help to resolve causes of altered sensitivity to leptin and whether these changes reflect altered transport into the brain and/or altered signalling at the receptor or post-receptor level. Increased knowledge of the mechanism(s) and time-course for development and reversal of reduced central leptin sensitivity will provide new insights into the development and control of obesity.
Collapse
Affiliation(s)
- Clare L Adam
- Aberdeen Centre for Energy Regulation and Obesity, Division of Energy Balance and Obesity, Rowett Research Institute, Bucksburn, AB21 9SB, UK.
| | | |
Collapse
|
29
|
Symonds ME, Stephenson T, Gardner DS, Budge H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev 2007; 19:53-63. [PMID: 17389135 DOI: 10.1071/rd06130] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The maternal nutritional and metabolic environment is critical in determining not only reproduction, but also long-term health and viability. In the present review, the effects of maternal nutritional manipulation at defined stages of gestation coinciding with embryogenesis, maximal placental or fetal growth will be discussed. Long-term outcomes from these three developmental windows appear to be very different, with brain and cardiovascular function being most sensitive to influences in the embryonic period, the kidney during placental development and adipose tissue in the fetal phase. In view of the similarities in fetal development, number and maturity at birth, there are close similarities in these outcomes between findings from epidemiological studies in historical human cohorts and nutritional manipulation of large animals, such as sheep. One key nutrient that may modulate the long-term metabolic effects is the supply of glucose from the mother to the fetus, because this is sensitive to both global changes in food intake, maternal glucocorticoid status and an increase in the carbohydrate content of the diet. The extent to which these dietary-induced changes may reflect epigenetic changes remains to be established, especially when considering the very artificial diets used to induce these types of effects. In summary, the maintenance of a balanced and appropriate supply of glucose from the mother to the fetus may be pivotal in ensuring optimal embryonic, placental and fetal growth. Increased or decreased maternal plasma glucose alone, or in conjunction with other macro- or micronutrients, may result in offspring at increased risk of adult diseases.
Collapse
Affiliation(s)
- Michael E Symonds
- Centre for Reproduction and Early Life, Institute of Clinical Research, University Hospital, Nottingham, NG7 2UH, UK.
| | | | | | | |
Collapse
|
30
|
Mühlhäusler BS. Programming of the appetite-regulating neural network: a link between maternal overnutrition and the programming of obesity? J Neuroendocrinol 2007; 19:67-72. [PMID: 17184487 DOI: 10.1111/j.1365-2826.2006.01505.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The concept of a functional foetal "appetite regulatory neural network" is a new and potentially critical one. There is a growing body of evidence showing that the nutritional environment to which the foetus is exposed during prenatal and perinatal development has long-term consequences for the function of the appetite-regulating neural network and therefore the way in which an individual regulates energy balance throughout later life. This is of particular importance in the context of evidence obtained from a wide range of epidemiological studies, which have shown that individuals exposed to an elevated nutrient supply before birth have an increased risk of becoming obese as children and adults. This review summarises the key pieces of experimental evidence, by our group and others, that have contributed to our current understanding of the programming of appetite, and highlights the important questions that are yet to be answered. It is clear that this area of research has the potential to generate, within the next few years, interventions that could begin to alleviate the adverse long-term consequences of being exposed to an elevated nutrient supply before birth.
Collapse
Affiliation(s)
- B S Mühlhäusler
- Early Origins of Adult Health Research Group, Sansom Research Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, City East Campus, Adelaide, SA 5000, Australia.
| |
Collapse
|
31
|
McMillen IC, Edwards LJ, Duffield J, Muhlhausler BS. Regulation of leptin synthesis and secretion before birth: implications for the early programming of adult obesity. Reproduction 2006; 131:415-27. [PMID: 16514185 DOI: 10.1530/rep.1.00303] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of epidemiological, clinical and experimental studies have shown that there are associations between the fetal and neonatal nutritional environment and the amount and distribution of adipose tissue in adult life. This review considers the evidence for these relationships and discusses the potential impact of the prenatal nutritional experience on the development of the endocrine and neuroendocrine systems that regulate energy balance, with a particular emphasis on the role of the adipocyte-derived hormone, leptin. In the rodent, leptin derived from the mother may exert an important influence on the development of the appetite regulatory neural network and on the subsequent regulation of leptin synthesis and the risk for obesity in the offspring. In species such as the human and sheep, there is also recent evidence that the synthesis and secretion of adipocyte-derived hormones, such as leptin, are regulated in fetal life. Furthermore, the hypothalamic neuropeptides that regulate energy intake and expenditure in adult life are also present within the fetal brain and may be regulated by the prevailing level of maternal and hence fetal nutrient and hormonal signals, including leptin. This work is important in determining those initiating mechanisms within the 'fat-brain' axis in early life that precede the development of adult obesity.
Collapse
Affiliation(s)
- I C McMillen
- Research Centre for the Early Origins of Adult Health, Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, South Australia 5000, Australia.
| | | | | | | |
Collapse
|
32
|
Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC. Increased maternal nutrition alters development of the appetite‐regulating network in the brain. FASEB J 2006; 20:1257-9. [PMID: 16684802 DOI: 10.1096/fj.05-5241fje] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals exposed to an increased nutrient supply before birth have a high risk of becoming obese children and adults. It has been proposed that exposure of the fetus to high maternal nutrient intake results in permanent changes within the central appetite regulatory network. No studies, however, have investigated the impact of increased maternal nutrition on the appetite regulatory network in species in which this network develops before birth, as in the human. In the present study, pregnant ewes were fed a diet which provided 100% (control, n = 8) or approximately 160% (well-fed, n = 8) of metabolizable energy requirements. Ewes were allowed to lamb spontaneously, and lambs were sacrificed at 30 days of postnatal age. All fat depots were dissected and weighed, and expression of the appetite-regulating neuropeptides and the leptin receptor (OBRb) were determined by in situ hybridization. Lambs of well-fed ewes had higher glucose (Glc) concentrations during early postnatal life (F = 5.93, P<0.01) and a higher relative subcutaneous (s.c.) fat mass at 30 days of age (34.9+/-4.7 g/kg vs. 22.8+/-3.3 g/kg; P<0.05). The hypothalamic expression of pro-opiomelanocortin was higher in lambs of well-fed ewes (0.48+/-0.09 vs. 0.28+/-0.04, P<0.05). In lambs of overnourished mothers, but not in controls, the expression of OBRb was inversely related to total relative fat mass (r2 = 0.50, P = 0.05, n = 8), and the direct relationship between the expression of the central appetite inhibitor CART and fat mass was lost. The expression of neuropeptide Y and AGRP was inversely related to total relative fat mass (NPY, r2 = 0.28, P<0.05; agouti-related peptide, r2 = 0.39, P<0.01). These findings suggest that exposure to increased nutrition before birth alters the responses of the central appetite regulatory system to signals of increased adiposity after birth.
Collapse
Affiliation(s)
- B S Muhlhausler
- Research Centre for the Early Origins of Adult Health, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | | | | | | | | |
Collapse
|
33
|
Bell AW. Prenatal programming of postnatal productivity and health of livestock: a brief review. ACTA ACUST UNITED AC 2006. [DOI: 10.1071/ea06006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human epidemiological evidence has suggested that metabolic perturbations during fetal life may increase predisposition to cardiovascular disease, type 2 diabetes and obesity in later life. A growing number of controlled experiments on sheep and other large animal species are adding to the already large body of experimental evidence from rat studies in supporting the ‘fetal origins’ hypothesis. Of particular practical relevance are findings that maternal undernutrition in late pregnancy can predispose lambs to glucose intolerance and increased adiposity in early adulthood. This effect may be exacerbated by high energy intakes and limited capacity for muscle growth in undernourished or growth-retarded lambs during early postnatal life. Recent Australian studies have demonstrated the effects of prenatal nutrition on postnatal growth and meat production in beef cattle, and on quantity and quality of wool production in sheep.
Collapse
|
34
|
Swaab DF. The human hypothalamus in metabolic and episodic disorders. PROGRESS IN BRAIN RESEARCH 2006; 153:3-45. [PMID: 16876566 DOI: 10.1016/s0079-6123(06)53001-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D F Swaab
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Clifton VL. Sexually dimorphic effects of maternal asthma during pregnancy on placental glucocorticoid metabolism and fetal growth. Cell Tissue Res 2005; 322:63-71. [PMID: 16052336 DOI: 10.1007/s00441-005-1117-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Human pregnancy is associated with sexually dimorphic differences in mortality and morbidity of the fetus with the male fetus experiencing the poorest outcome following complications such as pre-eclampsia, pre-term delivery and infection. The physiological mechanisms that confer these differences have not been well characterised in the human. Work conducted on the effect of maternal asthma during pregnancy, combining data collected from the mother, placenta and fetus has found some significant sex-related mechanistic differences associated with fetal growth in both normal pregnancies and pregnancies complicated by asthma. Specifically, sexually dimorphic differences have been found in placental glucocorticoid metabolism in male and female fetuses of normal pregnancies. In response to the presence of maternal asthma, only the female fetus alters placental glucocorticoid metabolism resulting in decreased growth. The male fetus does not alter placental function or growth in response to maternal asthma. As a result of the alterations in glucocorticoid metabolism in the female, downstream changes occur in pathways regulated by glucocorticoids. These data suggest that the female fetus adjusts placental function and reduces growth to compensate for maternal disease. However, the male fetus continues to grow in response to maternal asthma with no changes in placental function. This response by the male fetus may partially contribute to the increased risk of morbidity and mortality in this sex.
Collapse
Affiliation(s)
- Vicki L Clifton
- Mothers and Babies Research Centre, John Hunter Hospital, Locked Bag #1, HRMC, Newcastle, NSW 2310, Australia.
| |
Collapse
|
36
|
McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85:571-633. [PMID: 15788706 DOI: 10.1152/physrev.00053.2003] [Citation(s) in RCA: 1300] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.
Collapse
Affiliation(s)
- I Caroline McMillen
- Discipline of Physiology, School of Molecular and Biomeducal Sciences, and Department of Obstetrics and Gynaecology, University of Adelaide, Australia.
| | | |
Collapse
|
37
|
McMillen IC, Adam CL, Mühlhäusler BS. Early origins of obesity: programming the appetite regulatory system. J Physiol 2005; 565:9-17. [PMID: 15705647 PMCID: PMC1464497 DOI: 10.1113/jphysiol.2004.081992] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is evidence that changes in perinatal nutrition programme the development of relative fat mass and the regulation of appetite in adult life. These studies have been primarily in the rodent utilizing maternal overnutrition or undernutrition imposed at different stages of pregnancy and beyond, mapping of neuropeptide localization and activity and appropriate null mutant models. Whilst the rodent offers significant advantages in terms of a short gestation and the availability of useful transgenic and null mutant models, there are also advantages to using an animal model more akin to the human, in which all components of the 'fat-brain axis' are present before birth, such as the sheep. This review summarizes recent work on the expression and localization of the 'appetite regulatory' peptides in the fetal rodent and sheep hypothalamus and their potential role in the early programming of postnatal appetite and obesity.
Collapse
Affiliation(s)
- I Caroline McMillen
- Discipline of Physiology, Centre for the Early Origins of Adult Health, School of Molecular and Biomedical Sciences, University of Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
38
|
Mühlhäusler BS, Adam CL, Marrocco EM, Findlay PA, Roberts CT, McFarlane JR, Kauter KG, McMillen IC. Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation. J Physiol 2005; 565:185-95. [PMID: 15661821 PMCID: PMC1464501 DOI: 10.1113/jphysiol.2004.079079] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the present study, our aim was to determine whether intrafetal glucose infusion increases fetal adiposity, synthesis and secretion of leptin and regulates gene expression of the 'appetite regulatory' neuropeptides neuropepetide Y (NPY), agouti-related peptide (AGRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) and receptors (leptin receptor (OB-Rb) and melancortin 3 receptor (MC3R)) within the fetal hypothalamus. Glucose (50% dextrose in saline) or saline was infused (7.5 ml h(-1)) into fetal sheep between 130 and 140 days gestation (term = 150 +/- 3 days gestation). Glucose infusion increased circulating glucose and insulin concentrations, mean lipid locule size (532.8 +/- 3.3 microm2 versus 456.7 +/- 14.8 microm2) and total unilocular fat mass (11.7 +/- 0.6 g versus 8.9 +/- 0.6 g) of the perirenal fat depot. The expression of OB-Rb mRNA was higher in the ventromedial nucleus compared to the arcuate nucleus of the hypothalamus in both glucose and saline infused fetuses (F= 8.04; P < 0.01) and there was a positive correlation between expression of OB-Rb and MC3R mRNA in the arcuate nucleus (r= 0.81; P < 0.005). Glucose infusion increased mRNA expression for POMC, but not for the anorectic neuropeptide CART, or the orexigenic neuropeptides NPY and AGRP, in the arcuate nucleus of the fetal hypothalamus. These findings demonstrate that increased circulating glucose and insulin regulate gene expression of the neuropeptides within the fetal hypothalamus that are part of the neural network regulating energy balance in adult life.
Collapse
Affiliation(s)
- B S Mühlhäusler
- Discipline of Physiology, Centre of the Early Origins of Adult Health, School of Molecular and Biomedical Science, The University of Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vilela MCR, Mendonça JEF, Bittencourt H, Lapa RM, Alessio MLM, Costa MSMO, Guedes RCA, Silva VL, Andrade da Costa BLS. Differential vulnerability of the rat retina, suprachiasmatic nucleus and intergeniculate leaflet to malnutrition induced during brain development. Brain Res Bull 2005; 64:395-408. [PMID: 15607827 DOI: 10.1016/j.brainresbull.2004.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 04/05/2004] [Accepted: 09/06/2004] [Indexed: 11/26/2022]
Abstract
We investigated in young rats the effects of malnutrition on the main structures of the circadian timing system: retina, hypothalamic suprachiasmatic nuclei (SCN), thalamic intergeniculate leaflet, retinohypothalamic- and geniculohypothalamic tracts. Control rats were born from mothers fed a commercial diet since gestation, and malnourished rats from mothers fed a multideficient diet since gestation (GLA group) or lactation (LA group). After weaning, pups received the same diet as their mothers, and were analysed at postnatal days 27, 30-33 and 60-63. Brain sections were processed to visualise in the SCN neuropeptide Y immunoreactivity and terminal labeling after intraocular tracer injections. Nissl staining was used to assess cytoarchitectonic boundaries of the SCN and cell features in retinal whole mounts. Cell counts, morphometric and densitometric analysis were performed. Compared with controls, the total retinal surface was reduced and the topographical distribution of retinal ganglion cells was altered in malnourished rats, with changes in their density. Alterations were also detected in the SCN dimensions in the GLA and LA groups at one and two postnatal months, as well as in the SCN portion occupied by the retinal input in the GLA group at days 30-33, but not in the NPY-containing geniculohypothalamic tract. The present data point to subtle changes, with a low and differential vulnerability to early malnutrition, of structures involved in circadian timing regulation. Furthermore, the present findings suggest that the altered circadian rhythmicity previously documented in malnourished rats cannot be ascribed to impaired development of the retino- and geniculohypothalamic projections to the SCN.
Collapse
Affiliation(s)
- M C R Vilela
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Cidade Universitária 50670901 Recife, PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McMillen IC, Muhlhausler BS, Duffield JA, Yuen BSJ. Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc 2004; 63:405-12. [PMID: 15373950 DOI: 10.1079/pns2004370] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure to either an increased or decreased level of intrauterine nutrition can result in an increase in adiposity and in circulating leptin concentrations in later life. In animals such as the sheep and pig in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and is present in the fetal circulation throughout late gestation. In the sheep a moderate increase or decrease in the level of maternal nutrition does not alter fetal plasma leptin concentrations, but there is evidence that chronic fetal hyperglycaemia and hyperinsulinaemia increase fetal fat mass and leptin synthesis within fetal fat depots. Importantly, there is a positive relationship between the relative mass of the 'unilocular' component of fetal perirenal and interscapular adipose tissue and circulating fetal leptin concentrations in the sheep. Thus, as in the neonate and adult, circulating leptin concentrations may be a signal of fat mass in fetal life. There is also evidence that leptin can act to regulate the lipid storage, leptin synthetic capacity and potential thermogenic functions of fat before birth. Thus, leptin may act as a signal of energy supply and have a 'lipostatic' role before birth. Future studies are clearly required to determine whether the intrauterine and early postnatal nutrient environment programme the endocrine feedback loop between adipose tissue and the central and peripheral neuroendocrine systems that regulate energy balance, resulting in an enhanced risk of obesity in adult life.
Collapse
Affiliation(s)
- I C McMillen
- Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
41
|
Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol 2004; 288:R91-6. [PMID: 15297266 DOI: 10.1152/ajpregu.00340.2004] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The degree of nutrient enhancement during the newborn period may modulate programming of appetite-regulating hormones, body composition, and propensity to adult obesity in intrauterine growth-restricted (IUGR) newborns. Pregnant rats received, from day 10 to term gestation and throughout lactation, ad libitum food (AdLib) or 50% food restriction (FR) to produce IUGR newborns. AdLib vs. FR offspring were studied at day 1, and, to create two distinct groups of newborn catch-up growth (immediate, delayed) among the IUGR newborns, cross-fostering techniques were employed. The four groups of pups at 3 wk were IUGR immediate catch-up growth (FR/AdLib), IUGR delayed catch-up growth (FR/FR), control (AdLib/AdLib), and lactation FR control (AdLib/FR). From 3 wk to 9 mo, all offspring had AdLib rat chow. Maternal FR during pregnancy resulted in IUGR pups (6.0 +/- 0.3 vs. 7.1 +/- 0.3 g, P < 0.01) with decreased leptin (0.66 +/- 0.03 vs. 1.63 +/- 0.12 ng/ml, P < 0.001) and increased ghrelin (0.43 +/- 0.03 vs. 0.26 +/- 0.02 ng/ml, P < 0.001). Maternal FR during lactation (FR/FR) further impaired IUGR offspring growth at 3 wk. However, by 9 mo, these pups attained normal body weight, percent body fat, and plasma leptin levels. Conversely, IUGR offspring nursed by AdLib dams (FR/AdLib) exhibited rapid catch-up growth at 3 wk and continued accelerated growth, resulting in increased weight, percent body fat, and plasma leptin levels. Thus the degree of newborn nutrient enhancement and timing of IUGR newborn catch-up growth may determine the programming of orexigenic hormones and offspring obesity.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David-Geffen School of Medicine at University of California Los Angeles, Torrance, CA, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
A few examples of hypothalamic, peptidergic disorders leading to clinical signs and symptoms are presented in this review. Increased activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) and decreased activity of the vasopressin neurons in the biological clock and of the thyroxine-releasing hormone (TRH) neurons in the PVN contribute to the signs and symptoms of depression. In men, the central nucleus of the bed nucleus of the stria terminalis (BSTc) is about twice as large and contains twice as many somatostatin neurons as in women. In transsexuals this sex difference is reversed, pointing to a role of this structure in gender. Luteinizing hormone-releasing hormone (LHRH) neurons are formed in the fetal olfactory placade and migrate along the terminal nerve fibers into the hypothalamus. In Kallmann's syndrome the migration process of the LHRH (gonadotropin-releasing hormone) neurons is aborted, which explains the joint occurrence of hypogonadotropic hypogonadism and anosmia in this syndrome. In postmenopausal women, the neurons of the infundibular nucleus hypertrophy and become hyperactive because of the disappearance of the estrogen feedback and contain hyperactive peptidergic neurons. Climacteric flushes may be caused by hyperactivity of the neurokinin-B or LHRH neurons in this nucleus. The hypocretin (orexin) neurons in the perifornical area are involved in sleep. In narcolepsy with cataplexy, a loss of these neurons, probably due to an autoimmune process, is found. Obese subjects with a mutation in the gene that encodes for leptin, the preproghrelin gene, or the alpha-melanocyte-stimulating hormone (alpha-MSH) gene have been described. Decreased numbers and activity of the oxytocin neurons in the PVN may be responsible for the absence of satiety in Prader-Willi syndrome. Moreover, a glucocorticoid receptor polymorphism is associated with obesitas and dysregulation of the hypothalamus-pituitary-adrenal axis. In contrast, two single nucleotide polymorphisms (SNPs) of the AGRP gene have been associated with anorexia nervosa.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Desai M, Guerra C, Wang S, Ross MG. Programming of hypertonicity in neonatal lambs: resetting of the threshold for vasopressin secretion. Endocrinology 2003; 144:4332-7. [PMID: 12960036 DOI: 10.1210/en.2003-0200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lambs exposed in utero to maternal hypertonicity demonstrate plasma hypertonicity and arterial hypertension. To determine whether hypertonicity is due to an altered osmoregulatory set point, we examined arginine-vasopressin and cardiovascular responses to hypertonic saline infusion in these offspring. Study lambs [dehydrated (Dehy)] were exposed to maternal hypernatremia (8-10 mEq/liter increase; 110-150 d gestation) induced by water restriction. Control singleton and Control twins were born to ewes provided ad libitum water. We anticipated reduced birth weight due to maternal dehydration-induced anorexia and therefore included a Control group of twin gestations to approach a similar birth weight near term. After delivery, ewes from all three groups were provided ad libitum water, and their newborns were allowed ad libitum nursing. At 15 +/- 2 d of age, lambs were prepared with bladder and vascular catheters. At 23 +/- 2 d, after a 2-h basal period, neonatal lambs were iv infused with hypertonic 0.83 m NaCl (0.075 ml/kg x h) for 2 h, followed by a 2-h recovery. Neonatal mean arterial pressure and urine flow were continuously monitored, and blood samples were obtained before, during, and after infusion. During the basal period, Dehy neonates and Control twins demonstrated significantly increased plasma sodium levels and mean arterial pressure than Control singletons. In addition, the Dehy neonates had significantly increased plasma osmolality compared with Control singletons and twins. In response to hypertonic infusion, the Dehy offspring continued to exhibit hypertonicity and hypertension. Importantly, plasma tonicity and blood pressure were greatest in Dehy singletons, lowest in singleton controls, and intermediate in twin controls. Furthermore, the plasma osmolality threshold for AVP secretion was significantly higher in Dehy singletons (290 +/- 2 mOsm/kg) than Control twins (285 +/- 1 mOsm/kg) and Control singletons (280 +/- 2 mOsm/kg), indicating in utero programming of an altered set point for systemic osmolality and blood pressure regulation. Because both twin gestation and dehydration-anorexia incur potential fetal nutritional stress, the results suggest that both in utero hypertonicity and nutrition reduction contribute to offspring programming. We postulate that the nutritional stress associated with twins (as well as dehydration-induced anorexia) contributes to increased plasma sodium levels, whereas the increased plasma osmolality is due to in utero hypertonicity.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Harbor/UCLA Medical Center, Torrance 90502, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Fetal swallowing has important roles in fetal gastrointestinal development, and perhaps fetal somatic growth and maturation. Ingestive behavioral responses must develop in utero to provide for acquisition of water and food intake during the neonatal period. At birth, the rat, ovine and human fetus have developed mechanisms to acquire food via intact mechanisms of taste, suckling and swallowing. Our preliminary studies suggest that in sheep and likely in human fetuses, putative orexic-mediated ingestive responses are present near term gestation. We hypothesize that both orexic (appetite) and satiety mechanisms develop during the last third of gestation and the related neurotransmitters involved in this process are functional. The potential in utero imprinting of orexic mechanisms may influence infant, childhood and ultimately adult appetite "set-points". Thus, dysfunctional appetite, and perhaps obesity, may result from maternal environmental influences during critical stages of development.
Collapse
Affiliation(s)
- Michael G Ross
- University of California, Los Angeles, Harbor-UCLA Medical Center, 1000 West, Carson Street, Box 3, Torrance, CA 90509, USA.
| | | | | | | | | |
Collapse
|
45
|
Symonds ME, Gopalakrishnan G, Bispham J, Pearce S, Dandrea J, Mostyn A, Ramsay MM, Stephenson T. Maternal nutrient restriction during placental growth, programming of fetal adiposity and juvenile blood pressure control. Arch Physiol Biochem 2003; 111:45-52. [PMID: 12715274 DOI: 10.1076/apab.111.1.45.15141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epidemiological and experimental studies have demonstrated that maternal undernutrition during pregnancy is associated with abnormal placental growth. In sheep, maternal nutrient restriction over the period of rapid placental growth (30-80 days) restricts placentome growth. Then following adequate nutrition up to term (147 days), placental mass is greater in association with a higher total abundance of the predominant placental glucose transporter-1. The resulting lambs are larger at birth, have heavier kidneys with an increased expression of the glucocorticoid-responsive type 1 angiotensin II receptor. Near to term, these fetuses possess more adipose tissue, the endocrine sensitivity of which is markedly enhanced. For example, the abundance of mRNA for 11beta-hydroxysteroid dehydrogenase type 1, which catalyses the conversion of cortisone to bio-active cortisol is increased. This is associated with a higher abundance of both leptin and glucocorticoid receptor mRNA. At 6 months of age, the juvenile offspring of nutrient restricted ewes have lower resting blood pressure that was positively correlated with plasma cortisol concentration, suggesting their blood pressure could be more strongly driven by circulating cortisol. These offspring also exhibited a greater pressor response to vasoconstrictor challenges, but showed no difference in vasodilatory response. At this age, the kidney weight was similar between groups, but the abundance of cytochrome c in kidney mitochondria was enhanced in lambs born to nutrient restricted ewes that could indicate increased mitochondrial activity. Reduced maternal nutrition during the period of rapid placental growth may therefore contribute to hypertension in later life through physiological and vascular adaptations during fetal life.
Collapse
Affiliation(s)
- M E Symonds
- School of Human Development, University Hospital, Nottingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bispham J, Budge H, Mostyn A, Dandrea J, Clarke L, Keisler DH, Symonds ME, Stephenson T. Ambient temperature, maternal dexamethasone, and postnatal ontogeny of leptin in the neonatal lamb. Pediatr Res 2002; 52:85-90. [PMID: 12084852 DOI: 10.1203/00006450-200207000-00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The influence of route of delivery, ambient temperature, maternal dexamethasone treatment, and postnatal age on plasma concentrations of leptin or leptin mRNA abundance in perirenal adipose tissue was examined from 6-h-old lambs, born vaginally or delivered by cesarean section into warm (30 degrees C) or cool (15 degrees C) ambient temperatures, and from cesarean section-delivered lambs whose mothers had been treated with dexamethasone beginning 2 d before parturition. The ontogeny of leptin during the first month of postnatal life was also examined. In lambs born into a cool ambient temperature, but not in those born to dexamethasone-treated mothers, leptin mRNA abundance decreased within 6 h of birth. Plasma concentrations of leptin decreased during the first 6 h of life, an adaptation delayed by cesarean section birth. After the first day of postnatal life, both plasma concentrations of leptin and its mRNA increased to peak at 7 d of age and were positively correlated with each other, as well as with whole-body and perirenal adipose tissue weights. A similar relationship was not observed after 7 d of age, as plasma leptin declined despite an increase in adipose tissue weight. In conclusion, route of delivery, ambient temperature, or maternal dexamethasone therefore delays the rate of leptin disappearance after birth. Concomitantly, leptin abundance was only associated with body and adipose tissue weights for 1 week after birth, which may be coincident with the onset of peak lactation and the time at which nutrient supply should no longer be limiting to the neonate.
Collapse
Affiliation(s)
- Jayson Bispham
- Academic Division of Child Health, School of Human Development, University Hospital, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sainsbury A, Wilks D, Cooney GJ. Central but not peripheral glucocorticoid infusion in adrenalectomized male rats increases basal and substrate-induced insulinemia through a parasympathetic pathway. OBESITY RESEARCH 2001; 9:274-81. [PMID: 11331432 DOI: 10.1038/oby.2001.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Glucocorticoids acting through the central nervous system are postulated to play a role in the hyperinsulinemia and increased adiposity of obesity. We investigated the role of parasympathetic activation in glucocorticoid-induced hyperinsulinemia. RESEARCH METHODS AND PROCEDURES Plasma pancreatic polypeptide (PP) levels were used as an index of parasympathetic output. Insulinemia and plasma PP levels were measured basally and after intravenous glucose injection (300 mg/kg) in adrenalectomized male rats infused with dexamethasone (7.5 microg/kg per day) intracerebroventricularly (ICV) or subcutaneously (SC) for 3 to 6 days in the presence or absence of acute atropine blockade (1.0 mg/kg). Food intake was controlled between groups. RESULTS Compared with normal rats, adrenalectomy decreased white adipose tissue depot weights and leptinemia, and these were restored to normal values by ICV but not SC dexamethasone infusion. Adrenalectomy significantly reduced insulinemia below normal levels, which was restored by SC dexamethasone replacement. However, ICV dexamethasone replacement increased insulinemia of adrenalectomized rats to levels higher than normal control values (basal, 500 +/- 40 pM vs. 280 +/- 40 pM; 1-minute postglucose, 2500 +/- 180 pM vs. 1240 +/- 260 pM; p < 0.0001) and increased plasma PP levels, which were correlated with insulinemia. Atropine significantly reduced plasma insulin and PP to levels similar to normal controls but had no effect in any other group. DISCUSSION These data show that glucocorticoids act within the brain to increase insulinemia, most likely through activation of parasympathetic efferent fibers. Such an affect would contribute to the adipogenic effects of central glucocorticoids.
Collapse
Affiliation(s)
- A Sainsbury
- Diabetes Research Group, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia.
| | | | | |
Collapse
|
48
|
Makino S, Baker RA, Smith MA, Gold PW. Differential regulation of neuropeptide Y mRNA expression in the arcuate nucleus and locus coeruleus by stress and antidepressants. J Neuroendocrinol 2000; 12:387-95. [PMID: 10792576 DOI: 10.1046/j.1365-2826.2000.00451.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In rats, circulating corticosterone and insulin are involved in regulation of the hypothalamic neuropeptide Y (NPY) system, which in turn, is involved in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Since the HPA axis and stress responsivity is altered in diseases such as depression, we investigated interactions between the effects of stress and antidepressant drug treatment on arcuate nucleus and locus coeruleus NPY mRNA expressions using in-situ hybridization histochemistry. After acute (2 h) and repeated immobilization (2 h daily, for 14 days), plasma concentrations of corticosterone increased, and those of insulin decreased. The expression of NPY mRNA was significantly increased in the arcuate nucleus, but was unchanged in the locus coeruleus following acute and repeated immobilization. Adrenalectomized rats with systemic corticosterone replacement (ADX+CORT), whose corticosterone concentration was maintained at approximately 50-100 ng/ml during repeated stress, showed a decrease in plasma insulin and an increase in arcuate nucleus NPY mRNA similar to that observed in sham rats, suggesting that changes in NPY mRNA levels are more closely tied to circulating insulin than to circulating corticosterone. In contrast, locus coeruleus NPY mRNA expressions in ADX+CORT rats were significantly higher than those in sham rats after repeated stress. Desmethylimipramine (DMI) treatment for 24 days did not affect basal plasma concentrations of corticosterone or insulin, or arcuate nucleus NPY mRNA expressions, but significantly decreased basal levels of locus coeruleus NPY mRNA compared to saline-treated rats. After repeated immobilization (2 h daily, for 4 days), DMI significantly reduced the stress-induced rise in locus coeruleus NPY mRNA levels, but potentiated the stress-induced rise in arcuate nucleus NPY mRNA expression. These results demonstrate that: (1) the increase in arcuate nucleus NPY mRNA expressions in stressed rats closely follows the decrease in plasma concentrations of insulin; (2) increases in NPY mRNA expressions occur in the absence of changes in plasma corticosterone; and (3) desipramine treatment potentiated the effect of stress on arcuate nucleus NPY mRNA expressions, but blocked the repeated stress-induced increase in locus coeruleus NPY mRNA expressions. Thus, NPY mRNA expression in the arcuate nucleus and the locus coeruleus is sensitive to the effects of stress and to the antidepressant drug desipramine, but the arcuate nucleus NPY system is regulated by different mechanisms than the locus coeruleus NPY system. The results provide further evidence for the importance of circulating insulin in the regulation of the arcuate nucleus NPY system.
Collapse
Affiliation(s)
- S Makino
- Clinical Neuroendocrinology Branch; Biological Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892-1284, USA
| | | | | | | |
Collapse
|
49
|
Henry BA, Goding JW, Alexander WS, Tilbrook AJ, Canny BJ, Dunshea F, Rao A, Mansell A, Clarke IJ. Central administration of leptin to ovariectomized ewes inhibits food intake without affecting the secretion of hormones from the pituitary gland: evidence for a dissociation of effects on appetite and neuroendocrine function. Endocrinology 1999; 140:1175-82. [PMID: 10067841 DOI: 10.1210/endo.140.3.6604] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have studied the effect of leptin on food intake and neuroendocrine function in ovariectomized ewes. Groups (n = 5) received intracerebroventricular infusions of either vehicle or leptin (20 microg/h) for 3 days and were blood sampled over 6 h on days -1, 2, and for 3 h on day 3 relative to the onset of the infusion. The animals were then killed to measure hypothalamic neuropeptide Y expression by in situ hybridization. Plasma samples were assayed for metabolic parameters and pituitary hormones. Food intake was reduced by leptin, but did not change in controls. Leptin treatment elevated plasma lactate and nonesterified fatty acids, but did not affect glucose or insulin levels, indicating a state of negative energy balance that was met by the mobilization of body stores. Pulse analysis showed that the secretion of LH and GH was not affected by leptin treatment, nor were the mean plasma concentrations of FSH, PRL, or cortisol. Expression of messenger RNA for neuropeptide Y in the arcuate nucleus was reduced by the infusion of leptin, primarily due to reduced expression per cell rather than a reduction in the number of cells observed. Thus, the action of leptin to inhibit food intake is dissociated from neuroendocrine function. These results suggest that the metabolic effects of leptin are mediated via neuronal systems that possess leptin receptors rather than via endocrine effects.
Collapse
Affiliation(s)
- B A Henry
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|