1
|
Reuven AD, Katzenell S, Mwaura BW, Bliska JB. ExoS effector in Pseudomonas aeruginosa Hyperactive Type III secretion system mutant promotes enhanced Plasma Membrane Rupture in Neutrophils. PLoS Pathog 2025; 21:e1013021. [PMID: 40173191 PMCID: PMC11984736 DOI: 10.1371/journal.ppat.1013021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/10/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for airway infections in immunocompromised individuals, including those with cystic fibrosis (CF). P. aeruginosa has a type III secretion system (T3SS) that translocates effectors into host cells. ExoS is a T3SS effector with ADP ribosyltransferase (ADPRT) activity. ExoS ADPRT activity promotes P. aeruginosa virulence by inhibiting phagocytosis and limiting oxidative burst in neutrophils. The P. aeruginosa T3SS also translocates flagellin, which can activate the NLRC4 inflammasome, resulting in: 1) gasdermin-D pores, release of IL-1β and pyroptosis; and 2) histone 3 citrullination (CitH3), nuclear DNA decondensation and expansion into the neutrophil cytosol with incomplete NET extrusion. However, studies with P. aeruginosa PAO1 indicate that ExoS ADPRT activity inhibits the NLRC4 inflammasome in neutrophils. Here, we identified an ExoS+ CF clinical isolate of P. aeruginosa with a hyperactive T3SS. Variants of the hyperactive T3SS mutant or PAO1 were used to infect neutrophils from C57BL/6 mice that were wildtype or engineered to have a CF genotype or defects in inflammasome assembly. Responses to NLRC4 inflammasome assembly or ExoS ADPRT activity were assayed and found to be similar for C57BL/6 or CF neutrophils. ExoS ADPRT activity in the hyperactive T3SS mutant regulated inflammasome, nuclear DNA decondensation and incomplete NET extrusion responses, like PAO1, but promoted enhanced CitH3 and plasma membrane rupture (PMR). Glycine supplementation inhibited PMR by the hyperactive T3SS mutant, suggesting ninjurin-1 is required for this process. These results identify enhanced neutrophil PMR as a pathogenic activity of ExoS ADPRT in hypervirulent P. aeruginosa.
Collapse
Affiliation(s)
- Arianna D. Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sarah Katzenell
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Bethany W. Mwaura
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
2
|
El Husseini N, Carter JA, Lee VT. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2024; 88:e0006622. [PMID: 39431861 DOI: 10.1128/mmbr.00066-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
Collapse
Affiliation(s)
- Nour El Husseini
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
3
|
Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:325-345. [DOI: 10.1007/978-3-031-08491-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Wagener BM, Hu R, Wu S, Pittet JF, Ding Q, Che P. The Role of Pseudomonas aeruginosa Virulence Factors in Cytoskeletal Dysregulation and Lung Barrier Dysfunction. Toxins (Basel) 2021; 13:776. [PMID: 34822560 PMCID: PMC8625199 DOI: 10.3390/toxins13110776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas (P.) aeruginosa is an opportunistic pathogen that causes serious infections and hospital-acquired pneumonia in immunocompromised patients. P. aeruginosa accounts for up to 20% of all cases of hospital-acquired pneumonia, with an attributable mortality rate of ~30-40%. The poor clinical outcome of P. aeruginosa-induced pneumonia is ascribed to its ability to disrupt lung barrier integrity, leading to the development of lung edema and bacteremia. Airway epithelial and endothelial cells are important architecture blocks that protect the lung from invading pathogens. P. aeruginosa produces a number of virulence factors that can modulate barrier function, directly or indirectly, through exploiting cytoskeleton networks and intercellular junctional complexes in eukaryotic cells. This review summarizes the current knowledge on P. aeruginosa virulence factors, their effects on the regulation of the cytoskeletal network and associated components, and molecular mechanisms regulating barrier function in airway epithelial and endothelial cells. A better understanding of these processes will help to lay the foundation for new therapeutic approaches against P. aeruginosa-induced pneumonia.
Collapse
Affiliation(s)
- Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruihan Hu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Internal Medicine, Guiqian International General Hospital, Guiyang 550024, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Pseudomonas aeruginosa ExsA Regulates a Metalloprotease, ImpA, That Inhibits Phagocytosis of Macrophages. Infect Immun 2019; 87:IAI.00695-19. [PMID: 31527124 DOI: 10.1128/iai.00695-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium whose type III secretion system (T3SS) plays a critical role in acute infections. Translocation of the T3SS effectors into host cells induces cytotoxicity. In addition, the T3SS promotes the intracellular growth of P. aeruginosa during host infections. The T3SS regulon genes are regulated by an AraC-type regulator, ExsA. In this study, we found that an extracellular metalloprotease encoded by impA (PA0572) is under the regulation of ExsA. An ExsA consensus binding sequence was identified upstream of the impA gene, and direct binding of the site by ExsA was demonstrated via an electrophoretic mobility shift assay. We further demonstrate that secreted ImpA cleaves the macrophage surface protein CD44, which inhibits the phagocytosis of the bacterial cells by macrophages. Combined, our results reveal a novel ExsA-regulated virulence factor that cooperatively inhibits the functions of macrophages with the T3SS.
Collapse
|
6
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Belmadi N, Wu Y, Touqui L. Immuno-modulatory functions of the type-3 secretion system and impacts on the pulmonary host defense: A role for ExoS of Pseudomonas aeruginosa in cystic fibrosis. Toxicon 2018; 143:68-73. [PMID: 29339019 DOI: 10.1016/j.toxicon.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
Number of previous reviews had described the structures and the various functions of the exotoxins produced by the type-3 secretion system of Pseudomonas aeruginosa and their roles in the interactions of this bacterium with host cells. In this review, we summarize some relevant data of literature on ExoS, an exotoxin from the type-3 secretion system of P. aeruginosa, with a particular focus on the role of this toxin in the airways innate response of the host to infection by this bacterium, and its implication in the elimination of Staphylococcus aureus from the airways of patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nawal Belmadi
- Mucoviscidose et Bronchopathies Chroniques, Unité Mixte Institut Pasteur/Paris V, Faculté de Médecine Cochin, Paris, France
| | - Yongzheng Wu
- Unité de Biologie cellulaire de l'infection microbienne, CNRS, UMR 3691, Institut Pasteur, Paris, France
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, Unité Mixte Institut Pasteur/Paris V, Faculté de Médecine Cochin, Paris, France.
| |
Collapse
|
8
|
Jeon J, Kim YJ, Shin H, Ha UH. T3SS effector ExoY reduces inflammasome-related responses by suppressing bacterial motility and delaying activation of NF-κB and caspase-1. FEBS J 2017; 284:3392-3403. [PMID: 28815941 DOI: 10.1111/febs.14199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 11/28/2022]
Abstract
Type III-secreted effectors are essential for modulating host immune responses during the pathogenesis of Pseudomonas aeruginosa infections. Little is known about the impact of one of the effectors, ExoY, on inflammasome activation, which results in IL-1β production and pyroptotic cell death. In this study, we found that transcriptional expression of Il-1β was induced to a lesser extent in response to an exoY-harboring strain than to a deleted mutant. This suppressive effect of ExoY was verified by complementation assay as well as by direct translocation of exoY into host cells. In addition to the production of IL-1β, pyroptotic cell death was also diminished in response to an exoY-harboring strain. These inflammasome responses were mediated by the adenylate cyclase activity of ExoY, which plays a role in delaying the activation of NF-κB and caspase-1, a key component of inflammasome-mediated responses. Moreover, the negative effects of ExoY on these responses were in part conferred by the suppression of bacterial motility, which could reduce the degree of bacterial contact with cells. Together, these results demonstrate that the adenylate cyclase activity of P. aeruginosa ExoY can reduce inflammasome-related responses by influencing both the host and the bacterium itself by delaying the activation of inflammatory pathways and suppressing bacterial motility.
Collapse
Affiliation(s)
- Jisu Jeon
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Korea
| | - Yong-Jae Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Korea
| | - Heesung Shin
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Korea
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Korea
| |
Collapse
|
9
|
The salicylidene acylhydrazide INP0341 attenuates Pseudomonas aeruginosa virulence in vitro and in vivo. J Antibiot (Tokyo) 2017; 70:937-943. [PMID: 28588224 DOI: 10.1038/ja.2017.64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can be very hard to treat because of high resistance to different antibiotics and alternative treatment regimens are greatly needed. An alternative or a complement to traditional antibiotic is to inhibit virulence of the bacteria. The salicylidene acylhydrazide, INP0341, belongs to a class of compounds that has previously been shown to inhibit virulence in a number of Gram-negative bacteria. In this study, the virulence blocking effect of INP0341 on P. aeruginosa was studied in vitro and in vivo. Two important and closely related virulence system were examined, the type III secretion system (T3SS) that translocates virulence effectors into the cytosol of the host cell to evade immune defense and facilitate colonization and the flagella system, needed for motility and biofilm formation. INP0341 was shown to inhibit expression and secretion of the T3SS toxin exoenzyme S (ExoS) and to prevent bacterial motility on agar plates and biofilm formation. In addition, INP0341 showed an increased survival of P. aeruginosa-infected mice. In conclusion, INP0341 attenuates P. aeruginosa virulence.
Collapse
|
10
|
Berube BJ, Rangel SM, Hauser AR. Pseudomonas aeruginosa: breaking down barriers. Curr Genet 2015; 62:109-13. [PMID: 26407972 DOI: 10.1007/s00294-015-0522-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022]
Abstract
Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.
Collapse
Affiliation(s)
- Bryan J Berube
- Department of Microbiology-Immunology, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| | - Stephanie M Rangel
- Department of Microbiology-Immunology, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611, USA. .,Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. mBio 2014; 5:e01080-14. [PMID: 24917597 PMCID: PMC4056551 DOI: 10.1128/mbio.01080-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen commonly associated with nosocomial infections such as hospital-acquired pneumonia. It uses a type III secretion system to deliver effector proteins directly into the cytosol of host cells. Type III secretion in P. aeruginosa has been linked to severe disease and worse clinical outcomes in animal and human studies. The majority of P. aeruginosa strains secrete ExoS, a bifunctional toxin with GTPase-activating protein and ADP-ribosyltransferase activities. Numerous in vitro studies have investigated the targets and cellular effects of ExoS, linking both its enzymatic activities with inhibition of bacterial internalization. However, little is known about how this toxin facilitates the progression of infection in vivo. In this study, we used a mouse model to investigate the role of ExoS in inhibiting phagocytosis during pneumonia. We first confirmed previous findings that the ADP-ribosyltransferase activity of ExoS, but not the GTPase-activating protein activity, was responsible for bacterial persistence and decreased host survival in this model. We then used two distinct assays to demonstrate that ExoS inhibited phagocytosis during pneumonia. In contrast to the findings of several in vitro studies, this in vivo inhibition was also dependent on the ADP-ribosyltransferase activity, but not the GTPase-activating protein activity, of ExoS. These results demonstrate for the first time the antiphagocytic function of ExoS in the context of an actual infection and indicate that blocking the ADP-ribosyltransferase activity of ExoS may have potential therapeutic benefit. Pseudomonas aeruginosa is a major cause of hospital-acquired infections. To cause severe disease, this bacterium uses a type III secretion system that delivers four effector proteins, ExoS, ExoT, ExoU, and ExoY, into host cells. The majority of P. aeruginosa strains secrete ExoS, a bifunctional toxin with GTPase-activating protein and ADP-ribosyltransferase activities. In cell culture models, both enzymatic activities have been associated with decreased bacterial internalization. However, our study is the first to examine a role for ExoS in blocking phagocytosis in an animal model. We report that ExoS does inhibit phagocytosis during pneumonia. The ADP-ribosyltransferase activity, but not the GTPase-activating protein activity, of ExoS is necessary for this effect. Our findings highlight the ability of P. aeruginosa to manipulate the inflammatory response during pneumonia to facilitate bacterial survival.
Collapse
|
12
|
Simon NC, Barbieri JT. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion. J Biol Chem 2014; 289:10650-10659. [PMID: 24573681 DOI: 10.1074/jbc.m113.500710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.
Collapse
Affiliation(s)
- Nathan C Simon
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
13
|
Rolsma SL, Frank DW. In vitro assays to monitor the activity of Pseudomonas aeruginosa Type III secreted proteins. Methods Mol Biol 2014; 1149:171-84. [PMID: 24818904 PMCID: PMC5860653 DOI: 10.1007/978-1-4939-0473-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa secretes numerous toxins and destructive enzymes that play distinct roles in pathogenesis. The Type III secretion system (T3SS) of Pseudomonas is a system that delivers a subset of toxins directly into the cytoplasm of eukaryotic cells. The secreted effectors include ExoS, ExoT, ExoU, and ExoY. In this chapter, we describe methods to induce T3S expression and measure the enzymatic activities of each effector in in vitro assays. ExoU is a phospholipase and its activity can be measured in a fluorescence-based assay monitoring the cleavage of the fluorogenic substrate, PED6. ExoS and ExoT both possess ADP-ribosyltransferase (ADPRT) and GTPase-activating protein (GAP) activity. ADPRT activity can be assessed by using radiolabeled nicotinamide adenine dinucleotide (NAD(+)) and measuring the covalent incorporation of ADP-ribose into a target protein. GAP activity is measured by the release of radiolabeled phosphate from [γ-(32)P]GTP-bound target proteins. In accordance with recent trends towards reducing the use of radioactivity in the laboratory, alternative assays using fluorescent or biotin-labeled reagents are described. ExoY is a nucleotidyl cyclase; cAMP production stimulated by ExoY can be monitored using reverse-phase HPLC or with commercially available immunological assays.
Collapse
Affiliation(s)
- Stephanie L Rolsma
- Department of Microbiology and Molecular Genetics, Center of Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
14
|
Cunha LD, Zamboni DS. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:76. [PMID: 24324933 PMCID: PMC3840304 DOI: 10.3389/fcimb.2013.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP) Ribeirão Preto, Brazil
| | | |
Collapse
|
15
|
Simon NC, Vergis JM, Ebrahimi AV, Ventura CL, O'Brien AD, Barbieri JT. Host cell cytotoxicity and cytoskeleton disruption by CerADPr, an ADP-ribosyltransferase of Bacillus cereus G9241. Biochemistry 2013; 52:2309-18. [PMID: 22934824 DOI: 10.1021/bi300692g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacillus cereus G9241 was isolated from a welder suffering from an anthrax-like inhalation illness. B. cereus G9241 encodes two megaplasmids, pBCXO1 and pBC210, which are analogous to the toxin- and capsule-encoding virulence plasmids of Bacillus anthracis. Protein modeling predicted that the pBC210 LF homologue contained an ADP-ribosyltransferase (ADPr) domain. This putative bacterial ADP-ribosyltransferase domain was denoted CerADPr. Iterative modeling showed that CerADPr possessed several conserved ADP-ribosyltransferase features, including an α-3 helix, an ADP-ribosyltransferase turn-turn loop, and a "Gln-XXX-Glu" motif. CerADPr ADP-ribosylated an ~120 kDa protein in HeLa cell lysates and intact cells. EGFP-CerADPr rounded HeLa cells, elicited cytoskeletal changes, and yielded a cytotoxic phenotype, indicating that CerADPr disrupts cytoskeletal signaling. CerADPr(E431D) did not possess ADP-ribosyltransferase or NAD glycohydrolase activities and did not elicit a phenotype in HeLa cells, implicating Glu431 as a catalytic residue. These experiments identify CerADPr as a cytotoxic ADP-ribosyltransferase that disrupts the host cytoskeleton.
Collapse
Affiliation(s)
- Nathan C Simon
- Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
16
|
Transcriptome analysis of the effects of gomisin a on the recovery of carbon tetrachloride-induced damage in rat liver. Lab Anim Res 2011; 27:161-9. [PMID: 21826177 PMCID: PMC3146004 DOI: 10.5625/lar.2011.27.2.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 12/30/2022] Open
Abstract
Gomisin A possesses a hepatic function-facilitating property in liver-injured rats. Its preventive action on carbon tetrachloride-induced cholestasis is due to maintenance of the function of the bile acids-independent fraction. To investigate alterations in gene expression after gomisin A treatment on injured rat liver, DNA microarray analyses were performed on a Rat 44K 4-Plex Gene Expression platform with duplicated reactions after gomisin A treatment. We identified 255 up-regulated and 230 down-regulated genes due to the effects of gomisin A on recovery of carbon tetrachloride-induced rat liver damage. For functional characterization of these genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biochemical pathways analyses were performed. Many up-regulated or down-regulated genes were related to cell cycle or focal adhesion and cell death genes, respectively. Our microarray experiment indicated that the liver repair mechanism induced by gomisin A was strongly associated with increased gene expressions related to cell cycle and suppression of the gene expression related in cell death.
Collapse
|
17
|
Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0273-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
19
|
Deng Q, Barbieri JT. Modulation of host cell endocytosis by the type III cytotoxin, Pseudomonas ExoS. Traffic 2008; 9:1948-57. [PMID: 18778330 DOI: 10.1111/j.1600-0854.2008.00808.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin that possesses Rho GTPase-activating protein (RhoGAP) and ADP-ribosyltransferase (ADPr) activities. In the current study, the RhoGAP and ADPr activities of ExoS were tested for the ability to disrupt mammalian epithelial cell physiology. RhoGAP, but not ADPr, inhibited internalization/phagocytosis of bacteria, while ADPr, but not RhoGAP, inhibited vesicle trafficking, both general fluid-phase uptake and EGF-activated EGF receptor (EGFR) degradation. In ADPr-intoxicated cells, upon EGF activation, EGFR co-localized with clathrin-coated vesicles (CCV), which did not mature into Rab5-positive early endosomes. Constitutively, active Rab5 recruited EGFR from CCV to early endosomes. Consistent with the inhibition of Rab5 function by ADPr, several Rab proteins including Rab5 and 9, but not Rab4, were ADP ribosylated by ExoS. Thus, the two enzymatic activities of ExoS have different effects on epithelial cells with RhoGAP inhibiting bacterial internalization and ADPr interfering with CCV maturation. The ability ADPr to inhibit mammalian vesicle trafficking provides a new mechanism for bacterial toxin-mediated virulence.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
20
|
El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K. Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 2008; 178:513-9. [PMID: 18467510 DOI: 10.1164/rccm.200802-239oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Pseudomonas aeruginosa is one of the leading causes of gram-negative ventilator-associated pneumonia (VAP) associated with a mortality rate of 34 to 68%. Recent evidence suggests that P. aeruginosa in patients with VAP may persist in the alveolar space despite adequate antimicrobial therapy. We hypothesized that failure to eradicate P. aeruginosa from the lung is linked to type III secretory system (TTSS) isolates. OBJECTIVES To determine the mechanism by which infection with P. aeruginosa in patients with VAP may evade the host immune response. METHODS Thirty-four patients with P. aeruginosa VAP underwent noninvasive bronchoalveolar lavage (BAL) at the onset of VAP and on Day 8 after initiation of antibiotic therapy. Isolated pathogens were analyzed for secretion of type III cytotoxins. Neutrophil apoptosis in BAL fluid was quantified by assessment of nuclear morphology on Giemsa-stained cytocentrifuge preparations. Neutrophil elastase was assessed by immunoenzymatic assay. MEASUREMENTS AND MAIN RESULTS Twenty-five out of the 34 patients with VAP secreted at least one of type III proteins. There was a significant difference in apoptotic rate of neutrophils at VAP onset between those strains that secreted cytotoxins and those that did not. Neutrophil elastase levels were positively correlated with the rate of apoptosis (r = 0.43, P < 0.01). Despite adequate antimicrobial therapy, 13 out of 25 TTSS(+) isolates were recovered at Day 8 post-VAP, whereas eradication was achieved in all patients who had undetectable levels of type III secretion proteins. CONCLUSIONS The increased apoptosis in neutrophils by the TTSS(+) isolates may explain the delay in eradication of Pseudomonas strains in patients with VAP. Short-course antimicrobial therapy may not be adequate in clearing the infection with a TTSS secretory phenotype.
Collapse
Affiliation(s)
- Ali A El Solh
- Western New York Respiratory Research Center, Department of Medicine, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York 14215, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Deng Q, Barbieri JT. Intracellular localization of type III-delivered Pseudomonas ExoS with endosome vesicles. J Biol Chem 2007; 282:13022-32. [PMID: 17311921 DOI: 10.1074/jbc.m606305200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ExoS (453 amino acids) is a bi-functional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96-219 include the Rho GTPase-activating protein (RhoGAP) domain, and residues 234-453 include the 14-3-3-dependent ADP-ribosyltransferase domain. Earlier studies also identified an N-terminal domain (termed the membrane localization domain) that comprises residues 51-77 and includes a novel leucine-rich motif that targets ExoS to the perinuclear region of cultured cells. There is limited information on how ExoS or other type III cytotoxins enter and target intracellular host proteins. Type III-delivered ExoS localized to both plasma membrane and perinuclear region, whereas ExoS(DeltaMLD) was localized to the cytosol. Plasma membrane localization of ExoS was transient and had a half-life of approximately 20 min. Type III-delivered ExoS co-immunoprecipitated 14-3-3 proteins and Rab9, Rab6, and Rab5. Immunofluorescence experiments showed that ExoS colocalized with Rab9, Rab6, and Rab5. Fluorescent energy transfer was detected between ExoS and 14-3-3 proteins but not between ExoS and Rabs proteins. Together, these results indicate that type III-delivered ExoS localizes on the host endosomes and utilizes multiple pathways to traffic from the plasma membrane to the perinuclear region of intoxicated host cells.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
22
|
Ottmann C, Yasmin L, Weyand M, Veesenmeyer JL, Diaz MH, Palmer RH, Francis MS, Hauser AR, Wittinghofer A, Hallberg B. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J 2007; 26:902-13. [PMID: 17235285 PMCID: PMC1794388 DOI: 10.1038/sj.emboj.7601530] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/04/2006] [Indexed: 01/04/2023] Open
Abstract
14-3-3 proteins are phosphoserine/phosphothreonine-recognizing adapter proteins that regulate the activity of a vast array of targets. There are also examples of 14-3-3 proteins binding their targets via unphosphorylated motifs. Here we present a structural and biological investigation of the phosphorylation-independent interaction between 14-3-3 and exoenzyme S (ExoS), an ADP-ribosyltransferase toxin of Pseudomonas aeruginosa. ExoS binds to 14-3-3 in a novel binding mode mostly relying on hydrophobic contacts. The 1.5 A crystal structure is supported by cytotoxicity analysis, which reveals that substitution of the corresponding hydrophobic residues significantly weakens the ability of ExoS to modify the endogenous targets RAS/RAP1 and to induce cell death. Furthermore, mutation of key residues within the ExoS binding site for 14-3-3 impairs virulence in a mouse pneumonia model. In conclusion, we show that ExoS binds 14-3-3 in a novel reversed orientation that is primarily dependent on hydrophobic residues. This interaction is phosphorylation independent and is required for the function of ExoS.
Collapse
Affiliation(s)
- Christian Ottmann
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
- Chemical Genomics Centre, Dortmund, Germany
| | - Lubna Yasmin
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Michael Weyand
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Jeffrey L Veesenmeyer
- Departments of Microbiology/Immunology and Medicine, Northwestern University, Chicago, IL, USA
| | - Maureen H Diaz
- Departments of Microbiology/Immunology and Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth H Palmer
- Umeå Center for Molecular Pathogenesis, Umeå University, Umeå, Sweden
| | | | - Alan R Hauser
- Departments of Microbiology/Immunology and Medicine, Northwestern University, Chicago, IL, USA
| | - Alfred Wittinghofer
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Bengt Hallberg
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
- Department of Medical Biosciences/Pathology, Buil. 6M, Umeå University, Umeå 90187, Sweden. Tel.: +46 907 852 523; Fax: +46 907 852 829; E-mail:
| |
Collapse
|
23
|
Jia J, Wang Y, Zhou L, Jin S. Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun 2006; 74:6557-70. [PMID: 16966406 PMCID: PMC1698105 DOI: 10.1128/iai.00591-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/31/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that primarily infects immunocompromised individuals and patients with cystic fibrosis. Invasive strains of P. aeruginosa are known to induce apoptosis at a high frequency in HeLa cells and in many other cell lines, a process that is dependent on the ADP-ribosylation (ADPRT) activity of a type III secreted protein ExoS. In our previous report, it was proposed that P. aeruginosa secreting ExoS, upon infection, shuts down host cell survival signal pathways by inhibiting ERK1/2 and p38 activation, and it activates proapoptotic pathways through activation of JNK1/2, leading ultimately to cytochrome c release and activation of caspases. In this study, we demonstrate that the expression of ExoS in HeLa cells by eukaryotic expression vector effectively caused apoptosis in an ADPRT activity-dependent manner, indicating that ExoS alone is sufficient to trigger apoptotic death of host cells independent of any other bacterial factors. By expressing an EGFP-ExoS fusion protein, we were able to directly correlate the death of HeLa cells with the presence of intracellular ExoS and further proved the dependence of this process on both JNK activation and mitochondrial proapoptotic event. The cellular pathway responsible for the ExoS-induced cytotoxicity appears to be well conserved, since the expression of the ADPRT-competent ExoS also induced rapid cell death in the Drosophila melanogaster S2 cell lines. The presented study not only highlights the ability of ExoS ADPRT to modulate host cell signaling, eventually leading to apoptosis, but also establishes ExoS as a valuable tool, in principle, for the elucidation of apoptosis mechanisms.
Collapse
Affiliation(s)
- Jinghua Jia
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
24
|
Stirling FR, Evans TJ. Effects of the type III secreted pseudomonal toxin ExoS in the yeast Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2006; 152:2273-2285. [PMID: 16849794 DOI: 10.1099/mic.0.28831-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa secretes a number of toxins by a type III system, and these are important in virulence. One of them, ExoS, is a bifunctional toxin, with a GTPase-activating protein domain, as well as ADP ribosyltransferase (ADPRT) activity. These two domains have numerous potential cellular targets, but the overall mechanism of ExoS action remains unclear. The effects of ExoS in a simple eukaryotic system, the yeast Saccharomyces cerevisiae, using a tetracycline-regulated expression system were studied. This system allowed controlled expression of ExoS in yeast, which was not possible using a galactose-induced system. ExoS was found to be an extremely potent inhibitor of yeast growth, and to be largely dependent on the activity of its ADPRT domain. ExoS produced a dramatic alteration in actin distribution, with the appearance of large aggregates of cortical actin, and thickened disorganized cables, entirely dependent on the ADPRT domain. This phenotype is suggestive of actin stabilization, which was verified by showing that the cortical aggregates of actin induced by ExoS were resistant to treatment with latrunculin A, an agent that prevents actin polymerization. ExoS increased the numbers of mating projections produced following growth arrest with mating pheromone, and prevented subsequent DNA replication, an effect that is again dependent on the ADPRT domain. Following pheromone removal, ExoS produced altered development of the mating projections, which became elongated with a swollen bud-like tip. These results suggest alternative pathways for ExoS action in eukaryotic cells that may result from activation of small GTPases, and this yeast expression system is well suited to explore these pathways.
Collapse
Affiliation(s)
- Fiona R Stirling
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | - Tom J Evans
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| |
Collapse
|
25
|
Shaver CM, Hauser AR. Interactions between effector proteins of the Pseudomonas aeruginosa type III secretion system do not significantly affect several measures of disease severity in mammals. MICROBIOLOGY-SGM 2006; 152:143-152. [PMID: 16385124 DOI: 10.1099/mic.0.28368-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effector proteins of the type III secretion systems of many bacterial pathogens act in a coordinated manner to subvert host cells and facilitate the development and progression of disease. It is unclear whether interactions between the type-III-secreted proteins of Pseudomonas aeruginosa result in similar effects on the disease process. We have previously characterized the contributions to pathogenesis of the type-III-secreted proteins ExoS, ExoT and ExoU when secreted individually. In this study, we extend our prior work to determine whether these proteins have greater than expected effects on virulence when secreted in combination. In vitro cytotoxicity and anti-internalization activities were not enhanced when effector proteins were secreted in combinations rather than alone. Likewise in a mouse model of pneumonia, bacterial burden in the lungs, dissemination and mortality attributable to ExoS, ExoT and ExoU were not synergistically increased when combinations of these effector proteins were secreted. Because of the absence of an appreciable synergistic increase in virulence when multiple effector proteins were secreted in combination, we conclude that any cooperation between ExoS, ExoT and ExoU does not translate into a synergistically significant enhancement of disease severity as measured by these assays.
Collapse
Affiliation(s)
- Ciara M Shaver
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Searle 6-495, Chicago, IL 60611, USA
| | - Alan R Hauser
- Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Searle 6-495, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Searle 6-495, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA, Schulert GS, Bar-Meir M, Sullivan CL, McColley SA, Hauser AR. Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 2005; 42:5229-37. [PMID: 15528719 PMCID: PMC525189 DOI: 10.1128/jcm.42.11.5229-5237.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a frequent cause of respiratory exacerbations in individuals with cystic fibrosis. An important virulence determinant of this pathogen is its type III protein secretion system. In this study, the type III secretion properties of 435 P. aeruginosa respiratory isolates from 56 chronically infected individuals with cystic fibrosis were investigated. Although it had been previously reported that 75 to 90% of P. aeruginosa isolates from patients with hospital-acquired pneumonia secreted type III proteins, only 12% of isolates from cystic fibrosis patients did so, with nearly all of these isolates secreting ExoS and ExoT but not ExoU. Despite the low overall prevalence of type III protein-secreting isolates, at least one secreting isolate was cultured from one-third of cystic fibrosis patients. Interestingly, the fraction of cystic fibrosis patient isolates capable of secreting type III proteins decreased with duration of infection. Although 90% of isolates from the environment, the presumed reservoir for the majority of P. aeruginosa strains that infect patients with cystic fibrosis, secreted type III proteins, only 49% of isolates from newly infected children, 18% of isolates from chronically infected children, and 4% of isolates from chronically infected adults with cystic fibrosis secreted these proteins. Within individual patients, isolates of clonal origin differed in their secretion phenotypes, indicating that as strains persisted in cystic fibrosis patient airways, their type III protein secretion properties changed. Together, these findings indicate that following infection of cystic fibrosis patient airways, P. aeruginosa strains gradually change from a type III protein secretion-positive phenotype to a secretion-negative phenotype.
Collapse
Affiliation(s)
- Manu Jain
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The combination of a large genome encoding metabolic versatility and conserved secreted virulence determinants makes Pseudomonas aeruginosa a model pathogen that can be used to study host-parasite interactions in many eukaryotic hosts. One of the virulence regulons that likely plays a role in the ability of P. aeruginosa to avoid innate immune clearance in mammals is a type III secretion system (TTSS). Upon cellular contact, the P. aeruginosa TTSS is capable of delivering a combination of at least four different effector proteins, exoenzyme S (ExoS), ExoT, ExoU, and ExoY. Two of the four translocated proteins, ExoS and ExoU, are cytotoxic to cells during infection and transfection. The mechanism of cytotoxicity of ExoS is unclear. ExoU, however, has recently been characterized as a member of the phospholipase A family of enzymes, possessing at least phospholipase A2 activity. Similar to ExoS, ExoT and ExoY, ExoU requires either a eukaryotic-specific modification or cofactor for its activity in vitro. The biologic effects of minimal expression of ExoU in yeast can be visualized by membrane damage to different organelles and fragmentation of the vacuole. In mammalian cells, the direct injection of ExoU causes irreversible damage to cellular membranes and rapid necrotic death. ExoU likely represents a unique enzyme and is the first identified phopholipase virulence factor that is translocated into the cytosol by TTSS.
Collapse
Affiliation(s)
- Hiromi Sato
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
28
|
Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004; 72:6969-77. [PMID: 15557619 PMCID: PMC529154 DOI: 10.1128/iai.72.12.6969-6977.2004] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa uses a type III secretion system to promote development of severe disease, particularly in patients with impaired immune defenses. While the biochemical and enzymatic functions of ExoU, ExoS, and ExoT, three effector proteins secreted by this system, are well defined, the relative roles of each protein in the pathogenesis of acute infections is not clearly understood. Since ExoU and ExoS are usually not secreted by the same strain, it has been difficult to directly compare the effects of these proteins during infection. In the work described here, several isogenic mutants of a bacterial strain that naturally secretes ExoU, ExoS, and ExoT were generated to carefully evaluate the relative contribution of each effector protein to pathogenesis in a mouse model of acute pneumonia. Measurements of mortality, bacterial persistence in the lung, and dissemination indicated that secretion of ExoU had the greatest impact on virulence while secretion of ExoS had an intermediate effect and ExoT had a minor effect. It is of note that these results conclusively show for the first time that ExoS is a virulence factor. Infection with isogenic mutants secreting wild-type ExoS, ExoS defective in GTPase-activating protein (GAP) activity, or ExoS defective in ADP-ribosyltransferase activity demonstrated that the virulence of ExoS was largely dependent on its ADP-ribosyltransferase activity. The GAP activity of this protein had only a minor effect in vivo. The relative virulence associated with each of these type III effector proteins may have important prognostic implications for patients infected with P. aeruginosa.
Collapse
Affiliation(s)
- Ciara M Shaver
- Department of Microbiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Searle 6-495, Chicago, IL 60611, USA
| | | |
Collapse
|
29
|
Sun J, Barbieri JT. ExoS Rho GTPase-activating protein activity stimulates reorganization of the actin cytoskeleton through Rho GTPase guanine nucleotide disassociation inhibitor. J Biol Chem 2004; 279:42936-44. [PMID: 15292224 DOI: 10.1074/jbc.m406493200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ExoS is a bifunctional Type III cytotoxin of Pseudomonas aeruginosa with N-terminal Rho GTPase-activating protein (RhoGAP) and C-terminal ADP-ribosyltransferase domains. Although the ExoS RhoGAP inactivates Cdc42, Rac, and RhoA in vivo, the relationship between ExoS RhoGAP and the eukaryotic regulators of Rho GTPases is not clear. The present study investigated the roles of Rho GTPase guanine nucleotide disassociation inhibitor (RhoGDI) in the reorganization of actin cytoskeleton mediated by ExoS RhoGAP. A green fluorescent protein-RhoGDI fusion protein was engineered and found to elicit actin reorganization through the inactivation of Rho GTPases. Green fluorescent protein-RhoGDI and ExoS RhoGAP cooperatively stimulated actin reorganization and translocation of Cdc42 from membrane to cytosol, and a RhoGDI mutant, RhoGDI(I177D), that is defective in extracting Rho GTPases off the membrane inhibited the actions of RhoGDI and ExoS RhoGAP on the translocation of Cdc42 from membrane to cytosol. A human RhoGDI small interfering RNA was transfected into HeLa cells to knock down 90% of the endogenous RhoGDI expression. HeLa cells with knockdown RhoGDI were resistant to the reorganization of the actin cytoskeleton elicited by type III-delivered ExoS RhoGAP. This indicates that ExoS RhoGAP and RhoGDI function in series to inactivate Rho GTPases, in which RhoGDI extracting GDP-bound Rho GTPases off the membrane and sequestering them in cytosol is the rate-limiting step in Rho GTPase inactivation. A eukaryotic GTPase-activating protein, p50RhoGAP, showed a similar cooperativity with RhoGDI on actin reorganization, suggesting that ExoS RhoGAP functions as a molecular mimic of eukaryotic RhoGAPs to inactivate Rho GTPases through RhoGDI.
Collapse
Affiliation(s)
- Jianjun Sun
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
30
|
Maresso AW, Baldwin MR, Barbieri JT. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. J Biol Chem 2004; 279:38402-8. [PMID: 15252013 DOI: 10.1074/jbc.m405707200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III-secreted cytotoxin. The N terminus (amino acids 96-233) encodes a GTPase-activating protein activity, whereas the C terminus (amino acids 234-453) encodes a factor-activating ExoS-dependent ADP-ribosyltransferase activity. The GTPase-activating protein activity inactivates the Rho GTPases Rho, Rac, and Cdc42 in cultured cells and in vitro, whereas the ADP-ribosylation by ExoS is poly-substrate-specific and includes Ras as an early target for ADP-ribosylation. Infection of HeLa cells with P. aeruginosa producing a GTPase-activating protein-deficient form of ExoS rounded cells, indicating the ADP-ribosyltransferase domain alone is sufficient to elicit cytoskeletal changes. Examination of substrates modified by type III-delivered ExoS identified a 70-kDa protein as an early and predominant target for ADP-ribosylation. Matrix-assisted laser desorption ionization mass spectroscopy identified this protein as moesin, a member of the ezrin/radixin/moesin (ERM) family of proteins. ExoS ADP-ribosylated recombinant moesin at a linear velocity that was 5-fold faster and with a K(m) that was 2 orders of magnitude lower than Ras. Moesin homologs ezrin and radixin were also ADP-ribosylated, indicating the ERMs collectively represent high affinity targets of ExoS. Type III delivered ExoS ADP-ribosylated moesin and ezrin (and/or radixin) in cultured HeLa cells. The ERM proteins contribute to cytoskeleton dynamics, and the ability of ExoS to ADP-ribosylate the ERM proteins links ADP-ribosylation with the cytoskeletal changes associated with ExoS intoxication.
Collapse
Affiliation(s)
- Anthony W Maresso
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
31
|
Krall R, Zhang Y, Barbieri JT. Intracellular Membrane Localization of Pseudomonas ExoS and Yersinia YopE in Mammalian Cells. J Biol Chem 2004; 279:2747-53. [PMID: 14597627 DOI: 10.1074/jbc.m301963200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ExoS (453 amino acids) is a bi-functional type-III cytotoxin of Pseudomonas aeruginosa. Residues 96-233 comprise the Rho GTPase-activating protein (Rho GAP) domain, while residues 234-453 comprise the 14-3-3-dependent ADP-ribosyltransferase domain. Residues 51-72 represent a membrane localization domain (MLD), which targets ExoS to perinuclear vesicles within mammalian cells. YopE (219 amino acids) is a type-III cytotoxin of Yersinia that is also a Rho GAP. Residues 96-219 comprise the YopE Rho GAP domain. While the Rho GAP domains of ExoS and YopE share structural homology, unlike ExoS, the intracellular localization of YopE within mammalian cells has not been resolved and is the subject of this investigation. Deletion mapping showed that the N terminus of YopE was required for intracellular membrane localization of YopE in CHO cells. A fusion protein containing the N-terminal 84 amino acids of YopE localized to a punctate-perinuclear region in mammalian cells and co-localized with a fusion protein containing the MLD of ExoS. Residues 54-75 of YopE (termed YopE-MLD) were necessary and sufficient for intracellular localization in mammalian cells. The YopE-MLD localized ExoS to intracellular membranes and targeted ExoS to ADP-ribosylate small molecular weight membrane proteins as observed for native type-III delivered ExoS. These data indicate that the YopE MLD functionally complements the ExoS MLD for intracellular targeting in mammalian cells.
Collapse
Affiliation(s)
- Rebecca Krall
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
32
|
Garrity-Ryan L, Shafikhani S, Balachandran P, Nguyen L, Oza J, Jakobsen T, Sargent J, Fang X, Cordwell S, Matthay MA, Engel JN. The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 2004; 72:546-58. [PMID: 14688136 PMCID: PMC343945 DOI: 10.1128/iai.72.1.546-558.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 04/03/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
ExoT is a type III secreted effector protein found in almost all strains of Pseudomonas aeruginosa and is required for full virulence in an animal model of acute pneumonia. It is comprised of an N-terminal domain with GTPase activating protein (GAP) activity towards Rho family GTPases and a C-terminal ADP ribosyltransferase (ADPRT) domain with minimal activity towards a synthetic substrate in vitro. Consistent with its activity as a Rho family GTPase, ExoT has been shown to inhibit P. aeruginosa internalization into epithelial cells and macrophages, disrupt the actin cytoskeleton through a Rho-dependent pathway, and inhibit wound repair in a scrape model of injured epithelium. We have previously shown that mutation of the invariant arginine of the GAP domain to lysine (R149K) results in complete loss of GAP activity in vitro but only partially inhibits ExoT anti-internalization and cell rounding activity. We have constructed in-frame deletions and point mutations within the ADPRT domain in order to test whether this domain might account for the residual activity observed in ExoT GAP mutants. Deletion of a majority of the ADPRT domain (residues 234 to 438) or point mutations of the ADPRT catalytic site (residues 383 to 385) led to distinct changes in host cell morphology and substantially reduced the ability of ExoT to inhibit in vitro epithelial wound healing over a 24-h period. In contrast, only subtle effects on the efficiency of ExoT-induced bacterial internalization were observed in the ADPRT mutant forms. Expression of each domain individually in Saccharomyces cerevisiae was toxic, whereas expression of each of the catalytically inactive mutant domains was not. Collectively, these data demonstrate that the ADPRT domain of ExoT is active in vivo and contributes to the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- L Garrity-Ryan
- Departments of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rocha CL, Coburn J, Rucks EA, Olson JC. Characterization of Pseudomonas aeruginosa exoenzyme S as a bifunctional enzyme in J774A.1 macrophages. Infect Immun 2003; 71:5296-305. [PMID: 12933877 PMCID: PMC187317 DOI: 10.1128/iai.71.9.5296-5305.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exoenzyme S (ExoS) is a type III secretion (TTS) effector, which includes both a GTPase-activating protein (GAP) activity toward the Rho family of low-molecular-weight G (LMWG) proteins and an ADP-ribosyltransferase (ADPRT) activity that targets LMWG proteins in the Ras, Rab, and Rho families. The coordinate function of both activities of ExoS in J774A.1 macrophages was assessed by using P. aeruginosa strains expressing and translocating wild-type ExoS or ExoS defective in GAP and/or ADPRT activity. Distinct and coordinated functions were identified for both domains. The GAP activity was required for the antiphagocytic effect of ExoS and was linked to interference of lamellopodium and membrane ruffle formation. Alternatively, the ADPRT activity of ExoS altered cellular adherence and morphology and was linked to effects on filopodium formation. The cellular mechanism of ExoS GAP activity included an inactivation of Rac1 function, as determined in p21-activated kinase 1-glutathione S-transferase (GST) pull-down assays. The ADPRT activity of ExoS targeted Ras and RalA but not Rab or Rho proteins, and Ral binding protein 1-GST pull-down assays identified an effect of ExoS ADPRT activity on RalA activation. The results from these studies confirm the bifunctional nature of ExoS activity within macrophages when translocated by TTS.
Collapse
Affiliation(s)
- Claudia L Rocha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
34
|
Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP. Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J Clin Microbiol 2003; 41:3526-31. [PMID: 12904350 PMCID: PMC179785 DOI: 10.1128/jcm.41.8.3526-3531.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We mapped the coding single nucleotide polymorphisms in four toxin genes-exoS, exoT, exoU, and exoY-of the Pseudomonas aeruginosa type III secretion system among several clinical isolates. We then used this information to design a multiplex PCR assay based on the simultaneous amplification of fragments of these genes. Eight strains of known genotype were used to test our multiplex PCR method, which showed 100% sensitivity and specificity in this small sample size. This assay appears to be promising for the rapid and accurate genotyping of the presence of these genes in clinical strains of P. aeruginosa.
Collapse
Affiliation(s)
- Temitayo Ajayi
- Department of Anesthesia and Perioperative Care, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
35
|
Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbançon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 2003; 22:2959-69. [PMID: 12805211 PMCID: PMC162142 DOI: 10.1093/emboj/cdg290] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa delivers the toxin ExoU to eukaryotic cells via a type III secretion system. Intoxication with ExoU is associated with lung injury, bacterial dissemination and sepsis in animal model and human infections. To search for ExoU targets in a genetically tractable system, we used controlled expression of the toxin in Saccharomyces cerevisiae. ExoU was cytotoxic for yeast and caused a vacuolar fragmentation phenotype. Inhibitors of human calcium-independent (iPLA(2)) and cytosolic phospholipase A(2) (cPLA(2)) lipase activity reduce the cytotoxicity of ExoU. The catalytic domains of patatin, iPLA(2) and cPLA(2) align or are similar to ExoU sequences. Site-specific mutagenesis of predicted catalytic residues (ExoUS142A or ExoUD344A) eliminated toxicity. ExoU expression in yeast resulted in an accumulation of free palmitic acid, changes in the phospholipid profiles and reduction of radiolabeled neutral lipids. ExoUS142A and ExoUD344A expressed in yeast failed to release palmitic acid. Recombinant ExoU demonstrated lipase activity in vitro, but only in the presence of a yeast extract. From these data we conclude that ExoU is a lipase that requires activation or modification by eukaryotic factors.
Collapse
Affiliation(s)
- Hiromi Sato
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maresso AW, Barbieri JT. Expression and purification of two recombinant forms of the type-III cytotoxin, Pseudomonas aeruginosa ExoS. Protein Expr Purif 2002; 26:432-7. [PMID: 12460767 DOI: 10.1016/s1046-5928(02)00544-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa Exoenzyme S (ExoS) is a bifunctional type-III cytotoxin. The N-terminus (residues 1-232) possesses Rho GTPase-activating (GAP) activity, while the C-terminus (residues 233-453) comprises an ADP-ribosyltransferase domain. Amino acid residues 51-72 of ExoS are involved in membrane binding and aggregation, which has complicated purification schemes. Here, it is reported on the expression, purification, and characterization of two recombinant forms of ExoS that lack this membrane-binding domain, designated rExoS78-453 and rExoSdelta51-72. Purification of these forms was achieved using sequential NTA/Ni(2+)-affinity, gel filtration, and anion-exchange chromatography. Both forms of ExoS possessed Rho GAP activity and ADP-ribosyltransferase activity comparable to wild-type ExoS. Mass spectrometry showed that rExoS78-453 and rExoSdelta51-72 had molecular masses similar to their predicted molecular masses.
Collapse
Affiliation(s)
- Anthony W Maresso
- Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
37
|
Sundin C, Wolfgang MC, Lory S, Forsberg A, Frithz-Lindsten E. Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa. Microb Pathog 2002; 33:265-77. [PMID: 12495673 DOI: 10.1006/mpat.2002.0534] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type III secretion system (TTSS) of the opportunistic pathogen Pseudomonas aeruginosa enables the bacterium to deliver exoenzymes directly into the eukaryotic cell. In this study we have investigated the role of key factors involved in this process. We could demonstrate that the translocators PopB, PopD and PcrV are absolutely required for delivery of Exoenzyme S into host cells. By analyzing different Tfp (type IV pili) mutants we could establish a correlation between the frequency of bacteria binding to the host cell and the levels of translocated ExoS, thereby verifying that the process is contact dependent. However, there was no absolute requirement for the Tfp per se, since the pilus could be substituted with a different type of adhesin, the non-fimbrial adhesin pH6 antigen of Yersinia pestis. Taken together, our results demonstrate that binding to establish close contact between the type III secretion organelle and the host cell is essential for translocation, while the additional activities of Tfp are not essential for the delivery of TTSS proteins.
Collapse
Affiliation(s)
- Charlotta Sundin
- Department of Medical Countermeasures, FOI NBC-Defence, S-901 82, Umeå, Sweden
| | | | | | | | | |
Collapse
|
38
|
Pederson KJ, Krall R, Riese MJ, Barbieri JT. Intracellular localization modulates targeting of ExoS, a type III cytotoxin, to eukaryotic signalling proteins. Mol Microbiol 2002; 46:1381-90. [PMID: 12453223 DOI: 10.1046/j.1365-2958.2002.03256.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ExoS is a bifunctional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96-232 comprise the Rho GTPase activating protein (Rho GAP) domain, whereas residues 233-453 comprise the 14-3-3-dependent ADP-ribosyltransferase domain. Earlier studies showed that the N-terminus targeted ExoS to intracellular membranes within eukaryotic cells. This N-terminal targeting region is now characterized for cellular and biological contributions to intoxications by ExoS. An ExoS(1-107)-green fluorescent protein (GFP) fusion protein co-localized with alpha-mannosidase, which indicated that the fusion protein localized near the Golgi. Residues 51-72 of ExoS (termed the membrane localization domain, MLD) were necessary and sufficient for membrane localization within eukaryotic cells. Deletion of the MLD did not inhibit type III secretion of ExoS from P. aeruginosa or type III delivery of ExoS into eukaryotic cells. Type III-delivered ExoS(DeltaMLD) localized within the cytosol of eukaryotic cells, whereas type III-delivered ExoS was membrane associated. Although type III-delivered ExoS(DeltaMLD) stimulated the reorganization of the actin cytoskeleton (a Rho GAP activity), it did not ADP-ribosylate Ras. Type III-delivered ExoS(DeltaMLD) and ExoS showed similar capacities for eliciting a cytotoxic response in CHO cells, which uncoupled the ADP-ribosylation of Ras from the cytotoxicity elicited by ExoS.
Collapse
Affiliation(s)
- Kristin J Pederson
- Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plk. Rd., Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
39
|
Type III secretion-mediated killing of endothelial cells by Pseudomonas aeruginosa. Microb Pathog 2002. [DOI: 10.1006/mpat.2002.0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Abstract
Eukaryotic cells are under constant attack from microbial intruders seeking a selective advantage for survival, propagation and dissemination. Microbial infections can often result in disease and might even be lethal to the host if they are not combatted effectively. Studies of host-pathogen interactions have revealed that virulence often requires the usurpation of existing cell signaling pathways or membrane traffic machinery of the host. Such studies provide a rich source of cell biological data that will probably prove essential for future efforts designed to either thwart these attacks or learn from them.
Collapse
Affiliation(s)
- Richard A Kahn
- Dept of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
41
|
Riese MJ, Goehring UM, Ehrmantraut ME, Moss J, Barbieri JT, Aktories K, Schmidt G. Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. J Biol Chem 2002; 277:12082-8. [PMID: 11821389 DOI: 10.1074/jbc.m109039200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa Exoenzyme S (ExoS) is a bifunctional type-III cytotoxin. The N terminus possesses a Rho GTPase-activating protein (GAP) activity, whereas the C terminus comprises an ADP-ribosyltransferase domain. We investigated whether the ADP-ribosyltransferase activity of ExoS influences its GAP activity. Although the ADP-ribosyltransferase activity of ExoS is dependent upon FAS, a 14-3-3 family protein, factor-activating ExoS (FAS) had no influence on the activity of the GAP domain of ExoS (ExoS-GAP). In the presence of NAD and FAS, the GAP activity of full-length ExoS was reduced about 10-fold, whereas NAD and FAS did not affect the activity of the ExoS-GAP fragment. Using [(32)P]NAD, ExoS-GAP was identified as a substrate of the ADP-ribosyltransferase activity of ExoS. Site-directed mutagenesis revealed that auto-ADP-ribosylation of Arg-146 of ExoS was crucial for inhibition of GAP activity in vitro. To reveal the auto-ADP-ribosylation of ExoS in intact cells, tetanolysin was used to produce pores in the plasma membrane of Chinese hamster ovary (CHO) cells to allow the intracellular entry of [(32)P]NAD, the substrate for ADP-ribosylation. After a 3-h infection of CHO cells with Pseudomonas aeruginosa, proteins of 50 and 25 kDa were preferentially ADP-ribosylated. The 50-kDa protein was determined to be auto-ADP-ribosylated ExoS, whereas the 25-kDa protein appeared to represent a group of proteins that included Ras.
Collapse
Affiliation(s)
- Matthew J Riese
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Riese MJ, Barbieri JT. Membrane localization contributes to the in vivo ADP-ribosylation of Ras by Pseudomonas aeruginosa ExoS. Infect Immun 2002; 70:2230-2. [PMID: 11895993 PMCID: PMC127869 DOI: 10.1128/iai.70.4.2230-2232.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Revised: 11/20/2001] [Accepted: 01/05/2002] [Indexed: 11/20/2022] Open
Abstract
Type III-delivered exoenzyme S (ExoS) preferentially ADP-ribosylated membrane-associated His(6)HRas, relative to its cytosolic derivative His(6)HRas Delta CAAX. This indicates that the subcellular protein distribution contributes to in vivo ADP-ribosylation by ExoS.
Collapse
Affiliation(s)
- Matthew J Riese
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
43
|
Finck-Barbançon V, Frank DW. Multiple domains are required for the toxic activity of Pseudomonas aeruginosa ExoU. J Bacteriol 2001; 183:4330-44. [PMID: 11418575 PMCID: PMC95324 DOI: 10.1128/jb.183.14.4330-4344.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of ExoU by Pseudomonas aeruginosa is correlated with acute cytotoxicity in a number of epithelial and macrophage cell lines. In vivo, ExoU is responsible for epithelial injury. The absence of a known motif or significant homology with other proteins suggests that ExoU may possess a new mechanism of toxicity. To study the intracellular effects of ExoU, we developed a transient-transfection system in Chinese hamster ovary cells. Transfection with full-length but not truncated forms of ExoU inhibited reporter gene expression. Inhibition of reporter activity after cotransfection with ExoU-encoding constructs was correlated with cellular permeability and death. The toxicity of truncated versions of ExoU could be restored by coexpression of the remainder of the molecule from separate plasmids in trans. This strategy was used to map N- and C-terminal regions of ExoU that are necessary but not sufficient for toxicity. Disruption of a middle region of the protein reduces toxicity. This portion of the molecule is postulated to allow the N- and C-terminal regions to functionally complement one another. In contrast to ExoS and ExoT, native and recombinant ExoU molecules do not oligomerize or form aggregates. The complex domain structure of ExoU suggests that, like other P. aeruginosa-encoded type III effectors (ExoS and ExoT), ExoU toxicity may result from a molecule that possesses more than one activity.
Collapse
Affiliation(s)
- V Finck-Barbançon
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
44
|
Sundin C, Henriksson ML, Hallberg B, Forsberg A, Frithz-Lindsten E. Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol 2001; 3:237-46. [PMID: 11298647 DOI: 10.1046/j.1462-5822.2001.00108.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One virulence strategy used by the opportunistic pathogen Pseudomonas aeruginosa is to target toxic proteins into eukaryotic cells by a type III secretion mechanism. Two of these proteins, ExoS and ExoT, show 75% homology on amino acid level. However, compared with ExoS, ExoT exhibits highly reduced ADP-ribosylating activity and the role of ExoT in pathogenesis is poorly understood. To study the biological effect of ExoT, we used a strategy by which ExoT was delivered into host cells by the heterologous type III secretion system of Yersinia pseudotuberculosis. ExoT was found to induce a rounded cell morphology and to mediate disruption of actin microfilaments, similar to that induced by an ADP-ribosylation defective ExoS (E381A) and the related cytotoxin YopE of Y. pseudotuberculosis. In contrast to ExoS, ExoT had no major effect on cell viability and did not modify or inactivate Ras by ADP-ribosylation in vivo. However, similar to ExoS and YopE, ExoT exhibited GAP (GTPase activating protein) activity on RhoA GTPase in vitro. Interestingly, ExoT(R149K), deficient for GAP activity, still caused a morphological change of HeLa cells. Based on our findings, we suggest that the ADP-ribosylating activity of ExoT target another, as yet unidentified, host protein that is distinct from Ras.
Collapse
Affiliation(s)
- C Sundin
- Department of Microbiology, FOI NBC-Defence, S-901 82 Umeå, Sweden
| | | | | | | | | |
Collapse
|
45
|
Lesnick ML, Reiner NE, Fierer J, Guiney DG. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 2001; 39:1464-70. [PMID: 11260464 DOI: 10.1046/j.1365-2958.2001.02360.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ADP-ribosylating enzymes, such as cholera and diphtheria toxins, are key virulence factors for a variety of extracellular bacterial pathogens but have not been implicated previously during intracellular pathogenesis. Salmonella strains are capable of invading epithelial cells and localizing in macrophages during infection. The spvB virulence gene of Salmonella is required for human macrophage cytotoxicity in vitro and for enhancing intracellular bacterial proliferation during infection. Here, we present evidence that spvB encodes an ADP-ribosylating enzyme that uses actin as a substrate and depolymerizes actin filaments when expressed in CHO cells. Furthermore, site-directed mutagenesis demonstrates that the ADP-ribosylating activity of SpvB is essential for Salmonella virulence in mice. As spvB is expressed by Salmonella strains after invasion of epithelial cells or phagocytosis by macrophages, these results suggest that SpvB functions as an intracellular ADP-ribosylating toxin critical for the pathogenesis of Salmonella infections.
Collapse
Affiliation(s)
- M L Lesnick
- Department of Medicine 0640, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
46
|
Krall R, Schmidt G, Aktories K, Barbieri JT. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 2000; 68:6066-8. [PMID: 10992524 PMCID: PMC101576 DOI: 10.1128/iai.68.10.6066-6068.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient intracellular expression of ExoT in CHO cells stimulated cell rounding and actin reorganization. Biochemical studies showed that ExoT was a GTPase-activating protein for RhoA, Rac1, and Cdc42. Together, these data show that ExoT interferes with Rho signal transduction pathways, which regulate actin organization, exocytosis, cell cycle progression, and phagocytosis.
Collapse
Affiliation(s)
- R Krall
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Our recent studies have shown ExoS to be a bifunctional type-III secreted cytotoxin. Intracellular expression of the amino terminus of ExoS (C234) in eukaryotic cells stimulates actin reorganization without cytotoxicity, which involves small-molecular-weight GTPases of the Rho subfamily. Expression of the carboxyl terminus of ExoS comprises an ADP-ribosyltransferase domain, which is cytotoxic when expressed in cultured cells (Pederson and Barbieri, 1998). Rho and Ras are molecular switches, which control numerous cellular processes. Recent signaling studies suggest that there is crosstalk between Rho and Ras (Keely et al, 1997). Ras and Rho also contribute to wound healing processes and tissue regeneration. Recent studies have shown that microinjection of endothelial cells with activated Ras stimulated their motility, while microinjection of Ras-blocking antibodies inhibited cellular motility that is a component of the wound healing process (Fox et al., 1994). In addition, hepatocyte growth factor/scatter factor (HGF/ SF) and epidermal growth factor stimulate cellular motility through the Ras signal transduction pathway (Ridley et al., 1995). Rac and Rho are also involved in motility and tissue regeneration, since dominant negative Rac inhibits the cellular motility stimulated by HGF/SF (Santos et al., 1997) and inhibition of Rho by either C. difficile ToxA and ToxB or the C. botulinum C3 transferase inhibits wound healing (Santos et al., 1997). Inhibition of tissue regeneration and wound healing appear to play a role in the pathogenesis of C. difficile, since treatment of gastrointestinal mucosa with C. difficile ToxA and ToxB alone inhibits regeneration of the gastric mucosa. Thus, ExoS may contribute to the establishment of P. aeruginosa infections by inhibiting wound healing and tissue regeneration by two mechanisms. The amino terminus of ExoS could inhibit Rho function and wound healing in a manner similar to C. difficile. Alternatively, ExoS could inhibit the cellular motility and angiogenesis required for wound healing by ADP-ribosylating Ras. Through the inhibition of tissue regeneration and wound healing, ExoS may play a pivotal role in chronic disease by maintaining sites of colonization. Inhibition of Ras or Rho signaling may also interfere with both innate and acquired immunity. Small-molecular-weight GTP-binding proteins of the Ras superfamily are required for cellular processes, such as phagocytosis, as Rho proteins contribute to phagocytosis (Caron and Hall, 1998). Since Ras functions upstream of Rho in cellular signaling processes (Ridley et al., 1995), ADP-ribosylation of Ras by ExoS or the inhibition of Rho function by C234 may inhibit phagocytosis of P. aeruginosa by macrophages. Other studies indicate that Ras plays a role in T cell activation (Cantrell, 1994). Thus, ExoS may inhibit acquired immunity by inhibiting T-cell activation.
Collapse
Affiliation(s)
- J T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
48
|
Pederson KJ, Pal S, Vallis AJ, Frank DW, Barbieri JT. Intracellular localization and processing of Pseudomonas aeruginosa ExoS in eukaryotic cells. Mol Microbiol 2000; 37:287-99. [PMID: 10931325 DOI: 10.1046/j.1365-2958.2000.01990.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ExoS is a type III cytotoxin of Pseudomonas aeruginosa, which modulates two eukaryotic signalling pathways. The N-terminus (residues 1-234) is a GTPase activating protein (GAP) for RhoGTPases, while the C-terminus (residues 232-453) encodes an ADP-ribosyltransferase. Utilizing a series of N-terminal deletion peptides of ExoS and an epitope-tagged full-length ExoS, two independent domains have been identified within the N-terminus of ExoS that are involved in intracellular localization and expression of GAP activity. N-terminal peptides of ExoS localized to the perinuclear region of CHO cells, and a membrane localization domain was localized between residues 36 and 78 of ExoS. The capacity to elicit CHO cell rounding and express GAP activity resided within residues 90-234 of ExoS, which showed that membrane localization was not required to elicit actin reorganization. ExoS was present in CHO cells as a full-length form, which fractionated with membranes, and as an N-terminally processed fragment, which localized to the cytosol. Thus, ExoS localizes in eukaryotic cells to the perinuclear region and is processed to a soluble fragment, which possesses both the GAP and ADP-ribosyltransferase activities.
Collapse
Affiliation(s)
- K J Pederson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
49
|
Dacheux D, Attree I, Schneider C, Toussaint B. Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system. Infect Immun 1999; 67:6164-7. [PMID: 10531282 PMCID: PMC97008 DOI: 10.1128/iai.67.11.6164-6167.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With a coincubation model incorporating Pseudomonas aeruginosa and human polymorphonuclear neutrophils (PMNs), a cystic fibrosis (CF) P. aeruginosa isolate has been shown to resist the bactericidal action of PMNs and to induce their cellular death. An isogenic mutant of this CF isolate in which the type III secretion system was rendered nonfunctional was unable to induce cellular death of PMNs.
Collapse
Affiliation(s)
- D Dacheux
- Département de Biologie Moléculaire et Structurale, BBSI, UMR-314 CNRS, CEA Grenoble, Grenoble, France
| | | | | | | |
Collapse
|
50
|
Hauser AR, Engel JN. Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 1999; 67:5530-7. [PMID: 10496945 PMCID: PMC96920 DOI: 10.1128/iai.67.10.5530-5537.1999] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on macrophages, we infected J774A.1 cells and primary bone-marrow-derived murine macrophages with the P. aeruginosa strain PA103 in vitro. PA103 caused type-III-secretion-dependent killing of macrophages within 2 h of infection. Only a portion of the killing required the putative cytotoxin ExoU. By three criteria, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assays, cytoplasmic nucleosome assays, and Hoechst staining, the ExoU-independent but type-III-secretion-dependent killing exhibited features of apoptosis. Extracellular bacteria were capable of inducing apoptosis, and some laboratory and clinical isolates of P. aeruginosa induced significantly higher levels of this form of cell death than others. Interestingly, HeLa cells but not Madin-Darby canine kidney cells were susceptible to type-III-secretion-mediated apoptosis under the conditions of these assays. These findings are consistent with a model in which the P. aeruginosa type III secretion system transports at least two factors that kill macrophages: ExoU, which causes necrosis, and a second, as yet unidentified, effector protein, which induces apoptosis. Such killing may contribute to the ability of this organism to persist and disseminate within infected patients.
Collapse
Affiliation(s)
- A R Hauser
- Departments of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|