1
|
Papagiannakis A, Yu Q, Govers SK, Lin WH, Wingreen NS, Jacobs-Wagner C. Nonequilibrium polysome dynamics promote chromosome segregation and its coupling to cell growth in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617237. [PMID: 40161845 PMCID: PMC11952301 DOI: 10.1101/2024.10.08.617237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome segregation is essential for cellular proliferation. Unlike eukaryotes, bacteria lack cytoskeleton-based machinery to segregate their chromosomal DNA (nucleoid). The bacterial ParABS system segregates the duplicated chromosomal regions near the origin of replication. However, this function does not explain how bacterial cells partition the rest (bulk) of the chromosomal material. Furthermore, some bacteria, including Escherichia coli, lack a ParABS system. Yet, E. coli faithfully segregates nucleoids across various growth rates. Here, we provide theoretical and experimental evidence that polysome production during chromosomal gene expression helps compact, split, segregate, and position nucleoids in E. coli through out-of-equilibrium dynamics and polysome exclusion from the DNA meshwork, inherently coupling these processes to biomass growth across nutritional conditions. Halting chromosomal gene expression and thus polysome production immediately stops sister nucleoid migration while ensuing polysome depletion gradually reverses nucleoid segregation. Redirecting gene expression away from the chromosome and toward plasmids causes ectopic polysome accumulations that are sufficient to drive aberrant nucleoid dynamics. Cell width enlargement suggest that the proximity of the DNA to the membrane along the radial axis is important to limit the exchange of polysomes across DNA-free regions, ensuring nucleoid segregation along the cell length. Our findings suggest a self-organizing mechanism for coupling nucleoid segregation to cell growth.
Collapse
Affiliation(s)
- Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Qiwei Yu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544, USA
| | - Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, USA
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Troyer L, Wang YH, Shobhna, Kim S, Woo J, Tajkhorshid E, Kim S. Single-molecule imaging reveals the role of membrane-binding motif and C-terminal domain of RNase E in its localization and diffusion in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622141. [PMID: 40093181 PMCID: PMC11908211 DOI: 10.1101/2024.11.05.622141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In Escherichia coli, RNase E is the key enzyme for RNA processing and mRNA degradation. Despite the conserved function across bacteria, the domain composition of RNase E varies significantly among species, possibly affecting the enzyme's subcellular localization, mobility, and function. In this work, we used super-resolution microscopy to find that 93% of RNase E is localized to the membrane in E. coli and exhibits slow diffusion comparable to polysomes diffusing in the cytoplasm. By replacing the native amphipathic membrane targeting sequence (MTS) with a transmembrane motif, we discovered that the MTS results in slower diffusion and stronger membrane binding than a transmembrane motif. Additionally, the evolutionarily divergent C-terminal domain (CTD) was shown to grant slow diffusion of RNase E but to weaken its membrane binding. By analyzing how membrane localization and diffusion of RNase E affect mRNA degradation rates in vivo, we provide new insights into RNase E's role in the spatiotemporal organization of RNA processes in bacterial cells.
Collapse
Affiliation(s)
- Laura Troyer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally
| | - Yu-Huan Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally
| | - Shobhna
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana- Champaign, Urbana, IL, USA
| | - Seunghyeon Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jeechul Woo
- Moduli Technologies, LLC, Springfield, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana- Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | - Sangjin Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
4
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
5
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Fishov I, Namboodiri S. A nonstop thrill ride from genes to the assembly of the T3SS injectisome. Nat Commun 2023; 14:1973. [PMID: 37031218 PMCID: PMC10082841 DOI: 10.1038/s41467-023-37753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Affiliation(s)
- Itzhak Fishov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Sharanya Namboodiri
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Competitive Coherence Generates Qualia in Bacteria and Other Living Systems. BIOLOGY 2021; 10:biology10101034. [PMID: 34681133 PMCID: PMC8533353 DOI: 10.3390/biology10101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
The relevance of bacteria to subjective experiences or qualia is underappreciated. Here, I make four proposals. Firstly, living systems traverse sequences of active states that determine their behaviour; these states result from competitive coherence, which depends on connectivity-based competition between a Next process and a Now process, whereby elements in the active state at time n+1 are chosen between the elements in the active state at time n and those elements in the developing n+1 state. Secondly, bacteria should help us link the mental to the physical world given that bacteria were here first, are highly complex, influence animal behaviour and dominate the Earth. Thirdly, the operation of competitive coherence to generate active states in bacteria, brains and other living systems is inseparable from qualia. Fourthly, these qualia become particularly important to the generation of active states in the highest levels of living systems, namely, the ecosystem and planetary levels.
Collapse
|
8
|
Norris V, Ripoll C. Generation of Bacterial Diversity by Segregation of DNA Strands. Front Microbiol 2021; 12:550856. [PMID: 33828535 PMCID: PMC8019907 DOI: 10.3389/fmicb.2021.550856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/28/2021] [Indexed: 11/24/2022] Open
Abstract
The generation in a bacterial population of a diversity that is coherent with present and future environments is a fundamental problem. Here, we use modeling to investigate growth rate diversity. We show that the combination of (1) association of extended assemblies of macromolecules with the DNA strands and (2) the segregation of DNA strands during cell division allows cells to generate different patterns of growth rate diversity with little effect on the overall growth rate of the population and thereby constitutes an example of “order for free” on which evolution can act.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Faculty of Science, University of Rouen, Mont Saint Aignan, France
| | - Camille Ripoll
- Faculty of Science, University of Rouen, Mont Saint Aignan, France
| |
Collapse
|
9
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
10
|
Shen JP, Chang YR, Chou CF. Frequency modulation of the Min-protein oscillator by nucleoid-associated factors in Escherichia coli. Biochem Biophys Res Commun 2020; 525:857-862. [DOI: 10.1016/j.bbrc.2020.02.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023]
|
11
|
Lu YC, Chang YR. Gene expression in E. coli influences the position and motion of the lac operon and vicinal loci. Biochem Biophys Res Commun 2019; 519:438-443. [PMID: 31522813 DOI: 10.1016/j.bbrc.2019.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Transcription and translation of active genes play an important role in determining the global organization of the chromosome. To further elucidate this phenomenon, we examined how the expression of either the lacY or the cfp gene in the native lac operon influences adjacent chromosomal segments by fluorescently labeling loci upstream and downstream of the expressed gene. Based on the positions and motile behaviors of these loci, our results reveal that the local organization of the vicinal chromosomal segments and its position in the nucleoid are both influenced by gene expression. Furthermore, we found that the effects on local organization depend on whether the expressed gene encodes a membrane protein or a cytoplasmic protein. Our measurements showing the movement of loci toward the membrane and the correlation between the motions of the upstream and downstream loci support the conclusion that the expression of genes encoding membrane proteins greatly influences chromosome dynamics.
Collapse
Affiliation(s)
- Yuan-Chu Lu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan, 88, Sec.4, Ting-Chou Rd., Taipei, 116, Taiwan
| | - Yi-Ren Chang
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan, 88, Sec.4, Ting-Chou Rd., Taipei, 116, Taiwan.
| |
Collapse
|
12
|
Norris V. Successive Paradigm Shifts in the Bacterial Cell Cycle and Related Subjects. Life (Basel) 2019; 9:E27. [PMID: 30866455 PMCID: PMC6462897 DOI: 10.3390/life9010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
A paradigm shift in one field can trigger paradigm shifts in other fields. This is illustrated by the paradigm shifts that have occurred in bacterial physiology following the discoveries that bacteria are not unstructured, that the bacterial cell cycle is not controlled by the dynamics of peptidoglycan, and that the growth rates of bacteria in the same steady-state population are not at all the same. These paradigm shifts are having an effect on longstanding hypotheses about the regulation of the bacterial cell cycle, which appear increasingly to be inadequate. I argue that, just as one earthquake can trigger others, an imminent paradigm shift in the regulation of the bacterial cell cycle will have repercussions or "paradigm quakes" on hypotheses about the origins of life and about the regulation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
13
|
Koler M, Peretz E, Aditya C, Shimizu TS, Vaknin A. Long-term positioning and polar preference of chemoreceptor clusters in E. coli. Nat Commun 2018; 9:4444. [PMID: 30361683 PMCID: PMC6202326 DOI: 10.1038/s41467-018-06835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022] Open
Abstract
The bacterial chemosensory arrays are a notable model for studying the basic principles of receptor clustering and cellular organization. Here, we provide a new perspective regarding the long-term dynamics of these clusters in growing E. coli cells. We demonstrate that pre-existing lateral clusters tend to avoid translocation to pole regions and, therefore, continually shuttle between the cell poles for many generations while being static relative to the local cell-wall matrix. We also show that the polar preference of clusters results fundamentally from reduced clustering efficiency in the lateral region, rather than a developmental-like progression of clusters. Furthermore, polar preference is surprisingly robust to structural alterations designed to probe preference due to curvature sorting, perturbing the cell envelope physiology affects the cluster-size distribution, and the size-dependent mobility of receptor complexes differs between polar and lateral regions. Thus, distinct envelope physiology in the polar and lateral cell regions may contribute to polar preference. Bacterial chemoreceptors form clusters, preferably at the cell poles. Here, Koler et al. show that polar and lateral clusters exhibit distinct long-term positional dynamics and that polar bias may be due to differences in mobility of receptor complexes between the polar and lateral cell regions.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | - Eliran Peretz
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | | | | | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
14
|
Jamin N, Garrigos M, Jaxel C, Frelet-Barrand A, Orlowski S. Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules 2018; 8:biom8030088. [PMID: 30181516 PMCID: PMC6163855 DOI: 10.3390/biom8030088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial cytoplasmic membrane stress induced by the overexpression of membrane proteins at high levels can lead to formation of ectopic intracellular membranes. In this review, we report the various observations of such membranes in Escherichia coli, compare their morphological and biochemical characterizations, and we analyze the underlying molecular processes leading to their formation. Actually, these membranes display either vesicular or tubular structures, are separated or connected to the cytoplasmic membrane, present mono- or polydispersed sizes and shapes, and possess ordered or disordered arrangements. Moreover, their composition differs from that of the cytoplasmic membrane, with high amounts of the overexpressed membrane protein and altered lipid-to-protein ratio and cardiolipin content. These data reveal the importance of membrane domains, based on local specific lipid⁻protein and protein⁻protein interactions, with both being crucial for local membrane curvature generation, and they highlight the strong influence of protein structure. Indeed, whether the cylindrically or spherically curvature-active proteins are actively curvogenic or passively curvophilic, the underlying molecular scenarios are different and can be correlated with the morphological features of the neo-formed internal membranes. Delineating these molecular mechanisms is highly desirable for a better understanding of protein⁻lipid interactions within membrane domains, and for optimization of high-level membrane protein production in E. coli.
Collapse
Affiliation(s)
- Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Manuel Garrigos
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Annie Frelet-Barrand
- Institut FEMTO-ST, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, 25030 Besançon CEDEX, France.
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| |
Collapse
|
15
|
Structure and Membrane Topography of the Vibrio-Type Secretin Complex from the Type 2 Secretion System of Enteropathogenic Escherichia coli. J Bacteriol 2018; 200:JB.00521-17. [PMID: 29084860 DOI: 10.1128/jb.00521-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022] Open
Abstract
The β-barrel assembly machinery (BAM) complex is the core machinery for the assembly of β-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long β-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive β-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.
Collapse
|
16
|
Lin TY, Weibel DB. Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 2016; 100:4255-67. [PMID: 27026177 DOI: 10.1007/s00253-016-7468-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.
Collapse
Affiliation(s)
- Ti-Yu Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Abstract
Prokaryotes, by definition, do not segregate their genetic material from the cytoplasm. Thus, there is no barrier preventing direct interactions between chromosomal DNA and the plasma membrane. The possibility of such interactions in bacteria was proposed long ago and supported by early electron microscopy and cell fractionation studies. However, the identification and characterization of chromosome-membrane interactions have been slow in coming. Recently, this subject has seen more progress, driven by advances in imaging techniques and in the exploration of diverse cellular processes. A number of loci have been identified in specific bacteria that depend on interactions with the membrane for their function. In addition, there is growing support for a general mechanism of DNA-membrane contacts based on transertion-concurrent transcription, translation, and insertion of membrane proteins. This review summarizes the history and recent results of chromosome-membrane associations and discusses the known and theorized consequences of these interactions in the bacterial cell.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
18
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
19
|
Biagini M, Garibaldi M, Aprea S, Pezzicoli A, Doro F, Becherelli M, Taddei AR, Tani C, Tavarini S, Mora M, Teti G, D'Oro U, Nuti S, Soriani M, Margarit I, Rappuoli R, Grandi G, Norais N. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles. Mol Cell Proteomics 2015; 14:2138-49. [PMID: 26018414 DOI: 10.1074/mcp.m114.045880] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 01/24/2023] Open
Abstract
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.
Collapse
Affiliation(s)
- Massimiliano Biagini
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Manuela Garibaldi
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Susanna Aprea
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Alfredo Pezzicoli
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Francesco Doro
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Marco Becherelli
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Anna Rita Taddei
- §Centro Interdipartimentale di Microscopia Elettronica, Università della Tuscia, Viterbo, Italy
| | - Chiara Tani
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Simona Tavarini
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Marirosa Mora
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Giuseppe Teti
- ¶Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Ugo D'Oro
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Sandra Nuti
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Marco Soriani
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Immaculada Margarit
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Rino Rappuoli
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Guido Grandi
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay
| | - Nathalie Norais
- From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay;
| |
Collapse
|
20
|
Abstract
The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Theoretical Biology Unit, University of Rouen, Mont Saint Aignan France
| |
Collapse
|
21
|
Bakshi S, Choi H, Mondal J, Weisshaar JC. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes. Mol Microbiol 2014; 94:871-87. [PMID: 25250841 DOI: 10.1111/mmi.12805] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 11/26/2022]
Abstract
Previously observed effects of rifampicin and chloramphenicol indicate that transcription and translation activity strongly affect the coarse spatial organization of the bacterial cytoplasm. Single-cell, time-resolved, quantitative imaging of chromosome and ribosome spatial distributions and ribosome diffusion in live Escherichia coli provides insight into the underlying mechanisms. Monte Carlo simulations of model DNA-ribosome mixtures support a novel nucleoid-ribosome mixing hypothesis. In normal conditions, 70S-polysomes and the chromosomal DNA segregate, while 30S and 50S ribosomal subunits are able to penetrate the nucleoids. Growth conditions and drug treatments determine the partitioning of ribosomes into 70S-polysomes versus free 30S and 50S subunits. Entropic and excluded volume effects then dictate the resulting chromosome and ribosome spatial distributions. Direct observation of radial contraction of the nucleoids 0-5 min after treatment with either transcription- or translation-halting drugs supports the hypothesis that simultaneous transcription, translation, and insertion of proteins into the membrane ('transertion') exerts an expanding force on the chromosomal DNA. Breaking of the DNA-RNA polymerase-mRNA-ribosome-membrane chain in either of two ways causes similar nucleoid contraction on a similar timescale. We suggest that chromosomal expansion due to transertion enables co-transcriptional translation throughout the nucleoids.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
22
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
23
|
Norris V, Nana GG, Audinot JN. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci 2013; 133:47-61. [PMID: 23794321 DOI: 10.1007/s12064-013-0185-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
Fundamental, unresolved questions in biology include how a bacterium generates coherent phenotypes, how a population of bacteria generates a coherent set of such phenotypes, how the cell cycle is regulated and how life arose. To try to help answer these questions, we have developed the concepts of hyperstructures, competitive coherence and life on the scales of equilibria. Hyperstructures are large assemblies of macromolecules that perform functions. Competitive coherence describes the way in which organisations such as cells select a subset of their constituents to be active in determining their behaviour; this selection results from a competition between a process that is responsible for a historical coherence and another process responsible for coherence with the current environment. Life on the scales of equilibria describes how bacteria depend on the cell cycle to negotiate phenotype space and, in particular, to satisfy the conflicting constraints of having to grow in favourable conditions so as to reproduce yet not grow in hostile conditions so as to survive. Both competitive coherence and life on the scales deal with the problem of reconciling conflicting constraints. Here, we bring together these concepts in the common framework of hyperstructures and make predictions that may be tested using a learning program, Coco, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, University of Rouen, 76821, Mont Saint Aignan, France,
| | | | | |
Collapse
|
24
|
Fishov I, Norris V. Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr Opin Microbiol 2012. [DOI: 10.1016/j.mib.2012.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|
26
|
Norris V, Loutelier-Bourhis C, Thierry A. How did metabolism and genetic replication get married? ORIGINS LIFE EVOL B 2012; 42:487-95. [PMID: 23065410 DOI: 10.1007/s11084-012-9312-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022]
Abstract
In addressing the question of the origins of the relationship between metabolism and genetic replication, we consider the implications of a prebiotic, fission-fusion, ecology of composomes. We emphasise the importance of structures and non-specific catalysis on interfaces created by structures. From the assumption that the bells of the metabolism-replication wedding still echo in modern cells, we argue that the functional assemblies of macromolecules that constitute hyperstructures in modern bacteria are the descendants of composomes and that interactions at the hyperstructure level control the cell cycle. A better understanding of the cell cycle should help understand the original metabolism-replication marriage. This understanding requires new concepts such as metabolic signalling, metabolic sensing and Dualism, which entails the cells in a population varying the ratios of equilibrium to non-equilibrium hyperstructures so as to maximise the chances of both survival and growth. A deeper understanding of the coupling between metabolism and replication may also require a new view of cell cycle functions in creating a coherent diversity of phenotypes and in narrowing the combinatorial catalytic space. To take these ideas into account, we propose the Accordion model in which a dynamic interface between lipid domains catalysed monomer to polymer reactions and became decorated with peptides and nucleotides that favoured their own catalysis. In this model, metabolism, replication, differentiation and division all began together at the interface between extended equilibrium structures within protocells or composomes.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA3829, Faculty of Science, University of Rouen, 76821 Mont Saint Aignan, France.
| | | | | |
Collapse
|
27
|
Norris V, Menu-Bouaouiche L, Becu JM, Legendre R, Norman R, Rosenzweig JA. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 2012; 96:23-36. [PMID: 22949045 DOI: 10.1007/s00253-012-4325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023]
Abstract
A paradigm shift in our thinking about the intricacies of the host-parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial phenotypes. In particular, it has been proposed that hyperstructures can alter virulence. Two such hyperstructures have been characterized in both pathogenic and nonpathogenic bacteria. Present within a number of both human and plant Gram-negative pathogens is the type 3 secretion system (T3SS) injectisome which in some bacteria serves to inject toxic effector proteins directly into targeted host cells resulting in their paralysis and eventual death (but which in other bacteria prevents the death of the host). The injectisome itself comprises multiple protein subunits, which are all essential for its function. The degradosome is another multiprotein complex thought to be involved in cooperative RNA decay and processing of mRNA transcripts and has been very well characterized in nonpathogenic Escherichia coli. Recently, experimental evidence has suggested that a degradosome exists in the yersiniae as well and that its interactions within the pathogens modulate their virulence. Here, we explore the possibility that certain interactions between hyperstructures, like the T3SS and the degradosome, can ultimately influence the virulence potential of the pathogen based upon the physical locations of hyperstructures within the cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Biology, University of Rouen, 76821 Mont-Saint-Aignan, Rouen, France.
| | | | | | | | | | | |
Collapse
|
28
|
Kandhavelu M, Paturu L, Mizar A, Mahmudov KT, Kopylovich MN, Karp M, Yli-Harja O, Pombeiro AJL, Ribeiro AS. Synthesis, characterization and antimicrobial activity of arylhydrazones of methylene active compounds. Pharm Chem J 2012. [DOI: 10.1007/s11094-012-0751-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proc Natl Acad Sci U S A 2012; 109:7445-50. [PMID: 22529375 DOI: 10.1073/pnas.1109479109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been hypothesized that subcellular positioning of chromosomal loci in bacteria may be influenced by gene function and expression state. Here we provide direct evidence that membrane protein expression affects the position of chromosomal loci in Escherichia coli. For two different membrane proteins, we observed a dramatic shift of their genetic loci toward the membrane upon induction. In related systems in which a cytoplasmic protein was produced, or translation was eliminated by mutating the start codon, a shift was not observed. Antibiotics that block transcription and translation similarly prevented locus repositioning toward the membrane. We also found that repositioning is relatively rapid and can be detected at positions that are a considerable distance on the chromosome from the gene encoding the membrane protein (>90 kb). Given that membrane protein-encoding genes are distributed throughout the chromosome, their expression may be an important mechanism for maintaining the bacterial chromosome in an expanded and dynamic state.
Collapse
|
30
|
Güell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 2011; 9:658-69. [PMID: 21836626 DOI: 10.1038/nrmicro2620] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 3 years, bacterial transcriptomics has undergone a massive revolution. Increased sequencing capacity and novel tools have made it possible to explore the bacterial transcriptome to an unprecedented depth, which has revealed that the transcriptome is more complex and dynamic than expected. Alternative transcripts within operons challenge the classic operon definition, and many small RNAs involved in the regulation of transcription, translation and pathogenesis have been discovered. Furthermore, mRNAs may localize to specific areas in the cell, and the spatial organization and dynamics of the chromosome have been shown to be important for transcription. Epigenetic modifications of DNA also affect transcription, and RNA processing affects translation. Therefore, transcription in bacteria resembles that in eukaryotes in terms of complexity more closely than was previously thought. Here we will discuss the contribution of 'omics' approaches to these discoveries as well as the possible impact that they are expected to have in the future.
Collapse
Affiliation(s)
- Marc Güell
- Centre for Genomic Regulation, Universitat Pompeu Fabra, Av. Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Norris V. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Med Hypotheses 2011; 76:706-16. [PMID: 21349650 DOI: 10.1016/j.mehy.2011.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 01/23/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
32
|
Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol 2009; 191:4180-5. [PMID: 19395497 DOI: 10.1128/jb.01707-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Escherichia coli the genome must be compacted approximately 1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane proteins and/or exported proteins. In supporting this notion, it has been shown consistently that inhibition of transertion by the translation inhibitor chloramphenicol results in nucleoid condensation due to the compaction forces that remain active in the cell. Our previous study showed that during optimal growth, RNA polymerase is concentrated into transcription foci or "factories," analogous to the eukaryotic nucleolus, indicating that transcription and RNA polymerase distribution affect the nucleoid structure. However, the interpretation of the role of transcription in the structure of the nucleoid is complicated by the fact that transcription is implicated in both compacting forces and the expansion force. In this work, we used a new approach to further examine the effect of transcription, specifically from rRNA operons, on the structure of the nucleoid, when the major expansion force was eliminated. Our results showed that transcription is necessary for the chloramphenicol-induced nucleoid compaction. Further, an active transcription from multiple rRNA operons in chromosome is critical for the compaction of nucleoid induced by inhibition of translation. All together, our data demonstrated that transcription of rRNA operons is a key mechanism affecting genome compaction and nucleoid structure.
Collapse
|
33
|
Romantsov T, Stalker L, Culham DE, Wood JM. Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J Biol Chem 2008; 283:12314-23. [PMID: 18326496 DOI: 10.1074/jbc.m709871200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipid composition of the membrane and transporter structure control the subcellular location and function of osmosensory transporter ProP in Escherichia coli. Growth in media of increasing osmolality increases, and entry to stationary phase decreases, the proportion of phosphatidate in anionic lipids (phosphatidylglycerol (PG) plus cardiolipin (CL)). Both treatments increase the CL:PG ratio. Transporters ProP and LacY are concentrated with CL (and not PG) near cell poles and septa. The polar concentration of ProP is CL-dependent. Here we show that the polar concentration of LacY is CL-independent. The osmotic activation threshold of ProP was directly proportional to the CL content of wild type bacteria, the PG content of CL-deficient bacteria, and the anionic lipid content of cells and proteoliposomes. CL was effective at a lower concentration in cells than in proteoliposomes, and at a much lower concentration than PG in either system. Thus, in wild type bacteria, osmotic induction of CL synthesis and concentration of ProP with CL at the cell poles adjust the osmotic activation threshold of ProP to match ambient conditions. ProP proteins linked by homodimeric, C-terminal coiled-coils are known to activate at lower osmolalities than those without such structures and coiled-coil disrupting mutations raise the osmotic activation threshold. Here we show that these mutations also prevent polar concentration of ProP. Stabilization of the C-terminal coiled-coil by covalent cross-linking of introduced Cys reverses the impact of increasing CL on the osmotic activation of ProP. Association of ProP C termini with the CL-rich membrane at cell poles may raise the osmotic activation threshold by blocking coiled-coil formation. Mutations that block coiled-coil formation may also block association of the C termini with the CL-rich membrane.
Collapse
Affiliation(s)
- Tatyana Romantsov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
34
|
Norris V, den Blaauwen T, Doi RH, Harshey RM, Janniere L, Jiménez-Sánchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M, Skarstad K, Thellier M. Toward a hyperstructure taxonomy. Annu Rev Microbiol 2007; 61:309-29. [PMID: 17896876 DOI: 10.1146/annurev.micro.61.081606.103348] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial cells contain many large, spatially extended assemblies of ions, molecules, and macromolecules, called hyperstructures, that are implicated in functions that range from DNA replication and cell division to chemotaxis and secretion. Interactions between these hyperstructures would create a level of organization intermediate between macromolecules and the cell itself. To explore this level, a taxonomy is needed. Here, we describe classification criteria based on the form of the hyperstructure and on the processes responsible for this form. These processes include those dependent on coupled transcription-translation, protein-protein affinities, chromosome site-binding by protein, and membrane structures. Various combinations of processes determine the formation, maturation, and demise of many hyperstructures that therefore follow a trajectory within the space of classification by form/process. Hence a taxonomy by trajectory may be desirable. Finally, we suggest that working toward a taxonomy based on speculative interactions between hyperstructures promises most insight into life at this level.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K. Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 2007; 71:230-53. [PMID: 17347523 PMCID: PMC1847379 DOI: 10.1128/mmbr.00035-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of organization that exist in bacteria extend from macromolecules to populations. Evidence that there is also a level of organization intermediate between the macromolecule and the bacterial cell is accumulating. This is the level of hyperstructures. Here, we review a variety of spatially extended structures, complexes, and assemblies that might be termed hyperstructures. These include ribosomal or "nucleolar" hyperstructures; transertion hyperstructures; putative phosphotransferase system and glycolytic hyperstructures; chemosignaling and flagellar hyperstructures; DNA repair hyperstructures; cytoskeletal hyperstructures based on EF-Tu, FtsZ, and MreB; and cell cycle hyperstructures responsible for DNA replication, sequestration of newly replicated origins, segregation, compaction, and division. We propose principles for classifying these hyperstructures and finally illustrate how thinking in terms of hyperstructures may lead to a different vision of the bacterial cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vanounou S, Pines D, Pines E, Parola AH, Fishov I. Coexistence of Domains with Distinct Order and Polarity in Fluid Bacterial Membranes¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760001codwdo2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Buist G, Ridder ANJA, Kok J, Kuipers OP. Different subcellular locations of secretome components of Gram-positive bacteria. Microbiology (Reading) 2006; 152:2867-2874. [PMID: 17005968 DOI: 10.1099/mic.0.29113-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-positive bacteria contain different types of secretion systems for the transport of proteins into or across the cytoplasmic membrane. Recent studies on subcellular localization of specific components of these secretion systems and their substrates have shown that they can be present at various locations in the cell. The translocons of the general Sec secretion system in the rod-shaped bacteriumBacillus subtilishave been shown to localize in spirals along the cytoplasmic membrane, whereas the translocons in the coccoidStreptococcus pyogenesare located in a microdomain near the septum. In both bacteria the Sec translocons appear to be located near the sites of cell wall synthesis. The Tat secretion system, which is used for the transport of folded proteins, probably localizes in the cytoplasmic membrane and at the cell poles ofB. subtilis. InLactococcus lactisthe ABC transporter dedicated to the transport of a small antimicrobial peptide is distributed throughout the membrane. Possible mechanisms for maintaining the localization of these secretion machineries involve their interaction with proteins of the cytoskeleton or components of the cell wall synthesis machinery, or the presence of lipid subdomains surrounding the transport systems.
Collapse
Affiliation(s)
- Girbe Buist
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Anja N J A Ridder
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
38
|
Zaritsky A, Woldringh CL, Einav M, Alexeeva S. Use of thymine limitation and thymine starvation to study bacterial physiology and cytology. J Bacteriol 2006; 188:1667-79. [PMID: 16484178 PMCID: PMC1426543 DOI: 10.1128/jb.188.5.1667-1679.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
39
|
Thanbichler M, Wang SC, Shapiro L. The bacterial nucleoid: A highly organized and dynamic structure. J Cell Biochem 2005; 96:506-21. [PMID: 15988757 DOI: 10.1002/jcb.20519] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.
Collapse
Affiliation(s)
- Martin Thanbichler
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | |
Collapse
|
40
|
Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Müller JP, Bron S, Kok J, Kuipers OP, Jongbloed JDH. Subcellular sites for bacterial protein export. Mol Microbiol 2004; 53:1583-99. [PMID: 15341641 DOI: 10.1111/j.1365-2958.2004.04278.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the secretory protein pre-AmyQ, were analysed using green fluorescent protein fusions, immunostaining and/or immunogold labelling techniques. It is shown that SecA, SecY and (pre-)AmyQ are located at specific sites near and/or in the cytoplasmic membrane of Bacillus subtilis. The localization patterns of these proteins suggest that the Sec machinery is organized in spiral-like structures along the cell, with most of the translocases organized in specific clusters along these structures. However, this localization appears to be independent of the helicoidal structures formed by the actin-like cytoskeletal proteins, MreB or Mbl. Interestingly, the specific localization of SecA is dynamic, and depends on active translation. Moreover, reducing the phosphatidylglycerol phospholipids content in the bacterial membrane results in delocalization of SecA, suggesting the involvement of membrane phospholipids in the localization process. These data show for the first time that, in contrast to the recently reported uni-ExPortal site in the coccoïd Streptococcus pyogenes, multiple sites dedicated to protein export are present in the cytoplasmic membrane of rod-shaped B. subtilis.
Collapse
Affiliation(s)
- Nathalie Campo
- Department of Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Several questions in our understanding of mitochondria are unanswered. These include how the ratio of mitochondrial (mt)DNA to mitochondria is maintained, how the accumulation of defective, rapidly replicating mitochondrial DNA is avoided, how the ratio of mitochondria to cells is adjusted to fit cellular needs, and why any proteins are synthesized in mitochondria rather than simply imported. In bacteria, large hyperstructures or assemblies of proteins, mRNA, lipids and ions have been proposed to constitute a level of organization intermediate between macromolecules and whole cells. Here, we suggest how the concept of hyperstructures together with other concepts developed for bacteria such as transcriptional sensing and spontaneous segregation may provide answers to mitochondrial problems. In doing this, we show how the problem of the very existence of mtDNA brings its own solution.
Collapse
Affiliation(s)
- Mirella Trinei
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | |
Collapse
|
42
|
Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, Dagan R, Porat N. Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 2004; 186:4638-44. [PMID: 15231797 PMCID: PMC438610 DOI: 10.1128/jb.186.14.4638-4644.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phase variation in the colonial opacity of Streptococcus pneumoniae has been implicated as a factor in the pathogenesis of pneumococcal disease. This study examined the relationship between membrane characteristics and colony morphology in a few selected opaque-transparent couples of S. pneumoniae strains carrying different capsular types. Membrane fluidity was determined on the basis of intermolecular excimerization of pyrene and fluorescence polarization of 1,6-diphenyl 1,3,5-hexatriene (DPH). A significant decrease, 16 to 26% (P < or = 0.05), in the excimerization rate constant of the opaque variants compared with that of the transparent variants was observed, indicating higher microviscosity of the membrane of bacterial cells in the opaque variants. Liposomes prepared from phospholipids of the opaque phenotype showed an even greater decrease, 27 to 38% (P < or = 0.05), in the pyrene excimerization rate constant compared with that of liposomes prepared from phospholipids of bacteria with the transparent phenotype. These findings agree with the results obtained with DPH fluorescence anisotropy, which showed a 9 to 21% increase (P < or = 0.001) in the opaque variants compared with the transparent variants. Membrane fatty acid composition, determined by gas chromatography, revealed that the two variants carry the same types of fatty acids but in different proportions. The trend of modification points to the presence of a lower degree of unsaturated fatty acids in the opaque variants compared with their transparent counterparts. The data presented here show a distinct correlation between phase variation and membrane fluidity in S. pneumoniae. The changes in membrane fluidity most probably stem from the observed differences in fatty acid composition.
Collapse
Affiliation(s)
- Barak Aricha
- Pediatric Infectious Disease Unit, Soroka University Medical Center, P.O. Box 151, Beer Sheva 84101, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Amzallag GN. Adaptive changes in bacteria: a consequence of nonlinear transitions in chromosome topology? J Theor Biol 2004; 229:361-9. [PMID: 15234203 DOI: 10.1016/j.jtbi.2004.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 01/11/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Adaptive changes in bacteria are generally considered to result from random mutations selected by the environment. This interpretation is challenged by the non-randomness of genomic changes observed following ageing or starvation in bacterial colonies. A theory of adaptive targeting of sequences for enzymes involved in DNA transactions is proposed here. It is assumed that the sudden leakage of cAMP consecutive to starvation induces a rapid drop in the ATP/ADP ratio that inactivates the homeostasis in control of the level of DNA supercoiling. This phase change enables the emergence of local modifications in chromosome topology in relation to the missing metabolites, a first stage in expression of an adaptive status in which DNA transactions are induced. The nonlinear perspective proposed here is homologous to that already suggested for adaptation of pluricellular organisms during their development. In both cases, phases of robustness in regulation networks for genetic expression are interspaced by critical periods of breakdown of the homeostatic regulations during which, through isolation of nodes from a whole network, specific changes with adaptive value may locally occur.
Collapse
Affiliation(s)
- G N Amzallag
- The Judea Center for Research and Development, Carmel 90404, Israel.
| |
Collapse
|
44
|
Norris V, Woldringh C, Mileykovskaya E. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min. FEBS Lett 2004; 561:3-10. [PMID: 15013745 DOI: 10.1016/s0014-5793(04)00135-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 01/21/2004] [Accepted: 01/29/2004] [Indexed: 10/26/2022]
Abstract
The positioning of the site of cell division in Escherichia coli results, it is generally believed, from the operation of nucleoid occlusion in combination with the Min system. Nucleoid occlusion prevents division over the nucleoids and directs it by default to the mid-cell region between segregating nucleoids or to polar regions while the Min system prevents division in polar regions. Unresolved questions include how these systems interact to control the earliest known event in division, the assembly at the membrane of the tubulin-like protein, FtsZ, and, more importantly, what exactly constitutes a division site. Evidence exists that (1) the coupled transcription, translation and insertion of proteins into membrane (transertion), can structure the cytoplasmic membrane into phospholipid domains, (2) the MinD protein can convert vesicles into tubes and (3) a variety of membranous structures can be observed at mid-cell. These data support a model in which transertion from the segregating daughter chromosomes leads to the formation of a distinct proteolipid domain between them at mid-cell; the composition of this domain allows phospholipid tubes to extend like fingers into the cytoplasm; these tubes then become the substrate for the dynamic assembly and disassembly of FtsZ which converts them into the invaginating fold responsible for division; the Min system inhibits division at unwanted sites and times by removing these tubes especially at the cell poles.
Collapse
Affiliation(s)
- Vic Norris
- Assemblages Moléculaires: Modélisation et Imagerie SIMS, FRE CNRS 2829, Faculté des Sciences and Techniques, Université de Rouen, 76821 Mont-Saint-Aignan, France.
| | | | | |
Collapse
|
45
|
Manasherob R, Zaritsky A, Metzler Y, Ben-Dov E, Itsko M, Fishov I. Compaction of the Escherichia coli nucleoid caused by Cyt1Aa. MICROBIOLOGY-SGM 2004; 149:3553-3564. [PMID: 14663087 DOI: 10.1099/mic.0.26271-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Compaction of the Escherichia coli nucleoid in the cell's centre was associated with the loss of colony-forming ability; these effects were caused by induction of Cyt1Aa, the cytotoxic 27 kDa protein from Bacillus thuringiensis subsp. israelensis. Cyt1Aa-affected compaction of the nucleoids was delayed but eventually more intense than compaction caused by chloramphenicol. The possibility that small, compact nucleoids in Cyt1Aa-expressing cells resulted in DNA replication run-out and segregation following cell division was ruled out by measuring relative nucleoid length. Treatments with membrane-perforating substances other than Cyt1Aa did not cause such compaction of the nucleoids, but rather the nucleoids overexpanded to occupy nearly all of the cell volume. These findings support the suggestion that, in addition to its perforating ability, Cyt1Aa causes specific disruption of nucleoid associations with the cytoplasmic membrane. In situ immunofluorescence labelling with Alexa did not demonstrate a great amount of Cyt1Aa associated with the membrane. Clear separation between Alexa-labelled Cyt1Aa and 4',6-diamidino-2-phenylindole (DAPI)-stained DNA indicates that the nucleoid does not bind Cyt1Aa. Around 2 h after induction, nucleoids in Cyt1Aa-expressing cells started to decompact and expanded to fill the whole cell volume, most likely due to partial cell lysis without massive peptidoglycan destruction.
Collapse
Affiliation(s)
- Robert Manasherob
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Yifah Metzler
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Eitan Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Mark Itsko
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| |
Collapse
|
46
|
Abstract
In actively growing bacterial cells, the DNA exerts stress on the membrane, in addition to the turgor caused by osmotic pressure. This stress is applied through coupled transcription/translation and insertion of membrane proteins (so-called "transertion" process). In bacillary bacteria, the strength of this interaction varies along cell length with a minimum at its midpoint, and hence can locate the cell's equator for the assembly of the FtsZ-ring.
Collapse
Affiliation(s)
- Avinoam Rabinovitch
- Departments of Physics, Ben-Gurion University of the Negev, P.O. Box. 653, 84105 Be'er-Sheva, Israel.
| | | | | |
Collapse
|
47
|
Vanounou S, Parola AH, Fishov I. Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids. Mol Microbiol 2003; 49:1067-79. [PMID: 12890029 DOI: 10.1046/j.1365-2958.2003.03614.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To detect and characterize membrane domains that have been proposed to exist in bacteria, two kinds of pyrene-labelled phospholipids, 2-pyrene-decanoyl-phosphatidylethanolamine (PY-PE) and 2-pyrene-decanoyl-phosphatidylglycerol (PY-PG) were inserted into Escherichia coli or Bacillus subtilis membrane. The excimerization rate coefficient, calculated from the excimer-to-monomer ratio dependencies on the probe concentration, was two times higher for PY-PE than for PY-PG at 37 degrees C. This was ascribed to different local concentrations rather than to differences in mobility. The extent of mixing between the two fluorescent phospholipids, estimated by formation of their heteroexcimer, was found very low both in E. coli and B. subtilis, in contrast to model membranes. In addition, these two pyrene derivatives exhibited different temperature phase transitions and different detergent extractability, indicating that the surroundings of these phospholipids in bacterial membrane differ in organization and order. Inhibition of protein synthesis, leading to condensation of nucleoid and presumably to dissipation of membrane domains, indeed resulted in increased formation of heteroexcimers, broadening of phase transitions and equal detergent extractability of both probes. It is proposed that in bacterial membranes these phospholipids are segregated into distinct domains that differ in composition, proteo-lipid interaction and degree of order; the proteo-lipid domain being enriched by PE.
Collapse
Affiliation(s)
- Sharon Vanounou
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
48
|
Lee DG, Kim HK, Park Y, Park SC, Woo ER, Jeong HG, Hahm KS. Gram-positive bacteria specific properties of silybin derived from Silybum marianum. Arch Pharm Res 2003; 26:597-600. [PMID: 12967193 DOI: 10.1007/bf02976707] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Silybin has a potent antibacterial activity, more potent than silymarin II, against gram-positive bacteria without hemolytic activity, whereas it has no antimicrobial activity against gram-negative bacteria or fungi. The mode of action of silybin against the gram-positive bacterial cell was examined by investigating the change in plasma membrane dynamics of bacterial cells using 1,6-diphenyl-1,3,5-hextriene (DPH) as a membrane probe and by assessing the inhibition of macromolecular synthesis using radiolabeled incorporation assay. The results showed that silybin inhibited RNA and protein synthesis on gram-positive bacteria.
Collapse
Affiliation(s)
- Dong Gun Lee
- Research Center for Proteineous Materials, Chosun University, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Koch HG, Moser M, Müller M. Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev Physiol Biochem Pharmacol 2003; 146:55-94. [PMID: 12605305 DOI: 10.1007/s10254-002-0002-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The signal recognition particle (SRP) and its membrane-bound receptor represent a ubiquitous protein-targeting device utilized by organisms as different as bacteria and humans, archaea and plants. The unifying concept of SRP-dependent protein targeting is that SRP binds to signal sequences of newly synthesized proteins as they emerge from the ribosome. In eukaryotes this interaction arrests or retards translation elongation until SRP targets the ribosome-nascent chain complexes via the SRP receptor to the translocation channel. Such channels are present in the endoplasmic reticulum of eukaryotic cells, the thylakoids of chloroplasts, or the plasma membrane of prokaryotes. The minimal functional unit of SRP consists of a signal sequence-recognizing protein and a small RNA. The as yet most complex version is the mammalian SRP whose RNA, together with six proteinaceous subunits, undergo an intricate assembly process. The preferential substrates of SRP possess especially hydrophobic signal sequences. Interactions between SRP and its receptor, the ribosome, the signal sequence, and the target membrane are regulated by GTP hydrolysis. SRP-dependent protein targeting in bacteria and chloroplasts slightly deviate from the canonical mechanism found in eukaryotes. Pro- and eukaryotic cells harbour regulatory mechanisms to prevent a malfunction of the SRP pathway.
Collapse
Affiliation(s)
- H-G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| | | | | |
Collapse
|
50
|
Woldringh CL. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 2002; 45:17-29. [PMID: 12100545 DOI: 10.1046/j.1365-2958.2002.02993.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many recent reviews in the field of bacterial chromosome segregation propose that newly replicated DNA is actively separated by the functioning of specific proteins. This view is primarily based on an interpretation of the position of fluorescently labelled DNA regions and proteins in analogy to the active segregation mechanism in eukaryotic cells, i.e. to mitosis. So far, physical aspects of DNA organization such as the diffusional movement of DNA supercoil segments and their interaction with soluble proteins, leading to a phase separation between cytoplasm and nucleoid, have received relatively little attention. Here, a quite different view is described taking into account DNA-protein interactions, the large variation in the cellular position of fluorescent foci and the compaction and fusion of segregated nucleoids upon inhibition of RNA or protein synthesis. It is proposed that the random diffusion of DNA supercoil segments is transiently constrained by the process of co- transcriptional translation and translocation (transertion) of membrane proteins. After initiation of DNA replication, a bias in the positioning of transertion areas creates a bidirectionality in chromosome segregation that becomes self-enhanced when neighbouring genes on the same daughter chromosome are expressed. This transertion-mediated segregation model is applicable to multifork replication during rapid growth and to multiple chromosomes and plasmids that occur in many bacteria.
Collapse
Affiliation(s)
- Conrad L Woldringh
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| |
Collapse
|