1
|
Ribani A, Taurisano V, Rakaj A, Fianchini A, Grosso L, Pensa D, Pulcini D, Buttazzoni L, Schiavo G, Bovo S, Bertolini F, Utzeri VJ, Tinti F, Capoccioni F, Fontanesi L. Monitoring the genetic diversity in holothurian populations from the Italian coasts with mitochondrial DNA sequences. Sci Rep 2024; 14:24592. [PMID: 39427087 PMCID: PMC11490579 DOI: 10.1038/s41598-024-76087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Sea cucumbers are deposit feeding members of marine benthic communities. The over-exploitation of sea cucumber natural stocks, especially in the Mediterranean basin, is having negative impacts on the marine ecosystem. This concerns had led the Italian government to take legal actions to preserve these important marine resources. The aim of this study was to evaluate the level of genetic diversity and population structures within two sympatric Holothuria sea cucumber species, H. polii and H. tubulosa, across ten Mediterranean areas along Italy. A 323 bp portion of the COI mitochondrial gene was sequenced in a total of 441 holothurians (251 H. polii, 177 H. tubulosa and 13 from other species). Genetic diversity analyses and analysis of molecular variance (AMOVA) suggest that H. polii and H. tubulosa species are distinct, but within and among populations are homogeneous, indicating active gene flows across the Mediterranean areas investigated. H. polii showed a lower genetic diversity than H. tubulosa, probably related to differences in life history traits. Phylogenetic analyses showed a clear differentiation between the two species, even if six specimens morphologically assigned to a species clustered within the other species, indicating a possible occurrence of hybridization events. These data will be useful in implementing conservation actions for these holothurian genetic resources.
Collapse
Affiliation(s)
- Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Arnold Rakaj
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Fianchini
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luca Grosso
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Davide Pensa
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Domitilla Pulcini
- Centro di ricerca "Zootecnia e Acquacoltura", Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), 00015, Monterotondo (Rome), Italy
| | - Luca Buttazzoni
- Centro di ricerca "Zootecnia e Acquacoltura", Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), 00015, Monterotondo (Rome), Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Valerio Joe Utzeri
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Fausto Tinti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via S. Alberto 163, 48123, Ravenna, Italy
| | - Fabrizio Capoccioni
- Centro di ricerca "Zootecnia e Acquacoltura", Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), 00015, Monterotondo (Rome), Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
2
|
Zhu L, Bau T. Species clarification of fairy inkcap (" Coprinellus disseminatus") in China. Mycology 2024; 15:424-470. [PMID: 39247893 PMCID: PMC11376300 DOI: 10.1080/21501203.2024.2309901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/20/2024] [Indexed: 09/10/2024] Open
Abstract
Coprinellus disseminatus and other morphologically similar species are widely dispersed worldwide and are commonly referred to as "fairy inkcap". Based on the molecular phylogenetic study and morphological observation, a thorough investigation was carried out utilising 74 collections of related species that were gathered from seventeen provinces and five Chinese fungaria between 1998 and 2023 and revealed 11 lineages of "fairy inkcap", nine of which were found in China, and which belonged to the two genera Coprinellus and Tulosesus. In sect. Disseminati, genetic diversities (π), and fixation index (Fst) amongst lineages were computed, and a haplotype-based network was established to ascertain the relationships amongst each clade. A new section of Coprinellus, sect. Aureodisseminati, were discovered. In addition, four new species (C. aureodisseminatus, C. austrodisseminatus, C. parcus, and C. velutipes), a new subspecies of C. disseminatus, a new combination (Tulosesus pseudodisseminatus), the first discovery of epigamous type of C. magnoliae and a new record to China (T. subdisseminatus) were also identified and thoroughly described with accompanying illustrations. Their differences in macro- and micro-features, as well as their character sequence, were discussed.
Collapse
Affiliation(s)
- Liyang Zhu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture, Changchun, China
| | - Tolgor Bau
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture, Changchun, China
| |
Collapse
|
3
|
Lowell N, Suhrbier A, Tarpey C, May S, Carson H, Hauser L. Population structure and adaptive differentiation in the sea cucumber Apostichopus californicus and implications for spatial resource management. PLoS One 2023; 18:e0280500. [PMID: 36928497 PMCID: PMC10019739 DOI: 10.1371/journal.pone.0280500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/03/2023] [Indexed: 03/18/2023] Open
Abstract
A growing body of evidence suggests that spatial population structure can develop in marine species despite large population sizes and high gene flow. Characterizing population structure is important for the effective management of exploited species, as it can be used to identify appropriate scales of management in fishery and aquaculture contexts. The California sea cucumber, Apostichopus californicus, is one such exploited species whose management could benefit from further characterization of population structure. Using restriction site-associated DNA (RAD) sequencing, we developed 2075 single nucleotide polymorphisms (SNPs) to quantify genetic structure over a broad section of the species' range along the North American west coast and within the Salish Sea, a region supporting the Washington State A. californicus fishery and developing aquaculture production of the species. We found evidence for population structure (global fixation index (FST) = 0.0068) with limited dispersal driving two patterns of differentiation: isolation-by-distance and a latitudinal gradient of differentiation. Notably, we found detectable population differences among collection sites within the Salish Sea (pairwise FST = 0.001-0.006). Using FST outlier detection and gene-environment association, we identified 10.2% of total SNPs as putatively adaptive. Environmental variables (e.g., temperature, salinity) from the sea surface were more correlated with genetic variation than those same variables measured near the benthos, suggesting that selection on pelagic larvae may drive adaptive differentiation to a greater degree than selection on adults. Our results were consistent with previous estimates of and patterns in population structure for this species in other extents of the range. Additionally, we found that patterns of neutral and adaptive differentiation co-varied, suggesting that adaptive barriers may limit dispersal. Our study provides guidance to decision-makers regarding the designation of management units for A. californicus and adds to the growing body of literature identifying genetic population differentiation in marine species despite large, nominally connected populations.
Collapse
Affiliation(s)
- Natalie Lowell
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Andy Suhrbier
- Pacific Shellfish Institute, Olympia, Washington, United States of America
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Samuel May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Henry Carson
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
MOHAMMED-GEBA KHALED, ABBAS EMANM, AHMED HAMDYO, SHALABI MOHAMMEDA, HAMED ELSAYEDAE, RAZEK FATMAAABDEL, SOLIMAN TAHA. Comparing genetic markers’ efficiencies for discrimination between two commercially important holothuroids in the Mediterranean Sea, Holothuria polii and Holothuria sanctori. Zootaxa 2022; 5092:559-575. [DOI: 10.11646/zootaxa.5092.5.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/04/2022]
Abstract
Sea cucumber (bêche-de-mer, Echinodermata: Holothuroidea) is one of the top internationally traded seafood varieties. Besides its direct nutritional benefits, it is continuously used in the traditional medicine in different areas and cultures in the world. This world-wide interest triggered various issues related to stocks´ declining and risks of species extinction. For these reasons, the current study was designed to provide molecular tools for accurate discrimination between two sea cucumber species that prevail the Mediterranean of these echinoderms in Egypt, that are Holothuria polii and H. sanctori. The power of three gene markers, i.e., 16S rDNA, 28S rDNA, and Histone H3 in achieving accurate DNA-based identification, as well as elucidating clear phylogenetic and genetic diversity differences between those two species was assessed. Among the three genes, 16S rDNA showed the highest potentials as genetic and phylogenetic species discrimination marker. Both 28S rDNA and H3 exhibited the least number of holothuroid reference sequences in the GenBank database. For genetic diversity within each species population, 16S rDNA exhibited the best potentials, followed by H3. 28S rDNA showed no genetic polymorphism at all. Moreover, the collective data of both H3 and 16S rDNA suggested a possible role of asexual reproduction behavior in H. sanctori in the reduction of genetic diversity, as a possible response to overfishing. Hence, the current research can recommend the simultaneous application of both 16S rDNA and H3 as accurate markers for genetic discrimination among H. polii, H. sanctori and other different holothuroid species.
Collapse
|
5
|
Chen MZ, Cao LJ, Li BY, Chen JC, Gong YJ, Yang Q, Schmidt TL, Yue L, Zhu JY, Li H, Chen XX, Hoffmann AA, Wei SJ. Migration trajectories of the diamondback moth Plutella xylostella in China inferred from population genomic variation. PEST MANAGEMENT SCIENCE 2021; 77:1683-1693. [PMID: 33200882 DOI: 10.1002/ps.6188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/15/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), is a notorious pest of cruciferous plants. In temperate areas, annual populations of DBM originate from adult migrants. However, the source populations and migration trajectories of immigrants remain unclear. Here, we investigated migration trajectories of DBM in China using genome-wide single nucleotide polymorphisms (SNPs) genotyped using double-digest RAD (ddRAD) sequencing. We first analyzed patterns of spatial and temporal genetic structure among southern source and northern recipient populations, then inferred migration trajectories into northern regions using discriminant analysis of principal components (DAPC), assignment tests, and spatial kinship patterns. RESULTS Temporal genetic differentiation among populations was low, indicating that sources of recipient populations and migration trajectories are stable. Spatial genetic structure indicated three genetic clusters in the southern source populations. Assignment tests linked northern populations to the Sichuan cluster, and central-eastern populations to the southern and Yunnan clusters, indicating that Sichuan populations are sources of northern immigrants and southern and Yunnan populations are sources of central-eastern populations. First-order (full-sib) and second-order (half-sib) kin pairs were always found within populations, but ~ 35-40% of third-order (cousin) pairs were found in different populations. Closely related individuals in different populations were found at distances of 900-1500 km in ~ 35-40% of cases, while some were separated by > 2000 km. CONCLUSION This study unravels seasonal migration patterns in the DBM. We demonstrate how careful sampling and population genomic analyses can be combined to help understand cryptic migration patterns in insects. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Zhu Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bing-Yan Li
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiong Yang
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas L Schmidt
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Lei Yue
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Supmee V, Songrak A, Suppapan J, Sangthong P. Population Genetic Structure of Ornate Threadfin Bream ( Nemipterus hexodon) in Thailand. Trop Life Sci Res 2021; 32:63-82. [PMID: 33936551 PMCID: PMC8054670 DOI: 10.21315/tlsr2021.32.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ornate threadfin bream (Nemipterus hexodon) is an economically important fishery species in Southeast Asia. In Thailand, N. hexodon decreased dramatically due to overexploitation for commercial purposes. To construct an effective sustainable management plan, genetic information is necessary. Thus, in our study, the population genetic structure and demographic history of N. hexodon were investigated using 419 bp of the mitochondrial DNA sequence in cytochrome oxidase subunit I gene (mtDNA COI). A total of 142 samples was collected from nine localities in the Gulf of Thailand (Chonburi, Samut Songkhram, Surat Thani, Nakhon Si Thammarat, Songkhla), and the Andaman Sea (Satun, Trang, Krabi, Phang Nga). Fourteen polymorphic sites defined 18 haplotypes, revealing a high haplotype diversity and low nucleotide diversity among nine localities. The analysis of molecular variance (AMOVA) analysis, pairwise F ST , and minimum spanning network result revealed that the genetic structure of N. hexodon was separated into two populations: the Gulf of Thailand and the Andaman Sea population. The genetic structure of N. hexodon can be explained by a disruption of gene flow from the geographic barrier and the Pleistocene isolation of the marine basin hypothesis. Neutrality tests, Bayesian skyline analysis, mismatch distribution, and the estimated values of population growth suggested that N. hexodon had experienced a population expansion. The genetic information would certainly help us gain insight into the population genetic structure of N. hexodon living on the coast of Thailand.
Collapse
Affiliation(s)
- Verakiat Supmee
- Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat Campus, Nakhon Si Thammarat 80110, Thailand
| | - Apirak Songrak
- Department of Fishery Technology, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang Campus, Trang 92150, Thailand
| | - Juthamas Suppapan
- Faculty of Education, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Pradit Sangthong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
8
|
Halim SAAA, Othman AS, Akib NAM, Jamaludin NA, Esa Y, Nor SAM. Mitochondrial Markers Identify a Genetic Boundary of the Green Tiger Prawn ( Penaeus semisulcatus) in the Indo-Pacific Ocean. Zool Stud 2021; 60:e8. [PMID: 34386093 PMCID: PMC8315928 DOI: 10.6620/zs.2021.60-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
A population genetics study of the commercially important Green Tiger Prawn (Penaeus semisulcatus) was conducted in the Indo-Pacific Ocean with a focus on the Indo-Malay Archipelago waters of the South China Sea (SCS), Sulu Sea (SLS), Celebes Sea (CLS) and the Strait of Malacca (SOM), the latter being the main waterway that connects the Indian Ocean with the Pacific Ocean. A 548-base-pair region of mitochondrial COI and 571 base pairs of the control region (CR) were analysed in 284 specimens from 15 locations. Genetic divergences (Tamura 3-parameter) for COI ranged from 0.1% to 7.2% and CR 2.3% to 21.7%, with Bagan Pasir (BGP) in central SOM being the most genetically different from other populations (COI: 3.3-4.2%; CR: 7.1-16.5%). All populations were differentiated into two lineages with a genetic break in the vicinity of BGP; Lineage I comprised populations south of this site (SCS, SLS, CLS and part of SOM) and Lineage II comprised populations north of BGP (part of the SOM). Specifically, most individuals of Bagan Pasir (BGP) and another site just south of it, Batu Pahat (BPT), clustered in Lineage I, while all SOM populations to the north of these sites clustered in Lineage II. The BGP population is believed to be a mixed gene pool between the two lineages. The results could be attributed to the fluctuations of Pleistocene sea levels and a possible influence of the One Fathom Bank in SOM. High genetic diversity was recorded, π (Lineage I: COI: 3.4%; CR: 7.4%) (Lineage II: COI: 3.8%; CR: 12.6%) and, h (Lineage I: COI: 0.81; CR: 1.0) (Lineage II: COI: 0.57; CR: 0.99). Demographic statistics revealed that both lineages underwent a sudden expansion and consequent stabilisation in genetic variability. The findings of this study have wide implications for fisheries in the Indo-Pacific. The increased sampling effort within a narrower geographical scale by the current study permitted a precise locality of the genetic break for this species within the Indo-Pacific Ocean to be identified. The substantial genetic diversity within both lineages should be considered in fishery management and aquaculture development programs of this species in this region.
Collapse
Affiliation(s)
- Siti Amalia Aisyah Abdul Halim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia. E-mail: (Halim); E-mail: (Othman)
| | - Ahmad Sofiman Othman
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia. E-mail: (Halim); E-mail: (Othman)
| | | | - Noorul-Azliana Jamaludin
- Marine Capture Fisheries Division, FRI Kampung Acheh, 32000 Sitiawan, Perak, Malaysia. E-mail: (Jamaludin)
| | - Yuzine Esa
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia. E-mail: (Esa)
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Siti Azizah Mohd Nor
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia. E-mail: (Halim); E-mail: (Othman)
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. E-mail: (Nor)
| |
Collapse
|
9
|
Eisapour M, Salamat N, Salari MA, Bahabadi MN, Salati AP. Digestive tract regeneration in the posteriorly eviscerating sea cucumber Holothuria parva (Holothuroidea, Echinodermata). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-020-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Uthicke S, Deshpande NP, Liddy M, Patel F, Lamare M, Wilkins MR. Little evidence of adaptation potential to ocean acidification in sea urchins living in "Future Ocean" conditions at a CO 2 vent. Ecol Evol 2019; 9:10004-10016. [PMID: 31534709 PMCID: PMC6745858 DOI: 10.1002/ece3.5563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification (OA) can be detrimental to calcifying marine organisms, with stunting of invertebrate larval development one of the most consistent responses. Effects are usually measured by short-term, within-generation exposure, an approach that does not consider the potential for adaptation. We examined the genetic response to OA of larvae of the tropical sea urchin Echinometra sp. C. raised on coral reefs that were either influenced by CO2 vents (pH ~ 7.9, future OA condition) or nonvent control reefs (pH 8.2). We assembled a high quality de novo transcriptome of Echinometra embryos (8 hr) and pluteus larvae (48 hr) and identified 68,056 SNPs. We tested for outlier SNPs and functional enrichment in embryos and larvae raised from adults from the control or vent sites. Generally, highest F ST values in embryos were observed between sites (intrinsic adaptation, most representative of the gene pool in the spawned populations). This comparison also had the highest number of outlier loci (40). In the other comparisons, classical adaptation (comparing larvae with adults from the control transplanted to either the control or vent conditions) and reverse adaptation (larvae from the vent site returned to the vent or explanted at the control), we only observed modest numbers of outlier SNPs (6-19) and only enrichment in two functional pathways. Most of the outliers detected were silent substitutions without adaptive potential. We conclude that there is little evidence of realized adaptation potential during early development, while some potential (albeit relatively low) exists in the intrinsic gene pool after more than one generation of exposure.
Collapse
Affiliation(s)
- Sven Uthicke
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Nandan P. Deshpande
- Systems Biology InitiativeSchool of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Michelle Liddy
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Frances Patel
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Miles Lamare
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Marc R. Wilkins
- Systems Biology InitiativeSchool of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
11
|
Tea Y, Van Der Wal C, Ludt WB, Gill AC, Lo N, Ho SYW. Boomeranging around Australia: Historical biogeography and population genomics of the anti‐equatorial fish
Microcanthus strigatus
(Teleostei: Microcanthidae). Mol Ecol 2019; 28:3771-3785. [DOI: 10.1111/mec.15172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Kai Tea
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- Australian Museum Research Institute, Australian Museum Sydney NSW Australia
| | - Cara Van Der Wal
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- Australian Museum Research Institute, Australian Museum Sydney NSW Australia
| | - William B. Ludt
- National Museum of Natural History, Smithsonian Institution Washington DC USA
- Natural History Museum of Los Angeles County Los Angeles CA USA
| | - Anthony C. Gill
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- Australian Museum Research Institute, Australian Museum Sydney NSW Australia
- Macleay Museum University of Sydney Sydney NSW Australia
| | - Nathan Lo
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Simon Y. W. Ho
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
12
|
Pirog A, Jaquemet S, Ravigné V, Cliff G, Clua E, Holmes BJ, Hussey NE, Nevill JEG, Temple AJ, Berggren P, Vigliola L, Magalon H. Genetic population structure and demography of an apex predator, the tiger shark Galeocerdo cuvier. Ecol Evol 2019; 9:5551-5571. [PMID: 31160982 PMCID: PMC6540675 DOI: 10.1002/ece3.5111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/20/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo-West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR,COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000-3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.
Collapse
Affiliation(s)
- Agathe Pirog
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
| | | | - Geremy Cliff
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Eric Clua
- EPHE‐CNRS‐UPVDCNRS UPVDUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Bonnie J. Holmes
- School of Biological SciencesUniversity of Queensland, St LuciaBrisbaneQueenslandAustralia
| | - Nigel E. Hussey
- Biological SciencesUniversity of WindsorWindsorOntarioCanada
| | | | - Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Laurent Vigliola
- Laboratoire d'Excellence CORAILPerpignanFrance
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Institut de Recherche pour le DéveloppementNouméaNouvelle CalédonieFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
13
|
Adachi K, Okumura SI, Moriyama S. Genetic structure of Japanese sea cucumbers (Apostichopus japonicus) along the Sanriku coast supports the effect of earthquakes and related tsunamis. Genetica 2018; 146:497-503. [PMID: 30242536 DOI: 10.1007/s10709-018-0041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
The Japanese common sea cucumber (Apostichopus japonicus) is a major marine product from Sanriku, Japan, but its populations were severely affected by the 2011 Tohoku earthquake, possibly decreasing its genetic diversity and increasing its extinction risk. In this study, we estimated the genetic structure and diversity of sea cucumbers from Touni and Yamada Bays of Sanriku over 4 years after the earthquake. The between-population genetic structure was estimated using two mitochondrial DNA regions (cytochrome c oxidase subunit I and 16S rDNA). Genetic differentiation (as measured by pairwise FST) was not significant between locations. Thus, even after the tsunami, gene flow and genetic diversity among the two sea cucumber populations were maintained. Our data also suggested that sea cucumbers in Sanriku experienced population expansion of about 0.20-0.24 million years ago, during the stable Mindel-Riss interglacial period. We conclude that A. japonicus populations in Sanriku could maintain their genetic structure throughout multiple disastrous tsunamis over the past several 1000 years. The high dispersal ability of planktonic larvae may enable the entrance of new recruits, thereby reducing risks associated with genetic structure and diversity changes stemming from mass die-offs in a given body of water from the past to the present.
Collapse
Affiliation(s)
- Kenta Adachi
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Sei-Ichi Okumura
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
14
|
Meng J, Wang T, Li L, Zhang G. Inducible variation in anaerobic energy metabolism reflects hypoxia tolerance across the intertidal and subtidal distribution of the Pacific oyster (Crassostrea gigas). MARINE ENVIRONMENTAL RESEARCH 2018; 138:135-143. [PMID: 29724494 DOI: 10.1016/j.marenvres.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Pacific oyster (Crassostrea gigas) distribute a steep gradient of environmental stress between intertidal and subtidal habits and provide insight into population-scale patterns and underlying processes of variation in physiological tolerance. In this study, 1-year-old-F1 oysters, collected from subtidal and intertidal habitats, were obtained after common garden experiment. Genetic differentiation and physiological responses under air exposure were examined to determine whether they had evolved into local adapted subpopulations. Mortality rate, anaerobic glycolysis metabolism, and energy status indicated that oyster had initiated metabolism depression and anaerobic glycolysis metabolism in both intertidal and subtidal oysters under air exposure. However, the subtidal oysters displayed the larger energy metabolism depressions and the earlier anaerobic glycolysis responses. This may indicate that subtidal oysters were more sensitives to hypoxia stress, which may lead the higher mortality rate under long term of air exposure. Based on a common garden experimental design, we propose that this diversification may have a genetic background. Overall, the clear differences between intertidal and subtidal oysters under air exposure have provided an important reference for their aquaculture and transportation used in commercial production.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National& Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Ting Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China; National& Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National& Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China; National& Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| |
Collapse
|
15
|
Wang IJ, Shaffer HB. Population genetic and field-ecological analyses return similar estimates of dispersal over space and time in an endangered amphibian. Evol Appl 2017; 10:630-639. [PMID: 28616069 PMCID: PMC5469172 DOI: 10.1111/eva.12479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
The explosive growth of empirical population genetics has seen a proliferation of analytical methods leading to a steady increase in our ability to accurately measure key population parameters, including genetic isolation, effective population size, and gene flow, in natural systems. Assuming they yield similar results, population genetic methods offer an attractive complement to, or replacement of, traditional field‐ecological studies. However, empirical assessments of the concordance between direct field‐ecological and indirect population genetic studies of the same populations are uncommon in the literature. In this study, we investigate genetic isolation, rates of dispersal, and population sizes for the endangered California tiger salamander, Ambystoma californiense, across multiple breeding seasons in an intact vernal pool network. We then compare our molecular results to a previously published study based on multiyear, mark–recapture data from the same breeding sites. We found that field and genetic estimates of population size were only weakly correlated, but dispersal rates were remarkably congruent across studies and methods. In fact, dispersal probability functions derived from genetic data and traditional field‐ecological data were a significant match, suggesting that either method can be used effectively to assess population connectivity. These results provide one of the first explicit tests of the correspondence between landscape genetic and field‐ecological approaches to measuring functional population connectivity and suggest that even single‐year genetic samples can return biologically meaningful estimates of natural dispersal and gene flow.
Collapse
Affiliation(s)
- Ian J Wang
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA.,La Kretz Center for California Conservation Science Institute of the Environment and Sustainability University of California Los Angeles CA USA
| |
Collapse
|
16
|
Otwoma LM, Kochzius M. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific. PLoS One 2016; 11:e0165552. [PMID: 27798700 PMCID: PMC5087890 DOI: 10.1371/journal.pone.0165552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI) gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO) and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA). A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1) Kenya (Watamu, Mombasa, Diani) and Tanzanian Island populations (Misali and Jambiani) and (2) the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03). The genetic population structure was stronger and more significant (ΦST = 0.13) in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P < 0.001) suggests that Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1) WIO (2) Eastern Indian Ocean (3) IMPA and (4) Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean.
Collapse
Affiliation(s)
- Levy Michael Otwoma
- Kenya Marine and Fisheries Research Institute, P.O. BOX 81651, Mombasa, Kenya
- Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
17
|
Fourdrilis S, Mardulyn P, Hardy OJ, Jordaens K, de Frias Martins AM, Backeljau T. Mitochondrial DNA hyperdiversity and its potential causes in the marine periwinkle Melarhaphe neritoides (Mollusca: Gastropoda). PeerJ 2016; 4:e2549. [PMID: 27761337 PMCID: PMC5068447 DOI: 10.7717/peerj.2549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
We report the presence of mitochondrial DNA (mtDNA) hyperdiversity in the marine periwinkle Melarhaphe neritoides (Linnaeus, 1758), the first such case among marine gastropods. Our dataset consisted of concatenated 16S-COI-Cytb gene fragments. We used Bayesian analyses to investigate three putative causes underlying genetic variation, and estimated the mtDNA mutation rate, possible signatures of selection and the effective population size of the species in the Azores archipelago. The mtDNA hyperdiversity in M. neritoides is characterized by extremely high haplotype diversity (Hd = 0.999 ± 0.001), high nucleotide diversity (π = 0.013 ± 0.001), and neutral nucleotide diversity above the threshold of 5% (πsyn = 0.0677). Haplotype richness is very high even at spatial scales as small as 100m2. Yet, mtDNA hyperdiversity does not affect the ability of DNA barcoding to identify M. neritoides. The mtDNA hyperdiversity in M. neritoides is best explained by the remarkably high mutation rate at the COI locus (μ = 5.82 × 10−5 per site per year or μ = 1.99 × 10−4 mutations per nucleotide site per generation), whereas the effective population size of this planktonic-dispersing species is surprisingly small (Ne = 5, 256; CI = 1,312–3,7495) probably due to the putative influence of selection. Comparison with COI nucleotide diversity values in other organisms suggests that mtDNA hyperdiversity may be more frequently linked to high μ values and that mtDNA hyperdiversity may be more common across other phyla than currently appreciated.
Collapse
Affiliation(s)
- Séverine Fourdrilis
- Directorate Taxonomy and Phylogeny & JEMU, Royal Belgian Institute of Natural Sciences , Brussels , Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles , Brussels , Belgium
| | - Olivier J Hardy
- Evolutionary Biology and Ecology, Université Libre de Bruxelles , Brussels , Belgium
| | - Kurt Jordaens
- Department of Biology, Invertebrate Section, Royal Museum for Central Africa , Tervuren , Belgium
| | - António Manuel de Frias Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Departamento de Biologia da Universidade dos Açores, University of the Azores , Ponta Delgada , Portugal
| | - Thierry Backeljau
- Directorate Taxonomy and Phylogeny & JEMU, Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Tusso S, Morcinek K, Vogler C, Schupp PJ, Caballes CF, Vargas S, Wörheide G. Genetic structure of the crown-of-thorns seastar in the Pacific Ocean, with focus on Guam. PeerJ 2016; 4:e1970. [PMID: 27168979 PMCID: PMC4860296 DOI: 10.7717/peerj.1970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 04/04/2016] [Indexed: 11/20/2022] Open
Abstract
Population outbreaks of the corallivorous crown-of-thorns seastar (COTS), Acanthaster 'planci' L., are among the most important biological disturbances of tropical coral reefs. Over the past 50 years, several devastating outbreaks have been documented around Guam, an island in the western Pacific Ocean. Previous analyses have shown that in the Pacific Ocean, COTS larval dispersal may be geographically restricted to certain regions. Here, we assess the genetic structure of Pacific COTS populations and compared samples from around Guam with a number of distant localities in the Pacific Ocean, and focused on determining the degree of genetic structure among populations previously considered to be isolated. Using microsatellites, we document substantial genetic structure between 14 localities from different geographical regions in the Pacific Ocean. Populations from the 14 locations sampled were found to be structured in three significantly differentiated groups: (1) all locations immediately around Guam, as well as Kingman Reef and Swains Island; (2) Japan, Philippines, GBR and Vanuatu; and (3) Johnston Atoll, which was significantly different from all other localities. The lack of genetic differentiation between Guam and extremely distant populations from Kingman Reef and Swains Island suggests potential long-distance dispersal of COTS in the Pacific.
Collapse
Affiliation(s)
- Sergio Tusso
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München , München , Germany
| | - Kerstin Morcinek
- Department of Anatomy (Neuroanatomy), University of Cologne , Köln , Germany
| | - Catherine Vogler
- Environment Department, Pöyry Switzerland Ltd. , Zurich , Switzerland
| | - Peter J Schupp
- Environmental Biochemistry, Carl-von-Ossietzky University Oldenburg, ICBM-Terramare , Wilhelmshaven , Germany
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville, Queensland , Australia
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München , München , Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany; SNSB-Bavarian State Collections of Palaeontology and Geology, München, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
19
|
Wilson NG, Kirkendale LA. Putting the ‘Indo’ back into the Indo-Pacific: resolving marine phylogeographic gaps. INVERTEBR SYST 2016. [DOI: 10.1071/is15032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Indo-Pacific is an extremely large marine realm that unites two oceans via a restricted Coral Triangle corridor, which was historically subjected to lowered sea levels during global glaciation. Although a strong phylogeographic focus on the Central and West Pacific has produced a large body of research, the Indian Ocean has been largely neglected. This may have serious consequences, because the Indian Ocean hosts a large number of marine centres of endemism, yet a large number of nations rely on its marine resources. We examine reasons for this neglect and review what is known about this region and its connectivity to the Indo-West Pacific. We draw attention to the ‘Leeuwin Effect’, a phenomenon where the southward flow of the Leeuwin Current is responsible for transporting larval propagules from the Coral Triangle region down the coast of Western Australia, resulting in broader Indo-West Pacific rather than Indian Ocean affinities. Given challenges in accessing infrastructure and samples, collaboration will inevitably be key to resolving data gaps. We challenge the assumption that the peak of shallow-water marine biodiversity is solely centred in the Coral Triangle, and raise awareness of a seemingly forgotten hypothesis promoting a secondary peak of biodiversity in the western Indian Ocean.
Collapse
|
20
|
Zhang D, Ding G, Ge B, Zhang H, Tang B. Molecular dating of a marine species, Eriocheir japonica (Decapoda: Grapsidae), corroborates cenozoic tectonic events and sea level fluctuation. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Zhang D, Ding G, Ge B, Zhang H, Tang B, Yang G. Comparative phylogeography of two marine species of crustacean: Recent divergence and expansion due to environmental changes. Gene 2014; 550:141-7. [PMID: 25106858 DOI: 10.1016/j.gene.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/19/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Environmental changes, such as changes in the coastal topography due to Eurasian plate movements, climate oscillation during the Pleistocene, and alteration of ocean currents, have complicated the geographical structure of marine species and deepened their divergence between populations. As two widely distributed species of crustacean (Oratosquilla oratoria and Eriocheir japonica), weak differences were expected due to their high dispersal potential of planktonic larvae with ocean currents. However, results showed a significant genetic divergence between north of China and south of China in the study. In addition, the estimated north-south divergence time (27-30.5 Myr) of mantis shrimp was near the time of the Himalayan movement, and the China-Japan clade divergence time (10.5-11.9 Myr) of mitten crabs was also coincident with the time of the opening of the Sea of Japan. Thus, we hypothesized that environmental changes in the coastal topography contributed to the marine species divergence. Furthermore, based on phylogenetic analysis, network analysis and haplotype distribution, we surmised that mitten crabs originated from a population with the oldest haplotype (H6) and then divided into the north and south populations due to the recent Eurasian plate movements and ocean currents. And lineage of Japan originated from the north population for the opening of the Sea of Japan. While O. oratoria was guessed to originate from two separate populations in the China Sea. The results of "star-like" network, negative values in neutral test, and Tajima's D statistics of two marine species supported a recent rapid population expansion event after the Pleistocene glaciations.
Collapse
Affiliation(s)
- Daizhen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Ge Ding
- Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng 224003, People's Republic of China
| | - Baoming Ge
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Huabin Zhang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Boping Tang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
22
|
Zainal Abidin DH, Mustaffa S, Rahim MA, Nair DM, Naim DM, Mohd Nor SA. Population genetics of the black scar oyster, Crassostrea iredalei: repercussion of anthropogenic interference. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:647-58. [PMID: 24786018 DOI: 10.3109/19401736.2014.913137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial cytochrome oxidase subunit I (COI) gene was utilized to assess the population genetics of the commercially important black scar oyster, Crassostrea iredalei among 11 populations throughout the west and east coasts Peninsular Malaysia and Sabah (Malaysian Borneo). Overall, populations of C. iredalei demonstrated low nucleotide diversity π (0.000-0.004) and low-to-high haplotype diversity h (0.000-0.795) levels. Genetic structuring was detected between the Peninsular Malaysia and Sabah populations as revealed by the FST analysis. However, the COI gene analyses showed minimal and non-significant (p > 0.05) population differentiation within the east and west coasts Peninsular Malaysia and Sabah regions. This was attributed to both high larval dispersal along the east and west coasts and human-driven spat translocation between the two coastlines due to C. iredalei cultivation practices. Phylogeographic relationships inferences were also conducted to further support these hypotheses. The neutrality and mismatch distribution analyses suggested that C. iredalei had experienced a/several bottleneck event(s), followed by population expansion. The molecular information obtained from this study could be incorporated in a pragmatic aquaculture management strategy of wild broodstock and the hatchery lines of C. iredalei in Malaysia.
Collapse
Affiliation(s)
| | - Suzana Mustaffa
- a School of Biological Sciences, Universiti Sains Malaysia , Pulau Pinang , Malaysia
| | - Masazurah A Rahim
- b Fisheries Research Institute , Batu Maung , Pulau Pinang , Malaysia , and
| | - Devakie M Nair
- b Fisheries Research Institute , Batu Maung , Pulau Pinang , Malaysia , and
| | - Darlina Md Naim
- a School of Biological Sciences, Universiti Sains Malaysia , Pulau Pinang , Malaysia
| | - Siti Azizah Mohd Nor
- a School of Biological Sciences, Universiti Sains Malaysia , Pulau Pinang , Malaysia .,c Centre for Marine and Coastal Studies, Universiti Sains Malaysia , Pulau Pinang , Malaysia
| |
Collapse
|
23
|
Hoareau TB, Boissin E. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Mol Ecol Resour 2013; 10:960-7. [PMID: 21565105 DOI: 10.1111/j.1755-0998.2010.02848.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.
Collapse
Affiliation(s)
- T B Hoareau
- Université de La Réunion, Laboratoire ECOMAR, BP7151 97715, Saint Denis mes. Cedex 9, La Réunion, France
| | | |
Collapse
|
24
|
Yuan L, Hu C, Zhang L, Xia J. Population genetics of a tropical sea cucumber species (Stichopus monotuberculatus) in China. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0506-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Wei SJ, Shi BC, Gong YJ, Jin GH, Chen XX, Meng XF. Genetic structure and demographic history reveal migration of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) from the southern to northern regions of China. PLoS One 2013; 8:e59654. [PMID: 23565158 PMCID: PMC3614937 DOI: 10.1371/journal.pone.0059654] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/16/2013] [Indexed: 12/02/2022] Open
Abstract
The diamondback moth Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is one of the most destructive insect pests of cruciferous plants worldwide. Biological, ecological and genetic studies have indicated that this moth is migratory in many regions around the world. Although outbreaks of this pest occur annually in China and cause heavy damage, little is known concerning its migration. To better understand its migration pattern, we investigated the population genetic structure and demographic history of the diamondback moth by analyzing 27 geographical populations across China using four mitochondrial genes and nine microsatellite loci. The results showed that high haplotype diversity and low nucleotide diversity occurred in the diamondback moth populations, a finding that is typical for migratory species. No genetic differentiation among all populations and no correlation between genetic and geographical distance were found. However, pairwise analysis of the mitochondrial genes has indicated that populations from the southern region were more differentiated than those from the northern region. Gene flow analysis revealed that the effective number of migrants per generation into populations of the northern region is very high, whereas that into populations of the southern region is quite low. Neutrality testing, mismatch distribution and Bayesian Skyline Plot analyses based on mitochondrial genes all revealed that deviation from Hardy-Weinberg equilibrium and sudden expansion of the effective population size were present in populations from the northern region but not in those from the southern region. In conclusion, all our analyses strongly demonstrated that the diamondback moth migrates within China from the southern to northern regions with rare effective migration in the reverse direction. Our research provides a successful example of using population genetic approaches to resolve the seasonal migration of insects.
Collapse
Affiliation(s)
- Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bao-Cai Shi
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Gui-Hua Jin
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiang-Feng Meng
- Zhumadian Academy of Agricultural Sciences, Zhumadian, China
| |
Collapse
|
26
|
Silva SE, Silva IC, Madeira C, Sallema R, Paulo OS, Paula J. Genetic and morphological variation in two littorinid gastropods: evidence for recent population expansions along the East African coast. Biol J Linn Soc Lond 2013. [DOI: 10.1111/j.1095-8312.2012.02041.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara E. Silva
- Computational Biology and Population Genomics Group; Centro de Biologia Ambiental; Departamento de Biologia Animal; Faculdade de Ciências da Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - Inês C. Silva
- Centro de Oceanografia; Laboratório Marítimo da Guia; Faculdade de Ciências da Universidade de Lisboa; 2750-374 Cascais Portugal
| | - Carolina Madeira
- Centro de Oceanografia; Laboratório Marítimo da Guia; Faculdade de Ciências da Universidade de Lisboa; 2750-374 Cascais Portugal
| | - Rose Sallema
- National Environment Management Council; PO Box 63154 Dar es Salaam Tanzania
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group; Centro de Biologia Ambiental; Departamento de Biologia Animal; Faculdade de Ciências da Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - José Paula
- Centro de Oceanografia; Laboratório Marítimo da Guia; Faculdade de Ciências da Universidade de Lisboa; 2750-374 Cascais Portugal
| |
Collapse
|
27
|
Zhang D, Ding G, Ge B, Zhang H, Tang B. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Pérez-Portela R, Almada V, Turon X. Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00573.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Lind CE, Evans BS, Elphinstone MS, Taylor JJU, Jerry DR. Phylogeography of a pearl oyster (Pinctada maxima) across the Indo-Australian Archipelago: evidence of strong regional structure and population expansions but no phylogenetic breaks. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01960.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Curtis E. Lind
- Aquaculture Genetics Research Group; School of Marine & Tropical Biology; James Cook University; Townsville Qld 4811 Australia
- Fish Breeding and Genetics Group; The WorldFish Center; PO Box 500 GPO 10670 Penang Malaysia
| | - Brad S. Evans
- Aquaculture Genetics Research Group; School of Marine & Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| | - Martin S. Elphinstone
- Centre for Plant Conservation Genetics; Southern Cross University; Lismore NSW 2480 Australia
| | | | - Dean R. Jerry
- Aquaculture Genetics Research Group; School of Marine & Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
30
|
The redivision of geographic population and genetic structure of Eriocheir in the West-Pacific Ocean. Gene 2012; 503:126-30. [DOI: 10.1016/j.gene.2012.04.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/01/2012] [Accepted: 04/22/2012] [Indexed: 11/17/2022]
|
31
|
Brante A, Fernández M, Viard F. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the southeastern Pacific coast. ACTA ACUST UNITED AC 2012; 103:630-7. [PMID: 22573790 DOI: 10.1093/jhered/ess030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The biogeography and phylogeography concordance hypothesis suggests that the same factors, for instance physical barriers or environmental gradients, shape both species assemblages and intraspecific genetic structure. In the marine realm, previous studies have however suggested that phylogeographic patterns are also explained by the life-history strategy of the species. However, evidence is contradictory and comes mainly from the northern hemisphere, which is characterized by specific environmental conditions and evolutionary histories of species. In this work, we evaluated the concordance hypothesis in the southern Pacific using the marine gastropod Crepipatella dilatata as a case study. This intertidal species with direct development exhibited a restricted dispersal potential, a feature that contrasts with previous species studied in the same area. Using the gene cytochrome oxidase I, we analyzed 253 individuals sampled at 10 locations covering 543 km of the coast of Chile. The study sites also incorporated 2 biogeographic regions separated by a well-studied biogeographic break (at 30°S). Populations of C. dilatata displayed a high degree of genetic structure and a perfect match between phylogeographic and biogeographic breaks at 30°S. When comparing our data with previous research over the same geographic range, life history traits related to dispersal ability seem to be a good proxy for explaining the concordance between biogeography and phylogeography along the southeastern pacific coast. In addition, in this and other marine invertebrate species, gene flow limitations across both sides of the 30°S break may act as a driver of the speciation process.
Collapse
Affiliation(s)
- Antonio Brante
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | | | | |
Collapse
|
32
|
Nance HA, Klimley P, Galván-Magaña F, Martínez-Ortíz J, Marko PB. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini. PLoS One 2011; 6:e21459. [PMID: 21789171 PMCID: PMC3137562 DOI: 10.1371/journal.pone.0021459] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/02/2011] [Indexed: 12/14/2022] Open
Abstract
Genetic diversity (θ), effective population size (N(e)), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in N(e) (θ = 4N(e)μ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1-16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in N(e) predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present.
Collapse
Affiliation(s)
- Holly A. Nance
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Peter Klimley
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, California, United States of America
| | | | | | - Peter B. Marko
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
33
|
Borrero-Pérez GH, González-Wangüemert M, Marcos C, Pérez-Ruzafa A. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern. Mol Ecol 2011; 20:1964-75. [PMID: 21463375 DOI: 10.1111/j.1365-294x.2011.05068.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H=0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (π=0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise F(ST) values and the results of exact tests and amova revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata.
Collapse
Affiliation(s)
- G H Borrero-Pérez
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | |
Collapse
|
34
|
Loaiza JR, Scott ME, Bermingham E, Sanjur OI, Wilkerson R, Rovira J, Gutiérrez LA, Correa MM, Grijalva MJ, Birnberg L, Bickersmith S, Conn JE. Late Pleistocene environmental changes lead to unstable demography and population divergence of Anopheles albimanus in the northern Neotropics. Mol Phylogenet Evol 2010; 57:1341-6. [PMID: 20888924 DOI: 10.1016/j.ympev.2010.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/08/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
We investigated the historical demography of Anopheles albimanus using mosquitoes from five countries and three different DNA regions, the mitochondrial cytochrome oxidase subunit I gene (COI), the single copy nuclear white gene and the ribosomal internal transcribed spacer two (ITS2). All the molecular markers supported the taxonomic status of a single species of An. albimanus. Furthermore, agreement between the COI and the white genes suggested a scenario of Pleistocene geographic fragmentation (i.e., population contraction) and subsequent range expansion across southern Central America.
Collapse
Affiliation(s)
- Jose R Loaiza
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Que., Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon-open sea environmental gradient. Genetica 2010; 138:895-906. [PMID: 20623364 DOI: 10.1007/s10709-010-9472-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Coastal lagoons represent habitats with widely heterogeneous environmental conditions, particularly as regards salinity and temperature, which fluctuate in both space and time. These characteristics suggest that physical and ecological factors could contribute to the genetic divergence among populations occurring in coastal lagoon and open-coast environments. This study investigates the genetic structure of Holothuria polii at a micro-geographic scale across the Mar Menor coastal lagoon and nearby marine areas, estimating the mitochondrial DNA variation in two gene fragments, cytochrome oxidase I (COI) and 16S rRNA (16S). Dataset of mitochondrial sequences was also used to test the influence of environmental differences between coastal lagoon and marine waters on population genetic structure. All sampled locations exhibited high levels of haplotype diversity and low values of nucleotide diversity. Both genes showed contrasting signals of genetic differentiation (non-significant differences using COI and slight differences using 16S, which could due to different mutation rates or to differential number of exclusive haplotypes. We detected an excess of recent mutations and exclusive haplotypes, which can be generated as a result of population growth. However, selective processes can be also acting on the gene markers used; highly significant generalized additive models have been obtained considering genetic data from 16S gene and independent variables such as temperature and salinity.
Collapse
|
36
|
UTHICKE SVEN, BYRNE MARIA, CONAND CHANTAL. Genetic barcoding of commercial Bêche‐de‐mer species (Echinodermata: Holothuroidea). Mol Ecol Resour 2010; 10:634-46. [DOI: 10.1111/j.1755-0998.2009.02826.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- SVEN UTHICKE
- Australian Institute of Marine Science, PMB No 3, Townsville, Qld 4810, Australia
| | - MARIA BYRNE
- Department of Anatomy and Histology, F13, University of Sydney, Sydney, NSW 2006, Australia
| | - CHANTAL CONAND
- Ecomar Laboratory, Universite de La Reunion, Saint Denis 97715, Reunion, France
| |
Collapse
|
37
|
Byrne M, Rowe F, Uthicke S. Molecular taxonomy, phylogeny and evolution in the family Stichopodidae (Aspidochirotida: Holothuroidea) based on COI and 16S mitochondrial DNA. Mol Phylogenet Evol 2010; 56:1068-81. [PMID: 20399872 DOI: 10.1016/j.ympev.2010.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/30/2022]
Abstract
The Stichopodidae comprise a diverse assemblage of holothuroids most of which occur in the Indo-Pacific. Phylogenetic analyses of mitochondrial gene (COI, 16S rRNA) sequence for 111 individuals (7 genera, 17 species) clarified taxonomic uncertainties, species relationships, biogeography and evolution of the family. A monophyly of the genus Stichopus was supported with the exception of Stichopus ellipes. Molecular analyses confirmed genus level taxonomy based on morphology. Most specimens harvested as S. horrens fell in the S. monotuberculatus clade, a morphologically variable assemblage with others from the S. naso clade. Taxonomic clarification of species fished as S. horrens will assist conservation measures. Evolutionary rates based on comparison of sequence from trans-ithmian Isostichopus species estimated that Stichopus and Isostichopus diverged ca. 5.5-10.7Ma (Miocene). More recent splits were estimated to be younger than 1Ma.
Collapse
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological Sciences, F13, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
38
|
Loaiza JR, Scott ME, Bermingham E, Rovira J, Conn JE. Evidence for pleistocene population divergence and expansion of Anopheles albimanus in Southern Central America. Am J Trop Med Hyg 2010; 82:156-64. [PMID: 20065014 PMCID: PMC2803528 DOI: 10.4269/ajtmh.2010.09-0423] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/28/2009] [Indexed: 11/07/2022] Open
Abstract
The micro-geographic structure of Anopheles albimanus was studied in southern Central America using partial sequences of the mtDNA cytochrome oxidase subunit I gene (COI). Analysis of molecular variance supported significant genetic structure between populations from Costa Rica and western Panama versus those from central-eastern Panama (Phi(CT) = 0.33), whereas the within group divergence was shallow and statistically insignificant (Phi(ST) = 0.08). Furthermore, a statistical parsimony network depicted three divergent groups of haplotypes that were not evenly distributed across the study area. Our findings are in partial agreement with previous studies, yet they do not support physical barriers to gene flow or contemporary isolation by distance in this region. Instead, three co-occurring groups of An. albimanus may be the result of multiple introductions, most likely caused by historical fragmentation and subsequent secondary contact. In addition, the molecular signature of population expansion of An. albimanus was detected in central-eastern Panama approximately 22,000 years ago (95% confidence interval [CI] 10,183-38,169). We hypothesize that the population structure of An. albimanus, as determined by our COI locus analysis, is the result of late Pleistocene climatic changes in northern South America.
Collapse
Affiliation(s)
- Jose R Loaiza
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada.
| | | | | | | | | |
Collapse
|
39
|
Gutiérrez LA, Naranjo NJ, Cienfuegos AV, Muskus CE, Luckhart S, Conn JE, Correa MM. Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia. Malar J 2009; 8:259. [PMID: 19922672 PMCID: PMC2789746 DOI: 10.1186/1475-2875-8-259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 11/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles albimanus is an important malaria vector in some areas throughout its distribution in the Caribbean and the Pacific regions of Colombia, covering three biogeographic zones of the neotropical region, Maracaibo, Magdalena and Chocó. METHODS This study was conducted to estimate intra-population genetic diversity, genetic differentiation and demographic history of An. albimanus populations because knowledge of vector population structure is a useful tool to guide malaria control programmes. Analyses were based on mtDNA COI gene sequences and four microsatellite loci of individuals collected in eight populations from the Caribbean and the Pacific regions of Colombia. RESULTS Two distinctive groups were consistently detected corresponding to COI haplotypes from each region. A star-shaped statistical parsimony network, significant and unimodal mismatch distribution, and significant negative neutrality tests together suggest a past demographic expansion or a selective sweep in An. albimanus from the Caribbean coast approximately 21,994 years ago during the late Pleistocene. Overall moderate to low genetic differentiation was observed between populations within each region. However, a significant level of differentiation among the populations closer to Buenaventura in the Pacific region was observed. The isolation by distance model best explained genetic differentiation among the Caribbean region localities: Los Achiotes, Santa Rosa de Lima and Moñitos, but it could not explain the genetic differentiation observed between Turbo (Magdalena providence), and the Pacific region localities (Nuquí, Buenaventura, Tumaco). The patterns of differentiation in the populations from the different biogeographic provinces could not be entirely attributed to isolation by distance. CONCLUSION The data provide evidence for limited past gene flow between the Caribbean and the Pacific regions, as estimated by mtDNA sequences and current gene flow patterns among An. albimanus populations as measured by MS loci which may be mainly influenced by semi-permeable natural barriers in each biogeographical region that lead to the genetic differences and effective population sizes detected. The relatively high genetic differentiation in the port city of Buenaventura may be the result of specific ecological conditions, human migration and activities and/or differences in effective population sizes. This knowledge could serve to evaluate and coordinate vector control strategies in these regions of Colombia.
Collapse
Affiliation(s)
- Lina A Gutiérrez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Guzik MT, Cooper SJB, Humphreys WF, Austin AD. Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 2009; 18:3683-98. [PMID: 19674311 DOI: 10.1111/j.1365-294x.2009.04296.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcrete aquifers in the arid Yilgarn region of central Western Australia are a biodiversity hotspot for stygofauna. A distinct pattern of interspecific size class variation among subterranean dytiscid beetle species has been observed in 29 of these aquifers where either two or three small, medium and/or large sympatric species are found that are in some cases sister species. We used a 3.5 km(2) grid of bores to sample dytiscids on a fine-scale and employed a comparative phylogeographical and population genetic approach to investigate the origins of a sympatric sister species triplet of diving beetles from a single aquifer. Mitochondrial DNA sequence data from the Cytochrome oxidase c subunit I gene revealed that all three species have high levels of haplotype diversity with ancient (approximately 1 million years ago) intra-specific coalescence of haplotypes, but low levels of nucleotide diversity. Population analyses provide evidence for multiple expansion events within each species. There was spatial heterogeneity in the distribution of genetic variation and abundance both within and among the three taxa. Population analyses revealed significant fine-scale differentiation with isolation by distance for Paroster macrosturtensis and P. mesosturtensis, but not the smallest species P. microsturtensis. Haplotype network analyses provided limited or no evidence for past population fragmentation within the large and small species, but substantial historical divergence was observed in P. mesosturtensis that was not spatially structured. A patchy population structure with contemporaneous and historical isolation by distance in the three species is likely to have been a significant isolating and diversifying force, preventing us from ruling out a potential role for allopatric divergence during speciation of this beetle sister triplet.
Collapse
Affiliation(s)
- M T Guzik
- Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
41
|
YASUDA NINA, NAGAI SATOSHI, HAMAGUCHI MASAMI, OKAJI KEN, GÉRARD KARIN, NADAOKA KAZUO. Gene flow ofAcanthaster planci(L.) in relation to ocean currents revealed by microsatellite analysis. Mol Ecol 2009; 18:1574-90. [DOI: 10.1111/j.1365-294x.2009.04133.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Lee HJ, Boulding EG. Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol Ecol 2009; 18:2165-84. [PMID: 19344352 DOI: 10.1111/j.1365-294x.2009.04169.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the effect of development mode on the spatial and temporal population genetic structure of four littorinid gastropod species. Snails were collected from the same three sites on the west coast of Vancouver Island, Canada in 1997 and again in 2007. DNA sequences were obtained for one mitochondrial gene, cytochrome b (Cyt b), and for up to two nuclear genes, heat shock cognate 70 (HSC70) and aminopeptidase N intron (APN54). We found that the mean level of genetic diversity and long-term effective population sizes (N(e)) were significantly greater for two species, Littorina scutulata and L. plena, that had a planktotrophic larval stage than for two species, Littorina sitkana and L. subrotundata, that laid benthic egg masses which hatched directly into crawl-away juveniles. Predictably, two poorly dispersing species, L. sitkana and L. subrotundata, showed significant spatial genetic structure at an 11- to 65-km geographical scale that was not observed in the two planktotrophic species. Conversely, the two planktotrophic species had more temporal genetic structure over a 10-year interval than did the two direct-developing species and showed highly significant temporal structure for spatially pooled samples. The greater temporal genetic variation of the two planktotrophic species may have been caused by their high fecundity, high larval dispersal, and low but spatially correlated early survivorship. The sweepstakes-like reproductive success of the planktotrophic species could allow a few related females to populate hundreds of kilometres of coastline and may explain their substantially larger temporal genetic variance but lower spatial genetic variance relative to the direct-developing species.
Collapse
Affiliation(s)
- Hyuk Je Lee
- Department of Integrative Biology, University of Guelph, ON, Canada
| | | |
Collapse
|
43
|
Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 2008; 136:439-47. [PMID: 19109695 DOI: 10.1007/s10709-008-9344-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
In this study we analysed mitochondrial DNA variation in Penaeus kerathurus prawns collected from seven locations along a transect across the Siculo-Tunisian region in order to verify if any population structuring exists over a limited geographical scale and to delineate the putative transition zone with sufficient accuracy. Partial DNA sequences of COI and 16S genes were analysed. In contrast to the highly conservative 16S gene, the COI sequences exhibited sufficient diversity for population analysis. The COI gene revealed low levels of haplotype and nucleotide diversities. The size of the annual landings of this commercial species suggests large population sizes. Hence, the low genetic diversity detected in this study could indicate a possible reduction in effective population sizes in the past. We detected significant genetic differentiation between eastern and western populations likely due to restricted gene flow across the Siculo-Tunisian boundary. We discuss the different evolutionary forces that may have shaped the genetic variation and suggest that the genetic divide is probably maintained by present-day dispersal limitation.
Collapse
|
44
|
Hunter RL, Halanych KM. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. ACTA ACUST UNITED AC 2008; 99:137-48. [PMID: 18245798 DOI: 10.1093/jhered/esm119] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies examining population structure and genetic diversity of benthic marine invertebrates in the Southern Ocean have emerged in recent years. However, many taxonomic groups remain largely unstudied, echinoderms being one conspicuous example. The brittle star Astrotoma agassizii is distributed widely throughout Antarctica and southern South America. This species is a brooding echinoderm and therefore may have limited dispersal capacity. In order to determine the effect of hypothesized isolating barriers in the Southern Ocean, such as depth, geographic distance, and the polar front, 2 mitochondrial DNA markers were used to compare populations from the South American and Antarctic continental shelves. Astrotoma agassizii was shown to be genetically discontinuous across the polar front. In fact, populations previously assumed to be panmictic instead represent 3 separate lineages that lack morphological distinction. However, within lineages, genetic continuity was displayed across a large geographic range (>500 km). Therefore, despite lacking a pelagic larval stage, A. agassizii can disperse across substantial geographic distance within continental shelf regions. These results indicate that geographic distance alone may not be a barrier to dispersal, but rather the combined effects of distance, depth, and the polar front act to prevent gene flow between A. agassizii populations in the Southern Ocean.
Collapse
Affiliation(s)
- Rebecca L Hunter
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | | |
Collapse
|
45
|
Azuma N, Kunihiro Y, Sasaki J, Mihara E, Mihara Y, Yasunaga T, Jin DH, Abe S. Genetic variation and population structure of hair crab (Erimacrus isenbeckii ) in Japan inferred from mitochondrial DNA sequence analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:39-48. [PMID: 17955293 DOI: 10.1007/s10126-007-9033-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/29/2007] [Accepted: 06/10/2007] [Indexed: 05/25/2023]
Abstract
Genetic variation and population structure of hair crab (Erimacrus isenbeckii) were examined using nucleotide sequence analysis of 580 base pairs (bp) in the 3' portion of the mitochondrial cytochrome c oxidase subunit I gene (COI) of 20 samples collected from 16 locales in Japan (the Hokkaido and Honshu Islands) and one in Korea. A total of 27 haplotypes was defined by 23 variable nucleotide sites in the examined COI region. Pairwise population F (ST) estimates and neighbor-joining tree inferred distinct genetic differentiation between the representative samples from the Pacific Ocean off the Eastern Hokkaido Island and the Sea of Japan, while others were intermediate between these two groups. AMOVA also showed a weak but significant differentiation among these three groups. The present results suggest a moderate population structure of hair crab, probably influenced by high gene flow between regional populations due to sea current dependent larval dispersal of this species.
Collapse
Affiliation(s)
- Noriko Azuma
- Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Matthews SD, Meehan LJ, Onyabe DY, Vineis J, Nock I, Ndams I, Conn JE. Evidence for late Pleistocene population expansion of the malarial mosquitoes, Anopheles arabiensis and Anopheles gambiae in Nigeria. MEDICAL AND VETERINARY ENTOMOLOGY 2007; 21:358-369. [PMID: 18092974 DOI: 10.1111/j.1365-2915.2007.00703.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Anopheles gambiae Giles s.s. and Anopheles arabiensis Patton (Diptera: Culicidae) are major vectors of malaria in Nigeria. We used 1115 bp of the mitochondrial COI gene to assess their population genetic structures based on samples from across Nigeria (n = 199). The mtDNA neighbour-joining tree, based on F(ST) estimates, separated An. gambiae M and S forms, except that samples of An. gambiae M from Calabar clustered with all the An. gambiae S form. Anopheles arabiensis and An. gambiae could be combined into a single star-shaped, parsimonious haplotype network, and shared three haplotypes. Haplotype diversity values were high in An. arabiensis and An. gambiae S, and intermediate in An. gambiae M; all nucleotide diversities were relatively low. Taken together, patterns of haplotype diversity, the star-like genealogy of haplotypes, five of seven significant neutrality tests, and the violation of the isolation-by-distance model indicate population expansion in An. arabiensis and An. gambiae S, but the signal was weak in An. gambiae M. Selection is supported as an important factor shaping genetic structure in An. gambiae in Nigeria. There were two geographical subdivisions in An. arabiensis: one included all southern localities and all but two central localities; the other included all northern and two central localities. Re-analysing an earlier microsatellite dataset of An. arabiensis using a Bayesian method determined that there were two distinctive clusters, northern and southern, that were fairly congruent with the mtDNA subdivisions. There was a trend towards decreasing genetic diversity in An. arabiensis from the northern savannah to the southern rainforest that corroborated previous data from microsatellites and polytene chromosomes.
Collapse
Affiliation(s)
- S D Matthews
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, New York, U.S.A
| | | | | | | | | | | | | |
Collapse
|
47
|
Lind CE, Evans BS, Taylor JJU, Jerry DR. Population genetics of a marine bivalve, Pinctada maxima, throughout the Indo-Australian Archipelago shows differentiation and decreased diversity at range limits. Mol Ecol 2007; 16:5193-203. [PMID: 18028303 DOI: 10.1111/j.1365-294x.2007.03598.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intraspecific genetic diversity governs the potential of species to prevail in the face of environmental or ecological challenges; therefore, its protection is critical. The Indo-Australian Archipelago (IAA) is a significant reservoir of the world's marine biodiversity and a region of high conservation priority. Yet, despite indications that the IAA may harbour greater intraspecific variation, multiple-locus genetic diversity data are limited. We investigated microsatellite DNA variation in Pinctada maxima populations from the IAA to elucidate potential factors influencing levels of genetic diversity in the region. Results indicate that genetic diversity decreases as the geographical distance away from central Indonesia increases, and that populations located towards the centre of P. maxima's range are more genetically diverse than those located peripherally (P < 0.01). Significant partitioning of genetic variation was identified (F(ST) = 0.027; R(ST) = 0.023, P < 0.001) and indicates that historical biogeographical episodes or oceanographic factors have shaped present population genetic structure. We propose that the genetic diversity peak in P. maxima populations may be due to (i) an abundance of suitable habitat within the IAA, meaning larger, more temporally stable populations can be maintained and are less likely to encounter genetic bottlenecks; and/or (ii) the close proximity of biogeographical barriers around central Indonesia results in increased genetic diversity in the region because of admixture of genetically divergent populations. We encourage further genetic diversity studies of IAA marine biota to confirm whether this region has a significant role in maintaining intraspecific diversity, which will greatly assist the planning and efficacy of future conservation efforts.
Collapse
Affiliation(s)
- Curtis E Lind
- Aquaculture Genetics Research Group, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.
| | | | | | | |
Collapse
|
48
|
Lukoschek V, Waycott M, Marsh H. Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow. Mol Ecol 2007; 16:3406-22. [PMID: 17688542 DOI: 10.1111/j.1365-294x.2007.03392.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pleistocene sea-level fluctuations profoundly changed landmass configurations around northern Australia. The cyclic emergence of the Torres Strait land bridge and concomitant shifts in the distribution of shallow-water marine habitats repeatedly sundered east and west coast populations. These biogeographical perturbations invoke three possible scenarios regarding the directions of interglacial range expansion: west to east, east to west, or bidirectional. We evaluated these scenarios for the olive sea snake, Aipysurus laevis, by exploring its genetic structure around northern Australia based on 354 individuals from 14 locations in three regions (Western Australia, WA; Gulf of Carpentaria, GoC; Great Barrier Reef, GBR). A 726-bp fragment of the mitochondrial DNA ND4 region revealed 41 variable sites and 38 haplotypes, with no shared haplotypes among the three regions. Population genetic structure was strong overall, phiST=0.78, P<0.001, and coalescent analyses revealed no migration between regions. Genetic diversity was low in the GBR and GoC and the genetic signatures of these regions indicated range or population expansions consistent with their recent marine transgressions around 7000 years ago. By contrast, genetic diversity on most WA reefs was higher and there were no signals of recent expansion events on these reefs. Phylogenetic analyses indicated that GBR and GoC haplotypes were derived from WA haplotypes; however, statistical parsimony suggested that recent range expansion in the GBR-GoC probably occurred from east coast populations, possibly in the Coral Sea. Levels of contemporary female-mediated gene flow varied within regions and reflected potential connectivity among populations afforded by the different regional habitat types.
Collapse
Affiliation(s)
- V Lukoschek
- School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.
| | | | | |
Collapse
|
49
|
Lee HJ, Boulding EG. Mitochondrial DNA variation in space and time in the northeastern Pacific gastropod,Littorina keenae. Mol Ecol 2007; 16:3084-103. [PMID: 17651189 DOI: 10.1111/j.1365-294x.2007.03364.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present population structure of a species reflects the influence of population history as well as contemporary processes. To examine the relative importance of these factors in shaping the current population structure of Littorina keenae, we sequenced 762 base pairs of the mitochondrial ND6 and cytochrome b genes in 584 snails from 13 sites along the northeastern Pacific coast. Haplotype network analysis revealed a 'star-like' genealogy indicative of a recent population expansion. Nested clade and mismatch analyses also supported the hypothesis of sudden population expansion following a population bottleneck during the Last Glacial Maximum. Analysis of molecular variance and pairwise Phi(ST) showed no significant spatial population differentiation from Mexico to Oregon - not even across the recognized biogeographic boundary at Point Conception. This is probably due to high contemporary gene flow during the free-swimming larval stage of this snail. Surprisingly, we found a highly significant temporal population differentiation between a San Pedro sample from 1996 and one from 2005, which gave an estimate of effective population size (N(e)) of only 135. Nearly statistically significant changes in the frequency of a particular haplotype in three other populations over 2-3 years further support Hedgecock's 'sweepstakes' hypothesis. When by chance nearly all of the progeny from an aggregation of highly fecund sisters that possess a rare haplotype successfully recruit to become the next generation, the rare haplotype can become temporarily common across the entire species' range. This modification of the sweepstakes hypothesis can explain why the temporal variation that we observed was much greater than the spatial variation.
Collapse
Affiliation(s)
- Hyuk Je Lee
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
50
|
Jeffrey B, Hale P, Degnan BM, Degnan SM. Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity. Mol Ecol 2007; 16:289-304. [PMID: 17217345 DOI: 10.1111/j.1365-294x.2006.03141.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Haliotis asinina is a broadcast-spawning mollusc that inhabits Indo-Pacific coral reefs. This tropical abalone develops through a nonfeeding larval stage that is competent to settle on specific species of coralline algae after 3-4 days in the plankton. Failure to contact an inductive algae within 10 days of hatching usually results in death. These life cycle characteristics suggest a limited capacity for dispersal and thus gene flow. This makes H. asinina particularly suitable for elucidating phylogeographical structure throughout the Indo-Malay Archipelagoes, and eastern Indian and western Pacific Oceans, all regions of biogeographical complexity and high conservation value. We assayed 482 bp of the mitochondrial cytochrome oxidase II gene in 206 abalone collected from 16 geographically discrete sites across the Indian and Pacific Oceans and Indo-Malay Archipelagoes. DNA sequence variation was analysed via population genetics and phylogenetics, and by nested clade analyses (NCA). Our data resolved clear phylogeographical breaks among major biogeographical regions, with sequence divergences ranging from a high of 3.7% and 3.0% between Indian and Pacific sites and Pacific and Indo-Malay sites, respectively, to a low of 1.1% between Indian and Indo-Malay sites. Despite the apparent limited dispersal capacity of H. asinina, no finer scale phylogeographical structure was resolved within the respective biogeographical regions. However, amova and NCA identified several significant associations between haplotypes and geographical distribution, most notably higher gene flow among geographical populations associated with major ocean currents. Our study provides further evidence that larval dispersal capacity alone is not a good predictor of population genetic structure in marine invertebrates. We infer instead that a combination of historical events (long-term barriers followed by range expansion associated with Pleistocene sea level changes) and contemporary processes (gene flow restricted by life history and oceanography) have shaped observed patterns of H. asinina phylogeography.
Collapse
|