1
|
Fierros CH, Faucillion ML, Hahn BL, Anderson P, Bonde M, Kessler JR, Surdel MC, Crawford KS, Gao Y, Zhu J, Bergström S, Coburn J. Borrelia burgdorferi tolerates alteration to P66 porin function in a murine infectivity model. Front Cell Infect Microbiol 2025; 14:1528456. [PMID: 39906208 PMCID: PMC11790652 DOI: 10.3389/fcimb.2024.1528456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
Borrelia burgdorferi exists in a complex enzootic life cycle requiring differential gene regulation. P66, a porin and adhesin, is upregulated and essential during mammalian infection, but is not produced or required within the tick vector. We sought to determine whether the porin function of P66 is essential for infection. Vancomycin treatment of B. burgdorferi cultures was used to screen for P66 porin function and found to generate spontaneous mutations in p66 (bb0603). Three novel, spontaneous, missense P66 mutants (G175V, T176M, and G584R) were re-created by site-directed mutagenesis in an infectious strain background and tested for infectivity in mice by ID50 experiments. Two of the three mutants retained infectivity comparable to the isogenic control, suggesting that B. burgdorferi can tolerate alteration to P66 porin function during infection. The third mutant exhibited highly attenuated infectivity and produced low levels of P66 protein. Interestingly, four isolates that were recovered for p66 sequencing from mouse tissues revealed novel secondary point mutations in genomic p66. However, these secondary mutations did not rescue P66 porin function. New structural modeling of P66 is presented and consistent with these experimental results. This is the first work to assess the contribution of P66 porin function to B. burgdorferi pathogenesis.
Collapse
Affiliation(s)
- Christa H. Fierros
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Beth L. Hahn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Phillip Anderson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Julie R. Kessler
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew C. Surdel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Gao
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jieqing Zhu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Surdel MC, Coburn J. Leptospiral adhesins: from identification to future perspectives. Front Microbiol 2024; 15:1458655. [PMID: 39206373 PMCID: PMC11350617 DOI: 10.3389/fmicb.2024.1458655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Jackson-Litteken CD, Guo W, Hogland BA, Ratliff CT, McFadden L, Fullerton MS, Voth DE, Rego ROM, Blevins JS. Development and validation of systems for genetic manipulation of the Old World tick-borne relapsing fever spirochete, Borrelia duttonii. PLoS Negl Trop Dis 2024; 18:e0012348. [PMID: 39038047 PMCID: PMC11293673 DOI: 10.1371/journal.pntd.0012348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Relapsing fever (RF), a vector-borne disease caused by Borrelia spp., is characterized by recurring febrile episodes due to repeated bouts of bacteremia. RF spirochetes can be geographically and phylogenetically divided into two distinct groups; Old World RF Borrelia (found in Africa, Asia, and Europe) and New World RF Borrelia (found in the Americas). While RF is a rarely reported disease in the Americas, RF is prevalent in endemic parts of Africa. Despite phylogenetic differences between Old World and New World RF Borrelia and higher incidence of disease associated with Old World RF spirochete infection, genetic manipulation has only been described in New World RF bacteria. Herein, we report the generation of genetic tools for use in the Old World RF spirochete, Borrelia duttonii. We describe methods for transformation and establish shuttle vector- and integration-based approaches for genetic complementation, creating green fluorescent protein (gfp)-expressing B. duttonii strains as a proof of principle. Allelic exchange mutagenesis was also used to inactivate a homolog of the Borrelia burgdorferi p66 gene, which encodes an important virulence factor, in B. duttonii and demonstrate that this mutant was attenuated in a murine model of RF. Finally, the B. duttonii p66 mutant was complemented using shuttle vector- and cis integration-based approaches. As expected, complemented p66 mutant strains were fully infectious, confirming that P66 is required for optimal mammalian infection. The genetic tools and techniques reported herein represent an important advancement in the study of RF Borrelia that allows for future characterization of virulence determinants and colonization factors important for the enzootic cycle of Old World RF spirochetes.
Collapse
Affiliation(s)
- Clay D. Jackson-Litteken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Wanfeng Guo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Brandon A. Hogland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - C. Tyler Ratliff
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - LeAnn McFadden
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Marissa S. Fullerton
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ryan O. M. Rego
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jon S. Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
4
|
Tan X, Castellanos M, Chaconas G. Choreography of Lyme Disease Spirochete Adhesins To Promote Vascular Escape. Microbiol Spectr 2023; 11:e0125423. [PMID: 37255427 PMCID: PMC10434219 DOI: 10.1128/spectrum.01254-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi sensu lato can cause a multitude of clinical manifestations because of its ability to disseminate into any organ system via migration through soft tissue, the lymphatic system, and the circulatory system. The latter is believed to constitute the predominant pathway for dissemination to distal sites from the inoculating tick bite. In spite of its importance, the hematogenous dissemination process remains largely uncharacterized, particularly due to difficulties studying this process in a living host and the lack of an in vitro system that recapitulates animal infection. In the current work, we provide the first information regarding the stage of the vascular transmigration pathway where three important adhesins function during invasion of mouse knee joint peripheral tissue from postcapillary venules. Using intravital imaging coupled with genetic experiments employing sequential double infection, we show a complex temporal choreography of P66, decorin binding proteins (DbpA/B), and outer surface protein C (OspC) at discrete steps along the pathway of vascular escape, underscoring the importance of B. burgdorferi adhesins in hematogenous dissemination in the mouse knee joint and the complexity of vascular transmigration by a disseminating pathogen. IMPORTANCE Lyme disease is caused by the spirochete Borrelia burgdorferi, which is transmitted by a bite from an infected tick. Disease development involves a complex series of host-pathogen interactions as well as dissemination of the infecting organisms to sites distal to the original tick bite. The predominant pathway for this is believed to be hematogenous dissemination. The mechanism by which the spirochetes escape circulation is unknown. Here, using intravital microscopy, where the Lyme spirochete can be observed in a living mouse, we have studied the stage in the vascular escape process where each of three surface adhesins functions to facilitate escape of the spirochete from postcapillary venules to invade mouse knee joint peripheral tissue. A complex pattern of involvement at various locations in the multistage process is described using a unique experimental approach that is applicable to other disseminating pathogens.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Mildred Castellanos
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Golidonova K, Korenberg E, Krupinskaya E, Matrosova V, Gintsburg A. Allelic Variants of P66 Gene in Borrelia bavariensis Isolates from Patients with Ixodid Tick-Borne Borreliosis. Microorganisms 2022; 10:microorganisms10122509. [PMID: 36557762 PMCID: PMC9782215 DOI: 10.3390/microorganisms10122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Protein P66 is one of the crucial virulence factors of Borrelia, inducing the production of specific antibodies in patients with ixodid tick-borne borreliosis (ITBB). Various species of Borrelia are characterized by genetic variability of the surface-exposed loop of P66. However, little is known about this variability in Borrelia bavariensis. Here we describe the variability of the nucleotide sequences of P66 gene locus in isolates of B. bavariensis. Analysis of nucleotide sequences of P66 in 27 isolates of B. bavariensis from ITBB patients revealed three allelic variants of this gene. The alignment score of amino acid sequences in the isolates showed amino acid replacements in various positions confirming the presence of three allelic variants. Two of them are characteristic only for some isolates of B. bavariensis of the Eurasian gene pool from various parts of the geographic ranges of B. bavariensis from various samples. At least three allelic variants of P66 B. bavariensis have been identified, which have different amino acid expression, occur with different frequency in ITBB patients and, presumably, can have different effects on the course of the infection.
Collapse
Affiliation(s)
- Kristina Golidonova
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
- Correspondence: ; Tel.: +7-985-337-01-85
| | - Eduard Korenberg
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Ekaterina Krupinskaya
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Vera Matrosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Gintsburg
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
6
|
Lauretti-Ferreira F, Teixeira AAR, Giordano RJ, da Silva JB, Abreu PAE, Barbosa AS, Akamatsu MA, Ho PL. Characterization of a virulence-modifying protein of Leptospira interrogans identified by shotgun phage display. Front Microbiol 2022; 13:1051698. [PMID: 36519163 PMCID: PMC9742253 DOI: 10.3389/fmicb.2022.1051698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Pathogenic species of Leptospira are etiologic agents of leptospirosis, an emerging zoonotic disease of worldwide extent and endemic in tropical regions. The growing number of identified leptospiral species sheds light to their genetic diversity and unique virulence mechanisms, many of them still remain unknown. Toxins and adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines with cross-protection and long-lasting effect against leptospirosis. For this aim, we used the shotgun phage display technique to unravel new proteins with adhesive properties. A shotgun library was constructed using fragmented genomic DNA from Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 and pG8SAET phagemid vector. Selection of phages bearing new possible cell-binding antigens was performed against VERO cells, using BRASIL biopanning methodology. Analysis of selected clones revealed the hypothetical protein LIC10778, a potentially exposed virulence factor that belongs to the virulence-modifying (VM) protein family (PF07598), composed of 13 members in the leptospiral strain Fiocruz L1-130. Prediction of LIC10778 tertiary structure indicates that the protein contains a cellular-binding domain (N-terminal portion) and an unknown domain of no assigned activity (C-terminal portion). The predicted N-terminal domain shared structural similarities with the cell-binding and internalization domain of toxins like Ricin and Abrin, as well as to the Community-Acquired Respiratory Distress Syndrome (CARDS) toxin in Mycoplasma pneumoniae. Interestingly, recombinant portions of the N-terminal region of LIC10778 protein showed binding to laminin, collagens I and IV, vitronectin, and plasma and cell fibronectins using overlay blotting technique, especially regarding the binding site identified by phage display. These data validate our preliminary phage display biopanning and support the predicted three-dimensional models of LIC10778 protein and other members of PF07598 protein family, confirming the identification of the N-terminal cell-binding domains that are similar to ricin-like toxins. Moreover, fluorescent fused proteins also confirmed that N-terminal region of LIC10778 is capable of binding to VERO and A549 cell lines, further highlighting its virulence role during host-pathogen interaction in leptospirosis probably mediated by its C-terminal domain. Indeed, recent results in the literature confirmed this assumption by demonstrating the cytotoxicity of a closely related PF07598 member.
Collapse
Affiliation(s)
- Fabiana Lauretti-Ferreira
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Curtis MW, Fierros CH, Hahn BL, Surdel MC, Kessler J, Anderson PN, Vandewalle-Capo M, Bonde M, Zhu J, Bergström S, Coburn J. Identification of amino acid domains of Borrelia burgdorferi P66 that are surface exposed and important for localization, oligomerization, and porin function of the protein. Front Cell Infect Microbiol 2022; 12:991689. [PMID: 36211976 PMCID: PMC9539438 DOI: 10.3389/fcimb.2022.991689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
P66, a bifunctional integral outer membrane protein, is necessary for Borrelia burgdorferi to establish initial infection and to disseminate in mice. The integrin binding function of P66 facilitates extravasation and dissemination, but the role of its porin function during murine infection has not been investigated. A limitation to studying P66 porin function during mammalian infection has been the lack of structural information for P66. In this study, we experimentally characterized specific domains of P66 with regard to structure and function. First, we aligned the amino acid sequences of P66 from Lyme disease-causing Borrelia and relapsing fever-causing Borrelia to identify conserved and unique domains between these disease-causing clades. Then, we examined whether specific domains of P66 are exposed on the surface of the bacteria by introducing c-Myc epitope tags into each domain of interest. The c-Myc epitope tag inserted C-terminally to E33 (highly conserved domain), to T187 (integrin binding region domain and a non-conserved domain), and to E334 (non-conserved domain) were all detected on the surface of Borrelia burgdorferi. The c-Myc epitope tag inserted C-terminally to E33 and D303 in conserved domains disrupted P66 oligomerization and porin function. In a murine model of infection, the E33 and D303 mutants exhibited decreased infectivity and dissemination. Taken together, these results suggest the importance of these conserved domains, and potentially P66 porin function, in vivo.
Collapse
Affiliation(s)
- Michael W. Curtis
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christa H. Fierros
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beth L. Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew C. Surdel
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julie Kessler
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Phillip N. Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marine Vandewalle-Capo
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Mari Bonde
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jieqing Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sven Bergström
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
9
|
Abstract
Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.
Collapse
Affiliation(s)
- Patricia A. Rosa
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
10
|
Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Sci Rep 2019; 9:17606. [PMID: 31772280 PMCID: PMC6879480 DOI: 10.1038/s41598-019-53830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
Membrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.
Collapse
|
11
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Abstract
Borrelia burgdorferi HtrA (HtrABb) is a serine protease that targets damaged or improperly folded proteins. In our previous studies, HtrABb specifically degraded basic membrane protein BmpD, chemotaxis phosphatase CheX, and outer membrane protein P66. In addition, HtrABb degrades virulence factor BB0323 and components of the extracellular matrix fibronectin and aggrecan. A proteomics-based analysis (two-dimensional difference gel electrophoresis [2-D DIGE], liquid chromatography-mass spectrometry [LC-MS]) of an HtrABb-overexpressing strain of B. burgdorferi (A3HtrAOE) revealed that protein levels of P66 were reduced in comparison to wild-type B. burgdorferi, confirming its status as an HtrABb substrate. Hbb, a P66-DNA-binding transcription factor, was specifically degraded by HtrABb, providing supportive evidence for a role for both in the regulation of P66. A3HtrAOE exhibited reduced motility in swarm assays, a possible link between overabundance of HtrABb and its enzymatic specificity for P66. However, the ΔP66 strain did not have reduced motility in the swarm assays, negating a role for this protein. The proteomics analyses also identified three enzymes of the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycerol-3-phosphate dehydrogenase (GPDH), and glycerol kinase (GK), and one enzyme involved in carbohydrate metabolism, diphosphate-fructose-6-phosphate 1-phosphotransferase, which were reduced in A3HtrAOE. Consistent with its reduced protein levels of these glycolytic enzymes, A3HtrAOE was also deficient in production of pyruvate. We propose a model for a role for HtrABb in contributing to a decrease in metabolic activity of B. burgdorferi. Being a vector-borne bacterium, B. burgdorferi must remodel its protein content as it transfers from tick to mammal. Proteolysis is a mechanism whereby remodeling can be accomplished. HtrABb degrades a number of proteins whose disappearance may help in preparing this organism for a stage of low metabolic activity.
Collapse
|
13
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
14
|
Curtis MW, Hahn BL, Zhang K, Li C, Robinson RT, Coburn J. Characterization of Stress and Innate Immunity Resistance of Wild-Type and Δ p66 Borrelia burgdorferi. Infect Immun 2018; 86:e00186-17. [PMID: 29158430 PMCID: PMC5778354 DOI: 10.1128/iai.00186-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Borrelia burgdorferi is a causative agent of Lyme disease, the most common arthropod-borne disease in the United States. B. burgdorferi evades host immune defenses to establish a persistent, disseminated infection. Previous work showed that P66-deficient B. burgdorferi (Δp66) is cleared quickly after inoculation in mice. We demonstrate that the Δp66 strain is rapidly cleared from the skin inoculation site prior to dissemination. The rapid clearance of Δp66 bacteria is not due to inherent defects in multiple properties that might affect infectivity: bacterial outer membrane integrity, motility, chemotactic response, or nutrient acquisition. This led us to the hypothesis that P66 has a role in mouse cathelicidin-related antimicrobial peptide (mCRAMP; a major skin antimicrobial peptide) and/or neutrophil evasion. Neither wild-type (WT) nor Δp66 B. burgdorferi was susceptible to mCRAMP. To examine the role of neutrophil evasion, we administered neutrophil-depleting antibody anti-Ly6G (1A8) to C3H/HeN mice and subsequently monitored the course of B. burgdorferi infection. Δp66 mutants were unable to establish infection in neutrophil-depleted mice, suggesting that the important role of P66 during early infection is through another mechanism. Neutrophil depletion did not affect WT B. burgdorferi bacterial burdens in the skin (inoculation site), ear, heart, or tibiotarsal joint at early time points postinoculation. This was unexpected given that prior in vitro studies demonstrated neutrophils phagocytose and kill B. burgdorferi These data, together with our previous work, suggest that despite the in vitro ability of host innate defenses to kill B. burgdorferi, individual innate immune mechanisms have limited contributions to controlling early B. burgdorferi infection in the laboratory model used.
Collapse
Affiliation(s)
- Michael W Curtis
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Beth L Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kai Zhang
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Chunhao Li
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Lin YP, Leong JM. Characterization of Borrelia burgdorferi Binding to Mammalian Cells and Extracellular Matrix. Methods Mol Biol 2018; 1690:57-67. [PMID: 29032536 DOI: 10.1007/978-1-4939-7383-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lyme disease Borreliae produces outer surface adhesins to confer bacterial attachment to the extracellular matrix (ECM) components on the surface of mammalian cells. Here, we describe protocols to characterize the activity and specificity of these adhesins by flow cytometry or measurement of the binding of radiolabeled spirochetes to immobilized ECM or mammalian cells.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY, 12208, USA.
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| |
Collapse
|
16
|
Brock CM, Bañó-Polo M, Garcia-Murria MJ, Mingarro I, Esteve-Gasent M. Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi. BMC Microbiol 2017; 17:219. [PMID: 29166863 PMCID: PMC5700661 DOI: 10.1186/s12866-017-1127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In addition, functional predictions are made. RESULTS Our results show that BB0173, in contrast to BB0172, is an inner membrane protein, in which the VWFA domain is exposed to the periplasmic space. Further, BB0173 was predicted to have an aerotolerance regulator domain, and expression of BB0173 and the surrounding genes was evaluated under aerobic and microaerophilic conditions, revealing that these genes are downregulated under aerobic conditions. Since the VWFA domain containing proteins of B. burgdorferi are highly conserved, they are likely required for survival of the pathogen through sensing diverse environmental oxygen conditions. CONCLUSIONS Presently, the complex mechanisms that B. burgdorferi uses to detect and respond to environmental changes are not completely understood. However, studying the mechanisms that allow B. burgdorferi to survive in the highly disparate environments of the tick vector and mammalian host could allow for the development of novel methods of preventing acquisition, survival, or transmission of the spirochete. In this regard, a putative membrane protein, BB0173, was characterized. BB0173 was found to be highly conserved across pathogenic Borrelia, and additionally contains several truly transmembrane domains, and a Bacteroides aerotolerance-like domain. The presence of these functional domains and the highly conserved nature of this protein, strongly suggests a required function of BB0173 in the survival of B. burgdorferi.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU-4467, College Station, TX, 77843, USA.,Current affiliation: Department of Entomology, College of Agricultural and Life Sciences, Texas A&M University, College Station, USA
| | - Manuel Bañó-Polo
- Department of Biochemistry and Molecular Biology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Faculty of Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | - Maria J Garcia-Murria
- Department of Biochemistry and Molecular Biology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Faculty of Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Faculty of Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | - Maria Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU-4467, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Caine JA, Coburn J. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion. Front Immunol 2016; 7:442. [PMID: 27818662 PMCID: PMC5073149 DOI: 10.3389/fimmu.2016.00442] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick-mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.
Collapse
Affiliation(s)
- Jennifer A. Caine
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenifer Coburn
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Live Attenuated Borrelia burgdorferi Targeted Mutants in an Infectious Strain Background Protect Mice from Challenge Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:725-31. [PMID: 27335385 DOI: 10.1128/cvi.00302-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Borrelia burgdorferi, B. garinii, and B. afzelii are all agents of Lyme disease in different geographic locations. If left untreated, Lyme disease can cause significant and long-term morbidity, which may continue after appropriate antibiotic therapy has been administered and live bacteria are no longer detectable. The increasing incidence and geographic spread of Lyme disease are renewing interest in the vaccination of at-risk populations. We took the approach of vaccinating mice with two targeted mutant strains of B. burgdorferi that, unlike the parental strain, are avirulent in mice. Mice vaccinated with both strains were protected against a challenge with the parental strain and a heterologous B. burgdorferi strain by either needle inoculation or tick bite. In ticks, the homologous strain was eliminated but the heterologous strain was not, suggesting that the vaccines generated a response to antigens that are produced by the bacteria both early in mammalian infection and in the tick. Partial protection against B. garinii infection was also conferred. Protection was antibody mediated, and reactivity to a variety of proteins was observed. These experiments suggest that live attenuated B. burgdorferi strains may be informative regarding the identification of protective antigens produced by the bacteria and recognized by the mouse immune system in vivo Further work may illuminate new candidates that are effective and safe for the development of Lyme disease vaccines.
Collapse
|
19
|
Liang X, Garcia BL, Visai L, Prabhakaran S, Meenan NAG, Potts JR, Humphries MJ, Höök M. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs. PLoS One 2016; 11:e0159118. [PMID: 27434228 PMCID: PMC4951027 DOI: 10.1371/journal.pone.0159118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Adherence of microbes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with α5β1 integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/α5β1integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/α5β1 integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/α5β1 on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic α5β1 interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/α5β1 affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs.
Collapse
Affiliation(s)
- Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Brandon L. Garcia
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | - Livia Visai
- Dep. of Molecular Medicine, UdR INSTM, Center for Tissue Engineering (C.I.T.), University of Pavia, 27100, Pavia, Italy
- Dep. of Occupational Medicine, Ergonomy and Disability, Salvatore Maugeri Foundation, IRCCS, Nanotechnology Laboratory, 27100, Pavia, Italy
| | - Sabitha Prabhakaran
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
| | | | - Jennifer R. Potts
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kenedy MR, Scott EJ, Shrestha B, Anand A, Iqbal H, Radolf JD, Dyer DW, Akins DR. Consensus computational network analysis for identifying candidate outer membrane proteins from Borrelia spirochetes. BMC Microbiol 2016; 16:141. [PMID: 27400788 PMCID: PMC4939628 DOI: 10.1186/s12866-016-0762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/02/2016] [Indexed: 01/15/2023] Open
Abstract
Background Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. Results Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form β-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. Conclusions Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0762-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Edgar J Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Binu Shrestha
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Justin D Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Genetics and Genomic Science, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
21
|
Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for the Integrin Binding Residues of the B. burgdorferi P66 Protein. PLoS Pathog 2015; 11:e1005333. [PMID: 26684456 PMCID: PMC4686178 DOI: 10.1371/journal.ppat.1005333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins) that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d-/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration. Lyme disease is the most common vector-transmitted infection in North America and Europe. Diverse clinical manifestations of Lyme disease result from the dissemination of the spirochetes causing the disease into a variety of tissue sites. Dissemination results from invasion of the vasculature by the bacteria, followed by exit into virtually all tissue types. The mechanism of vascular transmigration by Lyme disease spirochetes remains uncharacterized. Here we describe a novel approach to study transmigration of Lyme disease spirochetes using intravital microscopy of the peripheral knee vasculature in living mice. Our studies have identified an adhesin, P66, and its integrin-binding function as playing important roles in Lyme spirochete transmigration and dissemination.
Collapse
|
22
|
Coleman JL, Toledo A, Benach JL. Borrelia burgdorferi HtrA: evidence for twofold proteolysis of outer membrane protein p66. Mol Microbiol 2015; 99:135-50. [PMID: 26370492 DOI: 10.1111/mmi.13221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/20/2022]
Abstract
In prokaryotes, members of the High Temperature Requirement A (HtrA) family of serine proteases function in the periplasm to degrade damaged or improperly folded membrane proteins. Borrelia burgdorferi, the agent of Lyme disease, codes for a single HtrA homolog. Two-dimensional electrophoresis analysis of B. burgdorferi B31A3 and a strain that overexpresses HtrA (A3HtrAOE) identified a downregulated protein in A3HtrAOE with a mass, pI and MALDI-TOF spectrum consistent with outer membrane protein p66. P66 and HtrA from cellular lysates partitioned into detergent-resistant membranes, which contain cholesterol-glycolipid-rich membrane regions known as lipid rafts, suggesting that HtrA and p66 may reside together in lipid rafts also. This agrees with previous work from our laboratory, which showed that HtrA and p66 are constituents of B. burgdorferi outer membrane vesicles. HtrA degraded p66 in vitro and A3HtrAOE expressed reduced levels of p66 in vivo. Fluorescence confocal microscopy revealed that HtrA and p66 colocalize in the membrane. The association of HtrA and p66 establishes that they could interact efficiently and their protease/substrate relationship provides functional relevance to this interaction. A3HtrAOE also showed reduced levels of p66 transcript in comparison with wild-type B31A3, indicating that HtrA-mediated regulation of p66 may occur at multiple levels.
Collapse
Affiliation(s)
- James L Coleman
- New York State Department of Health, Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Abstract
Borrelia burgdorferi is the tick-borne etiologic agent of Lyme disease. The spirochete must negotiate numerous barriers in order to establish a disseminated infection in a mammalian host. These barriers include migration from the feeding tick midgut to the salivary glands, deposition in skin, manipulation or evasion of the localized host immune response, adhesion to and extravasation through an endothelial barrier, hematogenous dissemination, and establishment of infection in distal tissue sites. Borrelia burgdorferi proteins that mediate many of these processes and the nature of the host response to infection are described.
Collapse
Affiliation(s)
- Mary Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
24
|
Evaluation of cell binding activities of Leptospira ECM adhesins. PLoS Negl Trop Dis 2015; 9:e0003712. [PMID: 25875373 PMCID: PMC4397020 DOI: 10.1371/journal.pntd.0003712] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/19/2015] [Indexed: 12/02/2022] Open
Abstract
Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection. Leptospirosis is the most widespread zoonotic infection in the world and represents a major public health problem, especially in tropical climates. The processes by which some Leptospira species cause infection, disease, and colonization of carrier animals remains poorly understood. Specific binding of Leptospira molecules and host molecules are likely important for infection and colonization. To identify Leptospira molecules that mediate attachment to host substrates, prior studies have evaluated Leptospira membrane proteins for binding to extracellular matrix (ECM) proteins. More recent data, however, show that Leptospira bind more efficiently to cells than to ECM. In search of adhesins mediating the latter activity, our study evaluated the direct cell binding activity of recombinant forms of a group of previously reported Leptospira ECM adhesins. Only one of these proteins, OmpL1, demonstrated reproducible direct cell binding activity. Further work will focus on identification of the mammalian receptor for OmpL1 and determining the biological significance of this activity during infection.
Collapse
|
25
|
Ristow LC, Bonde M, Lin YP, Sato H, Curtis M, Wesley E, Hahn BL, Fang J, Wilcox DA, Leong JM, Bergström S, Coburn J. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol 2015; 17:1021-36. [PMID: 25604835 PMCID: PMC4478124 DOI: 10.1111/cmi.12418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
P66, a Borrelia burgdorferi surface protein with porin and integrin‐binding activities, is essential for murine infection. The role of P66 integrin‐binding activity in B. burgdorferi infection was investigated and found to affect transendothelial migration. The role of integrin binding, specifically, was tested by mutation of two amino acids (D205A,D207A) or deletion of seven amino acids (Del202–208). Neither change affected surface localization or channel‐forming activity of P66, but both significantly reduced binding to αvβ3. Integrin‐binding deficient B. burgdorferi strains caused disseminated infection in mice at 4 weeks post‐subcutaneous inoculation, but bacterial burdens were significantly reduced in some tissues. Following intravenous inoculation, the Del202–208 bacteria were below the limit of detection in all tissues assessed at 2 weeks post‐inoculation, but bacterial burdens recovered to wild‐type levels at 4 weeks post‐inoculation. The delay in tissue colonization correlated with reduced migration of the Del202–208 strains across microvascular endothelial cells, similar to Δp66 bacteria. These results indicate that integrin binding by P66 is important to efficient dissemination of B. burgdorferi, which is critical to its ability to cause disease manifestations in incidental hosts and to its maintenance in the enzootic cycle.
Collapse
Affiliation(s)
- Laura C Ristow
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Curtis
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erin Wesley
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth L Hahn
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Fang
- Department of Pediatrics, MACC Fund Research Center, Children's Research Institute, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - David A Wilcox
- Department of Pediatrics, MACC Fund Research Center, Children's Research Institute, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
Evangelista KV, Hahn B, Wunder EA, Ko AI, Haake DA, Coburn J. Identification of cell-binding adhesins of Leptospira interrogans. PLoS Negl Trop Dis 2014; 8:e3215. [PMID: 25275630 PMCID: PMC4183468 DOI: 10.1371/journal.pntd.0003215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1-130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Karen V. Evangelista
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Beth Hahn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Departments of Medicine, Urology, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
28
|
Identification of lysine residues in the Borrelia burgdorferi DbpA adhesin required for murine infection. Infect Immun 2014; 82:3186-98. [PMID: 24842928 DOI: 10.1128/iai.02036-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Decorin-binding protein A (DbpA) of Borrelia burgdorferi mediates bacterial adhesion to heparin and dermatan sulfate associated with decorin. Lysines K82, K163, and K170 of DbpA are known to be important for in vitro interaction with decorin, and the DbpA structure, initially solved by nuclear magnetic resonance (NMR) spectroscopy, suggests these lysine residues colocalize in a pocket near the C terminus of the protein. In the current study, we solved the structure of DbpA from B. burgdorferi strain 297 using X-ray crystallography and confirmed the existing NMR structural data. In vitro binding experiments confirmed that recombinant DbpA proteins with mutations in K82, K163, or K170 did not bind decorin, which was due to an inability to interact with dermatan sulfate. Most importantly, we determined that the in vitro binding defect observed upon mutation of K82, K163, or K170 in DbpA also led to a defect during infection. The infectivity of B. burgdorferi expressing individual dbpA lysine point mutants was assessed in mice challenged via needle inoculation. Murine infection studies showed that strains expressing dbpA with mutations in K82, K163, and K170 were significantly attenuated and could not be cultured from any tissue. Proper expression and cellular localization of the mutated DbpA proteins were examined, and NMR spectroscopy determined that the mutant DbpA proteins were structurally similar to wild-type DbpA. Taken together, these data showed that lysines K82, K163, and K170 potentiate the binding of DbpA to dermatan sulfate and that an interaction(s) mediated by these lysines is essential for B. burgdorferi murine infection.
Collapse
|
29
|
Bárcena-Uribarri I, Thein M, Barbot M, Sans-Serramitjana E, Bonde M, Mentele R, Lottspeich F, Bergström S, Benz R. Study of the protein complex, pore diameter, and pore-forming activity of the Borrelia burgdorferi P13 porin. J Biol Chem 2014; 289:18614-24. [PMID: 24825899 DOI: 10.1074/jbc.m113.539528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P13 is one of the major outer membrane proteins of Borrelia burgdorferi. Previous studies described P13 as a porin. In the present study some structure and function aspects of P13 were studied. P13 showed according to lipid bilayer studies a channel-forming activity of 0.6 nanosiemens in 1 m KCl. Single channel and selectivity measurements demonstrated that P13 had no preference for either cations or anions and showed no voltage-gating up to ±100 mV. Blue native polyacrylamide gel electrophoresis was used to isolate and characterize the P13 protein complex in its native state. The complex had a high molecular mass of about 300 kDa and was only composed of P13 monomers. The channel size was investigated using non-electrolytes revealing an apparent diameter of about 1.4 nm with a 400-Da molecular mass cut-off. Multichannel titrations with different substrates reinforced the idea that P13 forms a general diffusion channel. The identity of P13 within the complex was confirmed by second dimension SDS-PAGE, Western blotting, mass spectrometry, and the use of a p13 deletion mutant strain. The results suggested that P13 is the protein responsible for the 0.6-nanosiemens pore-forming activity in the outer membrane of B. burgdorferi.
Collapse
Affiliation(s)
- Iván Bárcena-Uribarri
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany, School of Engineering and Science, Jacobs University Bremen, Campusring 1, D-28759 Bremen, Germany,
| | - Marcus Thein
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Mariam Barbot
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Eulalia Sans-Serramitjana
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden, and
| | - Reinhard Mentele
- Max-Planck Institute of Biochemistry, Protein Analysis Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Friedrich Lottspeich
- Max-Planck Institute of Biochemistry, Protein Analysis Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden, and
| | - Roland Benz
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany, School of Engineering and Science, Jacobs University Bremen, Campusring 1, D-28759 Bremen, Germany
| |
Collapse
|
30
|
Chen L, Xu Q, Tu J, Ge Y, Liu J, Liang FT. Increasing RpoS expression causes cell death in Borrelia burgdorferi. PLoS One 2013; 8:e83276. [PMID: 24358270 PMCID: PMC3865164 DOI: 10.1371/journal.pone.0083276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
Collapse
Affiliation(s)
- Linxu Chen
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Yihe Ge
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Structural modeling and physicochemical characterization provide evidence that P66 forms a β-barrel in the Borrelia burgdorferi outer membrane. J Bacteriol 2013; 196:859-72. [PMID: 24317399 DOI: 10.1128/jb.01236-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a β-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a β-barrel with either 22 or 24 transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage is located within a surface-exposed loop. When we aligned the mature P66 amino acid sequences from B. burgdorferi and B. garinii, we found that K487 was present only in the B. burgdorferi P66 protein sequence. When intact cells from each strain were treated with trypsin, only B. burgdorferi P66 was trypsin sensitive, indicating that K487 is surface exposed, as predicted. Consistent with this observation, when we inserted a c-Myc tag adjacent to K487 and utilized surface localization immunofluorescence, we detected the loop containing K487 on the surface of B. burgdorferi. P66 was examined by both Triton X-114 phase partitioning and circular dichroism, confirming that the protein is amphiphilic and contains extensive (48%) β-sheets, respectively. Moreover, P66 also was able to incorporate into liposomes and form channels in large unilamellar vesicles. Finally, blue native PAGE (BN-PAGE) revealed that under nondenaturing conditions, P66 is found in large complexes of ∼400 kDa and ∼600 kDa. Outer surface lipoprotein A (OspA) and OspB both coimmunoprecipitate with P66, demonstrating that P66 associates with OspA and OspB in B. burgdorferi. The combined computer-based structural analyses and supporting physicochemical properties of P66 provide a working model to further examine the porin and integrin-binding activities of this OMP as they relate to B. burgdorferi physiology and Lyme disease pathogenesis.
Collapse
|
32
|
Bárcena-Uribarri I, Thein M, Maier E, Bonde M, Bergström S, Benz R. Use of nonelectrolytes reveals the channel size and oligomeric constitution of the Borrelia burgdorferi P66 porin. PLoS One 2013; 8:e78272. [PMID: 24223145 PMCID: PMC3819385 DOI: 10.1371/journal.pone.0078272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
In the Lyme disease spirochete Borrelia burgdorferi, the outer membrane protein P66 is capable of pore formation with an atypical high single-channel conductance of 11 nS in 1 M KCl, which suggested that it could have a larger diameter than 'normal' Gram-negative bacterial porins. We studied the diameter of the P66 channel by analyzing its single-channel conductance in black lipid bilayers in the presence of different nonelectrolytes with known hydrodynamic radii. We calculated the filling of the channel with these nonelectrolytes and the results suggested that nonelectrolytes (NEs) with hydrodynamic radii of 0.34 nm or smaller pass through the pore, whereas neutral molecules with greater radii only partially filled the channel or were not able to enter it at all. The diameter of the entrance of the P66 channel was determined to be ≤1.9 nm and the channel has a central constriction of about 0.8 nm. The size of the channel appeared to be symmetrical as judged from one-sidedness of addition of NEs. Furthermore, the P66-induced membrane conductance could be blocked by 80-90% by the addition of the nonelectrolytes PEG 400, PEG 600 and maltohexaose to the aqueous phase in the low millimolar range. The analysis of the power density spectra of ion current through P66 after blockage with these NEs revealed no chemical reaction responsible for channel block. Interestingly, the blockage of the single-channel conductance of P66 by these NEs occurred in about eight subconductance states, indicating that the P66 channel could be an oligomer of about eight individual channels. The organization of P66 as a possible octamer was confirmed by Blue Native PAGE and immunoblot analysis, which both demonstrated that P66 forms a complex with a mass of approximately 460 kDa. Two dimension SDS PAGE revealed that P66 is the only polypeptide in the complex.
Collapse
Affiliation(s)
- Iván Bárcena-Uribarri
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Marcus Thein
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Elke Maier
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection. J Transl Med 2013; 93:900-10. [PMID: 23797360 PMCID: PMC4139070 DOI: 10.1038/labinvest.2013.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
The etiologic agent of Lyme disease, Borrelia burgdorferi, localizes preferentially in the extracellular matrix during persistence. In chronically infected laboratory mice, there is a direct association between B. burgdorferi and the proteoglycan decorin, which suggests that decorin has a role in defining protective niches for persistent spirochetes. In this study, the tissue colocalization of B. burgdorferi with decorin and the dynamics of borrelial decorin tropism were evaluated during chronic infection. Spirochetes were found to colocalize absolutely with decorin, but not collagen I in chronically infected immunocompetent C3H mice. Passive immunization of infected C3H-scid mice with B. burgdorferi-specific immune serum resulted in the localization of spirochetes in decorin-rich microenvironments, with clearance of spirochetes from decorin-poor microenvironments. In passively immunized C3H-scid mice, tissue spirochete burdens were initially reduced, but increased over time as the B. burgdorferi-specific antibody levels waned. Concurrent repopulation of the previously cleared decorin-poor microenvironments was observed with the rising tissue spirochete burden and declining antibody titer. These findings indicate that the specificity of B. burgdorferi tissue localization during chronic infection is determined by decorin, driven by the borrelia-specific antibody response, and fluctuates with the antibody response.
Collapse
|
34
|
Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol 2013; 21:372-9. [PMID: 23876218 DOI: 10.1016/j.tim.2013.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023]
Abstract
The Lyme disease spirochetes, Borrelia burgdorferi (sensu lato), must cause persistent, disseminated infection to be maintained in the natural enzootic cycle. In human Lyme disease, spirochetes spread from the site of a tick bite to colonize multiple tissue sites, causing multisystem clinical manifestations. The Lyme spirochetes produce many adhesive surface proteins that collectively recognize diverse host substrates and cell types and are likely to promote dissemination and chronic infection in a variety of tissues. Recent application of state-of-the-art in vivo imaging technologies is illuminating mechanisms of interaction of B. burgdorferi with the host and the importance of multiple adhesins during mammalian infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
35
|
Russell TM, Johnson BJB. Lyme disease spirochaetes possess an aggrecan-binding protease with aggrecanase activity. Mol Microbiol 2013; 90:228-40. [PMID: 23710801 DOI: 10.1111/mmi.12276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
Abstract
Connective tissues are the most common area of colonization for the Lyme disease spirochaete Borrelia burgdorferi. Colonization is aided by the interaction between numerous bacterial adhesins with components of the extracellular matrix (ECM). Here we describe a novel interaction between B. burgdorferi and the major ECM proteoglycan found in joints, aggrecan. Using affinity chromatography and mass spectrometry we identify two borrelial aggrecan-binding proteins: the known ECM ligand Bgp (BB0588) and an uncharacterized protease BbHtrA (BB0104). Proteinase K studies demonstrate that BbHtrA is surface exposed. Immunoblots using sera from patients with both early and late Lyme disease establish that BbHtrA is expressed during human disease, immunogenic, and conserved in the three major Lyme disease spirochaete species. Consequences of the interaction between aggrecan and BbHtrA were examined by proteolysis assays. BbHtrA cleaves aggrecan at a site known to destroy aggrecan function and which has been previously observed in the synovial fluid of patients with Lyme arthritis. These data demonstrate that B. burgdorferi possess aggrecan-binding proteins which may provide the organism with additional capability to colonize connective tissues. Moreover, our studies provide the first evidence that B. burgdorferi possess proteolytic activity which may contribute to the pathogenesis of Lyme arthritis.
Collapse
Affiliation(s)
- Theresa M Russell
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | |
Collapse
|
36
|
BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin α3β1. J Bacteriol 2013; 195:3320-30. [PMID: 23687274 DOI: 10.1128/jb.00187-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function.
Collapse
|
37
|
The early dissemination defect attributed to disruption of decorin-binding proteins is abolished in chronic murine Lyme borreliosis. Infect Immun 2013; 81:1663-73. [PMID: 23460518 DOI: 10.1128/iai.01359-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The laboratory mouse model of Lyme disease has revealed that Borrelia burgdorferi differentially expresses numerous outer surface proteins that influence different stages of infection (tick-borne transmission, tissue colonization, dissemination, persistence, and tick acquisition). Deletion of two such outer surface proteins, decorin-binding proteins A and B (DbpA/B), has been documented to decrease infectivity, impede early dissemination, and, possibly, prevent persistence. In this study, DbpA/B-deficient spirochetes were confirmed to exhibit an early dissemination defect in immunocompetent, but not immunodeficient, mice, and the defect was found to resolve with chronicity. Development of disease (arthritis and carditis) was attenuated only in the early stage of infection with DbpA/B-deficient spirochetes in both types of mice. Persistence of the DbpA/B-deficient spirochetes occurred in both immunocompetent and immunodeficient mice in a manner indistinguishable from that of wild-type spirochetes. Dissemination through the lymphatic system was evaluated as an underlying mechanism for the early dissemination defect. At 12 h, 3 days, 7 days, and 14 days postinoculation, DbpA/B-deficient spirochetes were significantly less prevalent and in lower numbers in lymph nodes than wild-type spirochetes. However, in immunodeficient mice, deficiency of DbpA/B did not significantly decrease the prevalence or spirochete numbers in lymph nodes. Complementation of DbpA/B restored a wild-type phenotype. Thus, the results indicated that deficiency of DbpA/B allows the acquired immune response to restrict early dissemination of spirochetes, which appears to be at least partially mediated through the lymphatic system.
Collapse
|
38
|
Lyme disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Norris SJ. How do lyme borrelia organisms cause disease? The quest for virulence determinants(). Open Neurol J 2012; 6:119-23. [PMID: 23091573 PMCID: PMC3474939 DOI: 10.2174/1874205x01206010119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023] Open
Abstract
Lyme disease Borrelia are invasive, nontoxigenic, persistent pathogens, and little is known about their mechanisms of pathogenesis. In our laboratory, a signature-tagged mutagenesis (STM) library of over 4,000 Borrelia burgdorferi transposon mutants has been constructed and is being screened for infectivity in mice. In this manner, a global view of the virulence determinants (factors required for full infectivity) is being developed. Additionally, the mechanisms of immune evasion involving the VMP-like system (vls) are under analysis, and cryo-electron microscopy is providing a detailed view of the three-dimensional structure of B. burgdorferi. These approaches will contribute to the improved understanding of how Lyme disease Borrelia cause disease.
Collapse
Affiliation(s)
- Steven J Norris
- Departments of Pathology & Laboratory Medicine and Microbiology & Molecular Genetics, University of Texas, Medical School at Houston, P.O. Box 20708, Houston, TX, 77225-0708, U.S.A
| |
Collapse
|
40
|
Chan K, Awan M, Barthold SW, Parveen N. Comparative molecular analyses of Borrelia burgdorferi sensu stricto strains B31 and N40D10/E9 and determination of their pathogenicity. BMC Microbiol 2012; 12:157. [PMID: 22846633 PMCID: PMC3511255 DOI: 10.1186/1471-2180-12-157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Lyme disease in the United States is caused primarily by B. burgdorferi sensu stricto while other species are also prevalent in Europe. Genetic techniques have identified several chromosomal and plasmid-borne regulatory and virulence factors involved in Lyme pathogenesis. B31 and N40 are two widely studied strains of B. burgdorferi, which belong to two different 16 S-23 S rRNA spacer types (RST) and outer surface protein C (OspC) allelic groups. However, the presence of several known virulence factors in N40 has not been investigated. This is the first comprehensive study that compared these two strains both in vitro and using the mouse model of infection. Results Phylogenetic analyses predict B31 to be more infectious. However, our studies here indicate that N40D10/E9 is more infectious than the B31 strain at lower doses of inoculation in the susceptible C3H mice. Based-upon a careful analyses of known adhesins of these strains, it is predicted that the absence of a known fibronectin-glycosaminoglycan binding adhesin, bbk32, in the N40 strain could at least partially be responsible for reduction in its binding to Vero cells in vitro. Nevertheless, this difference does not affect the infectivity of N40D10/E9 strain. The genes encoding known regulatory and virulence factors critical for pathogenesis were detected in both strains. Differences in the protein profiles of these B. burgdorferi strains in vitro suggest that the novel, differentially expressed molecules may affect infectivity of B. burgdorferi. Further exacerbation of these molecular differences in vivo could affect the pathogenesis of spirochete strains. Conclusion Based upon the studies here, it can be predicted that N40D10/E9 disseminated infection at lower doses may be enhanced by its lower binding to epithelial cells at the site of inoculation due to the absence of BBK32. We suggest that complete molecular analyses of virulence factors followed by their evaluation using the mouse infection model should form the basis of determining infectivity and pathogenicity of different strains rather than simple phylogenetic group analyses. This study further emphasizes a need to investigate multiple invasive strains of B. burgdorferi to fully appreciate the pathogenic mechanisms that contribute to Lyme disease manifestations.
Collapse
Affiliation(s)
- Kamfai Chan
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | |
Collapse
|
41
|
Ristow LC, Miller HE, Padmore LJ, Chettri R, Salzman N, Caimano MJ, Rosa PA, Coburn J. The β₃-integrin ligand of Borrelia burgdorferi is critical for infection of mice but not ticks. Mol Microbiol 2012; 85:1105-18. [PMID: 22758390 DOI: 10.1111/j.1365-2958.2012.08160.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
P66 is a Borrelia burgdorferi surface protein with β₃ integrin binding and channel forming activities. In this study, the role of P66 in mammalian and tick infection was examined. B. burgdorferiΔp66 strains were not infectious in wild-type, TLR2⁻/⁻- or MyD88⁻/⁻-deficient mice. Strains with p66 restored to the chromosome restored near wild-type infectivity, while complementation with p66 on a shuttle vector did not restore infectivity. Δp66 mutants are cleared quickly from the site of inoculation, but analyses of cytokine expression and cellular infiltrates at the site of inoculation did not reveal a specific mechanism of clearance. The defect in these mutants cannot be attributed to nutrient limitation or an inability to adapt to the host environment in vivo as Δp66 bacteria were able to survive as well as wild type in dialysis membrane chambers in the rat peritoneum. Δp66 bacteria were able to survive in ticks through the larva to nymph moult, but were non-infectious in mice when delivered by tick bite. Independent lines of evidence do not support any increased susceptibility of the Δp66 strains to factors in mammalian blood. This study is the first to define a B. burgdorferi adhesin as essential for mammalian, but not tick infection.
Collapse
Affiliation(s)
- Laura C Ristow
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kenedy MR, Lenhart TR, Akins DR. The role of Borrelia burgdorferi outer surface proteins. ACTA ACUST UNITED AC 2012; 66:1-19. [PMID: 22540535 DOI: 10.1111/j.1574-695x.2012.00980.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 12/18/2022]
Abstract
Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B. burgdorferi. As the interface between B. burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B. burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B. burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | |
Collapse
|
43
|
Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infect Immun 2012; 80:1773-82. [PMID: 22354033 DOI: 10.1128/iai.05984-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, possesses a segmented genome comprised of a single linear chromosome and upwards of 23 linear and circular plasmids. Much of what is known about plasmid-borne genes comes from studying laboratory clones that have spontaneously lost one or more plasmids during in vitro passage. Some plasmids, including the linear plasmid lp17, are never or rarely reported to be lost during routine culture; therefore, little is known about the requirement of these conserved plasmids for infectivity. In this study, the effects of deleting regions of lp17 were examined both in vitro and in vivo. A mutant strain lacking the genes bbd16 to bbd25 showed no deficiency in the ability to establish infection or disseminate to the bloodstream of mice; however, colonization of peripheral tissues was delayed. Despite the ability to colonize ear, heart, and joint tissues, this mutant exhibited a defect in bladder tissue colonization for up to 56 days postinfection. This phenotype was not observed in immunodeficient mice, suggesting that bladder colonization by the mutant strain was inhibited by an adaptive immune-based mechanism. Moreover, the mutant displayed increased expression of outer surface protein C in vitro, which was correlated with the absence of the gene bbd18. To our knowledge, this is the first report involving genetic manipulation of lp17 in an infectious clone of B. burgdorferi and reveals for the first time the effects of lp17 gene deletion during murine infection by the Lyme disease spirochete.
Collapse
|
44
|
Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains. Infect Immun 2012; 80:1519-29. [PMID: 22290150 DOI: 10.1128/iai.06326-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe. The highly complex genome of B. burgdorferi is comprised of a linear chromosome and a large number of variably sized linear and circular plasmids. Many plasmids of this spirochete are unstable during its culture in vitro. Given that many of the B. burgdorferi virulence factors identified to date are plasmid encoded, spirochetal plasmid content determination is essential for genetic analysis of Lyme pathogenesis. Although PCR-based assays facilitate plasmid profiling of sequenced B. burgdorferi strains, a rapid genetic content determination strategy for nonsequenced strains has not yet been described. In this study, we combined pulsed-field gel electrophoresis (PFGE) and Southern hybridization for detection of genes encoding known virulence factors, ribosomal RNA gene spacer restriction fragment length polymorphism types (RSTs), ospC group determination, and sequencing of the variable dbpA and ospC genes. We show that two strains isolated from the same tick and both originally named N40 are in fact very distinct. Furthermore, we failed to detect bbk32, which encodes a fibronectin-binding adhesin, in one "N40" strain. Thus, two distinct strains that show different plasmid profiles, as determined by PFGE and PCR, were isolated from the same tick and vary in their ospC and dbpA sequences. However, both belong to group RST3B.
Collapse
|
45
|
Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U. Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 2011; 10:4556-66. [PMID: 21875077 DOI: 10.1021/pr200395b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among bacterial cell envelopes, the Borrelia burgdorferi outer membrane (OM) is structurally unique in that the identities of many protein complexes remain unknown; however, their characterization is the first step toward our understanding of membrane protein interactions and potential functions. Here, we used two-dimensional blue native/SDS-PAGE/mass spectrometric analysis for a global characterization of protein-protein interactions as well as to identify protein complexes in OM vesicles isolated from multiple infectious sensu stricto isolates of B. burgdorferi. Although we uncovered the existence of at least 10 distinct OM complexes harboring several unique subunits, the complexome is dominated by the frequent occurrence of a limited diversity of membrane proteins, most notably P13, outer surface protein (Osp) A, -B, -C, and -D and Lp6.6. The occurrence of these complexes and specificity of subunit interaction were further supported by independent two-dimensional immunoblotting and coimmunoprecipitation assays as well as by mutagenesis studies, where targeted depletion of a subunit member (P66) selectively abolished a specific complex. Although a comparable profile of the OM complexome was detected in two major infectious isolates, such as B31 and 297, certain complexes are likely to occur in an isolate-specific manner. Further assessment of protein complexes in multiple Osp-deficient isolates showed loss of several protein complexes but revealed the existence of additional complex/subunits that are undetectable in wild-type cells. Together, these observations uncovered borrelial antigens involved in membrane protein interactions. The study also suggests that the assembly process of OM complexes is specific and that the core or stabilizing subunits vary between complexes. Further characterization of these protein complexes including elucidation of their biological significance may shed new light on the mechanism of pathogen persistence and the development of preventative measures against the infection.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland , College Park and Virginia-Maryland Regional College of Veterinary Medicine, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Salo J, Loimaranta V, Lahdenne P, Viljanen MK, Hytönen J. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu Stricto. J Infect Dis 2011; 204:65-73. [PMID: 21628660 DOI: 10.1093/infdis/jir207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Decorin adherence is crucial in the pathogenesis of Lyme borreliosis. Decorin-binding proteins (Dbp) A and B are the adhesins that mediate this interaction. DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto (ss) differ in their amino acid sequence, but little attention has been paid to the potential difference in their decorin binding. METHODS We expressed recombinant DbpA and DbpB of B. garinii, B. afzelii, and B. burgdorferi ss and studied their binding to decorin. We also generated recombinant Borrelia strains to study the role of DbpA and DbpB in the adhesion of live spirochetes to decorin and decorin-expressing cells. RESULTS. Recombinant DbpA of B. garinii and DbpB of B. garinii and B. burgdorferi ss showed strong binding to decorin, whereas DbpA of B. burgdorferi ss and both DbpA and DbpB of B. afzelii exhibited no or only minor binding activity. DbpA and DbpB of B. garinii and B. burgdorferi ss also supported the adhesion of whole spirochetes to decorin and decorin-expressing cells, whereas DbpA and DbpB of B. afzelii did not exhibit this activity. CONCLUSIONS Dbp A and B of B. garinii and B. burgdorferi ss mediate the interaction between the spirochete and decorin, whereas the same adhesins of B. afzelii show only negligible activity.
Collapse
Affiliation(s)
- Jemiina Salo
- Department of Medical Microbiology and Immunology, University of Turku, Kiinamyllynkatu 13, Turku, Finland.
| | | | | | | | | |
Collapse
|
47
|
Antonara S, Ristow L, Coburn J. Adhesion mechanisms of Borrelia burgdorferi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:35-49. [PMID: 21557056 DOI: 10.1007/978-94-007-0940-9_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Borrelia are widely distributed agents of Lyme disease and Relapsing Fever. All are vector-borne zoonotic pathogens, have segmented genomes, and enigmatic mechanisms of pathogenesis. Adhesion to mammalian and tick substrates is one pathogenic mechanism that has been widely studied. At this point, the primary focus of research in this area has been on Borrelia burgdorferi, one agent of Lyme disease, but many of the adhesins of B. burgdorferi are conserved in other Lyme disease agents, and some are conserved in the Relapsing Fever Borrelia. B. burgdorferi adhesins that mediate attachment to cell-surface molecules may influence the host response to the bacteria, while adhesins that mediate attachment to soluble proteins or extracellular matrix components may cloak the bacterial surface from recognition by the host immune system as well as facilitate colonization of tissues. While targeted mutations in the genes encoding some adhesins have been shown to affect the infectivity and pathogenicity of B. burgdorferi, much work remains to be done to understand the roles of the adhesins in promoting the persistent infection required to maintain the bacteria in reservoir hosts.
Collapse
Affiliation(s)
- Styliani Antonara
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | | | | |
Collapse
|
48
|
The Borrelia burgdorferi integrin ligand P66 affects gene expression by human cells in culture. Infect Immun 2011; 79:3249-61. [PMID: 21576330 DOI: 10.1128/iai.05122-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, an agent of Lyme disease, establishes persistent infection in immunocompetent animals and humans. Although the infection in humans can be cleared by antibiotic therapy, persistence in reservoir animals is necessary for the maintenance of the bacterium in the natural reservoir host⇔tick vector infectious cycle. B. burgdorferi binds to β(1)- and β(3)-chain integrins, and the P66 outer membrane protein is responsible for at least some of the integrin binding activity of the spirochete. Because integrins are transmembrane, bidirectional signaling molecules, integrin binding may alter the nature of the host response to the bacteria. We used isogenic B. burgdorferi p66(+) and Δp66 strains to analyze the responses of cultured human cells to P66-integrin interaction during infection. Microarray results suggest that the response differs according to the cell type, infection time, and experimental conditions. Clusters of genes in functionally related categories that showed significant changes included proteins involved in cell-extracellular matrix interactions, actin dynamics, stress response, and immune responses. Integrin binding by P66 may therefore help B. burgdorferi establish infection by facilitating tissue invasion and modulating the activation of the immune system to other components of the bacteria, e.g., lipoproteins. These results provide insight into how B. burgdorferi is able to establish infection in immunocompetent hosts.
Collapse
|
49
|
Analysis of the
dbpBA
Upstream Regulatory Region Controlled by RpoS in
Borrelia burgdorferi. J Bacteriol 2010. [DOI: 10.1128/jb.00331-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
P66 porins are present in both Lyme disease and relapsing fever spirochetes: a comparison of the biophysical properties of P66 porins from six Borrelia species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1197-203. [PMID: 20188698 DOI: 10.1016/j.bbamem.2010.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 11/23/2022]
Abstract
The genus Borrelia is the cause of the two human diseases: Lyme disease (LD) and relapsing fever (RF). Both LD and RF Borrelia species are obligate parasites and are dependent on nutrients provided by their hosts. The first step of nutrient uptake across the outer membrane of these Gram-negative bacteria is accomplished by water-filled channels, so-called porins. The knowledge of the porin composition in the outer membranes of the different pathogenic Borrelia species is limited. Only one porin has been described in relapsing fever spirochetes to date, whereas four porins are known to be present in Lyme disease agents. From these, the Borrelia burgdorferi outer membrane channel P66 is known to act as an adhesin and was well studied as a porin. To investigate if P66 porins are expressed and similarly capable of pore formation in other Borrelia causing Lyme disease or relapsing fever three LD species (B. burgdorferi, B. afzelii, B. garinii) and three RF species (B. duttonii, B. recurrentis and B. hermsii) were investigated for outer membrane proteins homologous to P66. A search in current published RF genomes, comprising the ones of B. duttonii, B. recurrentis and B. hermsii, indicated that they all contained P66 homologues. The P66 homologues of the six Borrelia species were purified to homogeneity and their pore-forming abilities as well as the biophysical properties of the pores were analyzed using the black lipid bilayer assay.
Collapse
|